clinical trial protocol generation, healthcare ai
Draft trial protocols.
321 technical terms and definitions
Draft trial protocols.
Align image and text embeddings using contrastive learning.
Use CLIP scores to guide image generation.
Optimize towards CLIP similarity.
Contrastive learning for vision-language.
Use CLIP to guide image generation.
Clock domain crossings transfer signals between different clock domains requiring synchronization.
Clock uncertainty accounts for jitter and skew in timing analysis.
Tractable continuous-time neural networks with guaranteed stability.
Financial considerations for cloud training.
# Chemical Mechanical Planarization (CMP) Modeling in Semiconductor Manufacturing ## 1. Fundamentals of CMP ### 1.1 Definition and Principle Chemical Mechanical Planarization (CMP) is a hybrid process combining: - **Chemical etching**: Reactive slurry chemistry modifies surface properties - **Mechanical abrasion**: Physical removal via abrasive particles and pad The fundamental material removal can be expressed as: $$ \text{Material Removal} = f(\text{Chemical Reaction}, \text{Mechanical Abrasion}) $$ ### 1.2 Process Components | Component | Function | Key Parameters | |-----------|----------|----------------| | **Wafer** | Substrate to be planarized | Material type, pattern density | | **Polishing Pad** | Provides mechanical action | Hardness, porosity, asperity distribution | | **Slurry** | Chemical + abrasive medium | pH, oxidizer, particle size/concentration | | **Carrier** | Holds and rotates wafer | Down force, rotation speed | | **Platen** | Rotates polishing pad | Rotation speed, temperature | ### 1.3 Key Process Parameters - **Down Force ($F$)**: Pressure applied to wafer, typically $1-7$ psi - **Platen Speed ($\omega_p$)**: Pad rotation, typically $20-100$ rpm - **Carrier Speed ($\omega_c$)**: Wafer rotation, typically $20-100$ rpm - **Slurry Flow Rate ($Q$)**: Typically $100-300$ mL/min - **Temperature ($T$)**: Typically $20-50°C$ ## 2. Classical Physical Models ### 2.1 Preston Equation (Foundational Model) The foundational model for CMP is the **Preston equation** (1927): $$ \boxed{MRR = k_p \cdot P \cdot v} $$ Where: - $MRR$ = Material Removal Rate $[\text{nm/min}]$ - $k_p$ = Preston's coefficient $[\text{m}^2/\text{N}]$ - $P$ = Applied pressure $[\text{Pa}]$ - $v$ = Relative velocity $[\text{m/s}]$ The relative velocity between wafer and pad: $$ v = \sqrt{(\omega_p r_p)^2 + (\omega_c r_c)^2 - 2\omega_p \omega_c r_p r_c \cos(\theta)} $$ Where: - $\omega_p, \omega_c$ = Angular velocities of platen and carrier - $r_p, r_c$ = Radial positions - $\theta$ = Phase angle ### 2.2 Modified Preston Models #### 2.2.1 Pressure-Velocity Product Modification $$ MRR = k_p \cdot P^a \cdot v^b $$ Where $a, b$ are empirical exponents (typically $0.5 < a, b < 1.5$) #### 2.2.2 Chemical Enhancement Factor $$ MRR = k_p \cdot P \cdot v \cdot f(C, T, pH) $$ Where $f(C, T, pH)$ represents chemical effects: - $C$ = Oxidizer concentration - $T$ = Temperature - $pH$ = Slurry pH #### 2.2.3 Arrhenius-Modified Preston Equation $$ MRR = k_0 \cdot \exp\left(-\frac{E_a}{RT}\right) \cdot P \cdot v $$ Where: - $k_0$ = Pre-exponential factor - $E_a$ = Activation energy $[\text{J/mol}]$ - $R$ = Gas constant $= 8.314$ J/(mol$\cdot$K) - $T$ = Temperature $[\text{K}]$ ### 2.3 Tribocorrosion Model For metal CMP (e.g., tungsten, copper): $$ MRR = \frac{M}{z F \rho} \cdot \left( i_{corr} + \frac{Q_{pass}}{A \cdot t_{pass}} \right) \cdot f_{mech} $$ Where: - $M$ = Molar mass of metal - $z$ = Number of electrons transferred - $F$ = Faraday constant $= 96485$ C/mol - $\rho$ = Density - $i_{corr}$ = Corrosion current density - $Q_{pass}$ = Passivation charge - $f_{mech}$ = Mechanical factor ### 2.4 Contact Mode Classification | Mode | Condition | Preston Constant | Friction Coefficient | |------|-----------|------------------|---------------------| | **Contact** | $\frac{\eta v_R}{p} < (\frac{\eta v_R}{p})_c$ | High, constant | High ($\mu > 0.3$) | | **Mixed** | $\frac{\eta v_R}{p} \approx (\frac{\eta v_R}{p})_c$ | Transitional | Medium | | **Hydroplaning** | $\frac{\eta v_R}{p} > (\frac{\eta v_R}{p})_c$ | Low, variable | Low ($\mu < 0.1$) | Where: - $\eta$ = Slurry viscosity - $v_R$ = Relative velocity - $p$ = Pressure ## 3. Pattern Density Models ### 3.1 Effective Pattern Density Model (Stine Model) The local material removal rate depends on effective pattern density: $$ \frac{dz}{dt} = -\frac{K}{\rho_{eff}(x, y)} $$ Where: - $z$ = Surface height - $K$ = Blanket removal rate $= k_p \cdot P \cdot v$ - $\rho_{eff}$ = Effective pattern density #### 3.1.1 Effective Density Calculation $$ \rho_{eff}(x, y) = \iint_{-\infty}^{\infty} \rho_0(x', y') \cdot W(x - x', y - y') \, dx' \, dy' $$ Where: - $\rho_0(x, y)$ = Local pattern density - $W(x, y)$ = Weighting function (planarization kernel) #### 3.1.2 Elliptical Weighting Function $$ W(x, y) = \frac{1}{\pi L_x L_y} \cdot \exp\left(-\frac{x^2}{L_x^2} - \frac{y^2}{L_y^2}\right) $$ Where $L_x, L_y$ are planarization lengths in x and y directions. ### 3.2 Step Height Evolution Model For oxide CMP with step height $h$: $$ \frac{dh}{dt} = -K \cdot \left(1 - \frac{h_{contact}}{h}\right) \quad \text{for } h > h_{contact} $$ $$ \frac{dh}{dt} = 0 \quad \text{for } h \leq h_{contact} $$ Where $h_{contact}$ is the pad contact threshold height. ### 3.3 Integrated Density-Step Height Model Combined model for oxide thickness evolution: $$ z(x, y, t) = z_0 - K \cdot t \cdot \frac{1}{\rho_{eff}(x, y)} \cdot g(h) $$ Where $g(h)$ is the step-height dependent function: $$ g(h) = \begin{cases} 1 & \text{if } h > h_c \\ \frac{h}{h_c} & \text{if } h \leq h_c \end{cases} $$ ## 4. Dishing and Erosion Models ### 4.1 Copper Dishing Model Dishing depth $D$ for copper lines: $$ D = K_{Cu} \cdot t_{over} \cdot f(w) $$ Where: - $K_{Cu}$ = Copper removal rate - $t_{over}$ = Overpolish time - $w$ = Line width - $f(w)$ = Width-dependent function Empirical relationship: $$ D = D_0 \cdot \left(1 - \exp\left(-\frac{w}{w_c}\right)\right) $$ Where: - $D_0$ = Maximum dishing depth - $w_c$ = Critical line width ### 4.2 Oxide Erosion Model Erosion $E$ in dense pattern regions: $$ E = K_{ox} \cdot t_{over} \cdot \rho_{metal} $$ Where: - $K_{ox}$ = Oxide removal rate - $\rho_{metal}$ = Local metal pattern density ### 4.3 Combined Dishing-Erosion Total copper thickness loss: $$ \Delta z_{Cu} = D + E \cdot \frac{\rho_{metal}}{1 - \rho_{metal}} $$ ### 4.4 Pattern Density Effects | Pattern Density | Dishing Behavior | Erosion Behavior | |-----------------|------------------|------------------| | Low ($< 20\%$) | Minimal | Minimal | | Medium ($20-50\%$) | Moderate | Increasing | | High ($> 50\%$) | Saturates | Severe | ## 5. Contact Mechanics Models ### 5.1 Pad Asperity Contact Model Assuming Gaussian asperity height distribution: $$ P(z) = \frac{1}{\sigma_s \sqrt{2\pi}} \exp\left(-\frac{(z - \bar{z})^2}{2\sigma_s^2}\right) $$ Where: - $\sigma_s$ = Standard deviation of asperity heights - $\bar{z}$ = Mean asperity height ### 5.2 Real Contact Area $$ A_r = \pi n \int_{d}^{\infty} R(z - d) \cdot P(z) \, dz $$ Where: - $n$ = Number of asperities per unit area - $R$ = Asperity tip radius - $d$ = Separation distance For Gaussian distribution: $$ A_r = \pi n R \sigma_s \cdot F_1\left(\frac{d}{\sigma_s}\right) $$ Where $F_1$ is a statistical function. ### 5.3 Hertzian Contact For elastic contact between abrasive particle and wafer: $$ a = \left(\frac{3FR}{4E^*}\right)^{1/3} $$ $$ \delta = \frac{a^2}{R} = \left(\frac{9F^2}{16RE^{*2}}\right)^{1/3} $$ Where: - $a$ = Contact radius - $F$ = Normal force - $R$ = Particle radius - $\delta$ = Indentation depth - $E^*$ = Effective elastic modulus $$ \frac{1}{E^*} = \frac{1 - \nu_1^2}{E_1} + \frac{1 - \nu_2^2}{E_2} $$ ### 5.4 Material Removal by Single Abrasive Volume removed per abrasive per pass: $$ V = K_{wear} \cdot \frac{F_n \cdot L}{H} $$ Where: - $K_{wear}$ = Wear coefficient - $F_n$ = Normal force on particle - $L$ = Sliding distance - $H$ = Hardness of wafer material ### 5.5 Multi-Scale Model Framework ``` - ┌─────────────────────────────────────────────────────────────┐ │ WAFER SCALE (mm-cm) │ │ Pressure distribution, global uniformity │ ├─────────────────────────────────────────────────────────────┤ │ DIE SCALE ($\mu$m-mm) │ │ Pattern density effects, planarization │ ├─────────────────────────────────────────────────────────────┤ │ FEATURE SCALE (nm-$\mu$m) │ │ Dishing, erosion, step height evolution │ ├─────────────────────────────────────────────────────────────┤ │ PARTICLE SCALE (nm) │ │ Abrasive-surface interactions │ ├─────────────────────────────────────────────────────────────┤ │ MOLECULAR SCALE (Å) │ │ Chemical reactions, atomic removal │ └─────────────────────────────────────────────────────────────┘ ``` ## 6. Machine Learning and Neural Network Models ### 6.1 Overview of ML Approaches Machine learning methods for CMP modeling: - **Supervised Learning** - Artificial Neural Networks (ANN) - Convolutional Neural Networks (CNN) - Support Vector Machines (SVM) - Random Forests / Gradient Boosting - **Deep Learning** - Deep Belief Networks (DBN) - Long Short-Term Memory (LSTM) - Generative Adversarial Networks (GAN) - **Transfer Learning** - Pre-trained models adapted to new process conditions ### 6.2 Neural Network Architecture for CMP #### 6.2.1 Input Features $$ \mathbf{x} = [P, v, t, \rho, w, s, pH, C_{ox}, T, ...]^T $$ Where: - $P$ = Pressure - $v$ = Velocity - $t$ = Polish time - $\rho$ = Pattern density - $w$ = Feature width - $s$ = Feature spacing - $pH$ = Slurry pH - $C_{ox}$ = Oxidizer concentration - $T$ = Temperature #### 6.2.2 Multi-Layer Perceptron (MLP) $$ \mathbf{h}^{(1)} = \sigma(\mathbf{W}^{(1)} \mathbf{x} + \mathbf{b}^{(1)}) $$ $$ \mathbf{h}^{(2)} = \sigma(\mathbf{W}^{(2)} \mathbf{h}^{(1)} + \mathbf{b}^{(2)}) $$ $$ \hat{y} = \mathbf{W}^{(out)} \mathbf{h}^{(2)} + \mathbf{b}^{(out)} $$ Where: - $\sigma$ = Activation function (ReLU, tanh, sigmoid) - $\mathbf{W}^{(i)}$ = Weight matrices - $\mathbf{b}^{(i)}$ = Bias vectors #### 6.2.3 Activation Functions | Function | Formula | Use Case | |----------|---------|----------| | **ReLU** | $\sigma(x) = \max(0, x)$ | Hidden layers | | **Sigmoid** | $\sigma(x) = \frac{1}{1 + e^{-x}}$ | Output (binary) | | **Tanh** | $\sigma(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ | Hidden layers | | **Softmax** | $\sigma(x_i) = \frac{e^{x_i}}{\sum_j e^{x_j}}$ | Classification | ### 6.3 CNN-Based CMP Modeling (CmpCNN) #### 6.3.1 Architecture ``` Input: Layout Image (Binary) + Density Map ↓ Conv2D Layer (3×3 kernel, 32 filters) ↓ MaxPooling2D (2×2) ↓ Conv2D Layer (3×3 kernel, 64 filters) ↓ MaxPooling2D (2×2) ↓ Flatten ↓ Dense Layer (256 units) ↓ Dense Layer (128 units) ↓ Output: Post-CMP Height Map ``` #### 6.3.2 Convolution Operation $$ (I * K)(i, j) = \sum_m \sum_n I(i+m, j+n) \cdot K(m, n) $$ Where: - $I$ = Input image (layout) - $K$ = Convolution kernel - $(i, j)$ = Output position ### 6.4 Loss Functions #### 6.4.1 Mean Squared Error (MSE) $$ \mathcal{L}_{MSE} = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2 $$ #### 6.4.2 Root Mean Square Error (RMSE) $$ RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2} $$ #### 6.4.3 Mean Absolute Percentage Error (MAPE) $$ MAPE = \frac{100\%}{N} \sum_{i=1}^{N} \left| \frac{y_i - \hat{y}_i}{y_i} \right| $$ ### 6.5 Transfer Learning Framework For adapting models across process nodes: $$ \mathcal{L}_{transfer} = \mathcal{L}_{target} + \lambda \cdot \mathcal{L}_{domain} $$ Where: - $\mathcal{L}_{target}$ = Target domain loss - $\mathcal{L}_{domain}$ = Domain adaptation loss - $\lambda$ = Regularization parameter ### 6.6 Performance Metrics | Metric | Formula | Target | |--------|---------|--------| | $R^2$ | $1 - \frac{\sum(y_i - \hat{y}_i)^2}{\sum(y_i - \bar{y})^2}$ | $> 0.95$ | | RMSE | $\sqrt{\frac{1}{N}\sum(y_i - \hat{y}_i)^2}$ | $< 5$ Å | | MAE | $\frac{1}{N}\sum|y_i - \hat{y}_i|$ | $< 3$ Å | ## 7. Slurry Chemistry Modeling ### 7.1 Kaufman Mechanism Cyclic passivation-depassivation process: $$ \text{Metal} \xrightarrow{\text{Oxidizer}} \text{Metal Oxide} \xrightarrow{\text{Abrasion}} \text{Removal} $$ ### 7.2 Electrochemical Reactions #### 7.2.1 Copper CMP **Oxidation:** $$ \text{Cu} \rightarrow \text{Cu}^{2+} + 2e^- $$ **Passivation (with BTA):** $$ \text{Cu} + \text{BTA} \rightarrow \text{Cu-BTA}_{film} $$ **Complexation:** $$ \text{Cu}^{2+} + n\text{L} \rightarrow [\text{CuL}_n]^{2+} $$ Where L = chelating agent (e.g., glycine, citrate) #### 7.2.2 Tungsten CMP **Oxidation:** $$ \text{W} + 3\text{H}_2\text{O} \rightarrow \text{WO}_3 + 6\text{H}^+ + 6e^- $$ **With hydrogen peroxide:** $$ \text{W} + 3\text{H}_2\text{O}_2 \rightarrow \text{WO}_3 + 3\text{H}_2\text{O} $$ ### 7.3 Pourbaix Diagram Integration Stability regions defined by: $$ E = E^0 - \frac{RT}{nF} \ln Q - \frac{RT}{F} \cdot m \cdot pH $$ Where: - $E$ = Electrode potential - $E^0$ = Standard potential - $Q$ = Reaction quotient - $m$ = Number of H⁺ in reaction ### 7.4 Abrasive Particle Effects #### 7.4.1 Particle Size Distribution (PSD) Log-normal distribution: $$ f(d) = \frac{1}{d \sigma \sqrt{2\pi}} \exp\left(-\frac{(\ln d - \mu)^2}{2\sigma^2}\right) $$ Where: - $d$ = Particle diameter - $\mu$ = Mean of $\ln(d)$ - $\sigma$ = Standard deviation of $\ln(d)$ #### 7.4.2 Zeta Potential $$ \zeta = \frac{4\pi \eta \mu_e}{\varepsilon} $$ Where: - $\eta$ = Viscosity - $\mu_e$ = Electrophoretic mobility - $\varepsilon$ = Dielectric constant ### 7.5 Slurry Components Summary | Component | Function | Typical Materials | |-----------|----------|-------------------| | **Abrasive** | Mechanical removal | SiO₂, CeO₂, Al₂O₃ | | **Oxidizer** | Surface modification | H₂O₂, KIO₃, Fe(NO₃)₃ | | **Complexant** | Metal dissolution | Glycine, citric acid | | **Inhibitor** | Corrosion protection | BTA, BBI | | **Surfactant** | Particle dispersion | CTAB, SDS | | **Buffer** | pH control | Phosphate, citrate | ## 8. Chip-Scale and Full-Chip Models ### 8.1 Within-Wafer Non-Uniformity (WIWNU) $$ WIWNU = \frac{\sigma_{thickness}}{\bar{thickness}} \times 100\% $$ Where: - $\sigma_{thickness}$ = Standard deviation of thickness - $\bar{thickness}$ = Mean thickness ### 8.2 Pressure Distribution Model For a flexible carrier: $$ P(r) = P_0 + \sum_{i=1}^{n} P_i \cdot J_0\left(\frac{\alpha_i r}{R}\right) $$ Where: - $P_0$ = Base pressure - $J_0$ = Bessel function of first kind - $\alpha_i$ = Bessel zeros - $R$ = Wafer radius ### 8.3 Multi-Zone Pressure Control For zone $i$: $$ MRR_i = k_p \cdot P_i \cdot v_i $$ Target uniformity achieved when: $$ MRR_1 = MRR_2 = ... = MRR_n $$ ### 8.4 Full-Chip Simulation Flow ``` - ┌─────────────────────┐ │ Design Layout (GDS)│ └──────────┬──────────┘ ↓ ┌─────────────────────┐ │ Density Extraction │ │ ρ(x,y) for each │ │ metal/dielectric │ └──────────┬──────────┘ ↓ ┌─────────────────────┐ │ Effective Density │ │ ρ_eff = ρ * W │ └──────────┬──────────┘ ↓ ┌─────────────────────┐ │ CMP Simulation │ │ z(t) evolution │ └──────────┬──────────┘ ↓ ┌─────────────────────┐ │ Post-CMP Topography │ │ Dishing/Erosion Map │ └──────────┬──────────┘ ↓ ┌─────────────────────┐ │ Hotspot Detection │ │ Design Rule Check │ └─────────────────────┘ ``` ## 9. Process Control Applications ### 9.1 Run-to-Run (R2R) Control #### 9.1.1 EWMA Controller $$ \hat{y}_{k+1} = \lambda y_k + (1 - \lambda) \hat{y}_k $$ Where: - $\hat{y}_{k+1}$ = Predicted output for next run - $y_k$ = Current measured output - $\lambda$ = Smoothing factor $(0 < \lambda < 1)$ #### 9.1.2 Recipe Adjustment $$ u_{k+1} = u_k + G^{-1} (y_{target} - \hat{y}_{k+1}) $$ Where: - $u$ = Process recipe (time, pressure, etc.) - $G$ = Process gain matrix - $y_{target}$ = Target output ### 9.2 Virtual Metrology $$ \hat{y} = f_{VM}(\mathbf{x}_{FDC}) $$ Where: - $\hat{y}$ = Predicted wafer quality - $\mathbf{x}_{FDC}$ = Fault Detection and Classification sensor data ### 9.3 Endpoint Detection #### 9.3.1 Motor Current Monitoring $$ I(t) = I_0 + \Delta I \cdot H(t - t_{endpoint}) $$ Where $H$ is the Heaviside step function. #### 9.3.2 Optical Endpoint $$ R(\lambda, t) = R_{film}(\lambda, d(t)) $$ Where reflectance $R$ changes as film thickness $d$ decreases. ## 10. Current Challenges and Future Directions ### 10.1 Key Challenges - **Sub-5nm nodes**: Atomic-scale precision required - Thickness variation target: $< 5$ Å (3σ) - Defect density target: $< 0.01$ defects/cm² - **New materials integration**: - Low-κ dielectrics ($\kappa < 2.5$) - Cobalt interconnects - Ruthenium barrier layers - **3D integration**: - Through-Silicon Via (TSV) CMP - Hybrid bonding surface preparation - Wafer-level packaging ### 10.2 Future Model Development - **Physics-informed neural networks (PINNs)**: $$ \mathcal{L} = \mathcal{L}_{data} + \lambda_{physics} \cdot \mathcal{L}_{physics} $$ Where: $$ \mathcal{L}_{physics} = \left\| \frac{\partial z}{\partial t} + \frac{K}{\rho_{eff}} \right\|^2 $$ - **Digital twins** for real-time process optimization - **Federated learning** across multiple fabs ### 10.3 Industry Requirements | Node | Thickness Uniformity | Defect Density | Dishing Limit | |------|---------------------|----------------|---------------| | 7nm | $< 10$ Å | $< 0.05$/cm² | $< 200$ Å | | 5nm | $< 7$ Å | $< 0.03$/cm² | $< 150$ Å | | 3nm | $< 5$ Å | $< 0.01$/cm² | $< 100$ Å | | 2nm | $< 3$ Å | $< 0.005$/cm² | $< 50$ Å | ## Symbol Glossary | Symbol | Description | Units | |--------|-------------|-------| | $MRR$ | Material Removal Rate | nm/min | | $k_p$ | Preston coefficient | m²/N | | $P$ | Pressure | Pa, psi | | $v$ | Relative velocity | m/s | | $\rho$ | Pattern density | dimensionless | | $\rho_{eff}$ | Effective pattern density | dimensionless | | $L$ | Planarization length | $\mu$m | | $D$ | Dishing depth | Å, nm | | $E$ | Erosion depth | Å, nm | | $w$ | Feature width | nm, $\mu$m | | $h$ | Step height | nm | | $t$ | Polish time | s, min | | $T$ | Temperature | K, °C | | $\eta$ | Viscosity | Pa$\cdot$s | | $\mu$ | Friction coefficient | dimensionless | ## Key Equations ### Preston Equation $$ MRR = k_p \cdot P \cdot v $$ ### Effective Density $$ \rho_{eff}(x,y) = \iint \rho_0(x',y') \cdot W(x-x', y-y') \, dx' dy' $$ ### Material Removal (Density Model) $$ \frac{dz}{dt} = -\frac{K}{\rho_{eff}(x,y)} $$ ### Dishing Model $$ D = D_0 \cdot \left(1 - e^{-w/w_c}\right) $$ ### Erosion Model $$ E = K_{ox} \cdot t_{over} \cdot \rho_{metal} $$ ### Neural Network $$ \hat{y} = \sigma(\mathbf{W}^{(n)} \cdot ... \cdot \sigma(\mathbf{W}^{(1)} \mathbf{x} + \mathbf{b}^{(1)}) + \mathbf{b}^{(n)}) $$
Jointly attend to multiple modalities.
Train multiple views of data.
Co-training trains multiple models on different views of data where each model labels examples for others' training sets.
Train multiple models on different views of data and share predictions.
Simplified representation for larger scales.
Train from coarse to fine details.
Multi-scale attention.
Cocktail party problem refers to separating individual speakers from mixed audio in multi-talker scenarios.
Amount of code change over time.
Find similar code segments.
Complete code understanding context.
Autocomplete code based on context and comments.
Measure code complexity.
Describe what code does in natural language.
LLMs that write code from natural language descriptions.
Code models specialize in programming tasks through code-focused training.
Improve code performance automatically.
Various code quality measures.
Improve code structure and readability while preserving functionality.
AI-assisted code review suggesting improvements and catching issues.
Find code snippets by description.
Identify poor code patterns.
Generate natural language summaries of code.
Convert code from one programming language to another.
Codebook learning discovers discrete symbols for efficient representation of continuous data.
Neural audio codecs that compress audio into discrete tokens for generation.
Meta's specialized code generation model.
Codex is OpenAI code model (now deprecated). Powered Copilot v1.
Cog packages models in containers. Replicate uses Cog.
Cogeneration produces electricity and useful heat simultaneously improving overall energy efficiency.
Ensure text flows logically.
Collaborative planning shares forecasts and schedules with suppliers improving supply chain coordination.
Efficient large model training system.
Total uncertainty from all sources.
Comments hiding bad code.
Generate git commit messages.
Common subexpression elimination reuses results of identical computations appearing multiple times.
Time spent in inter-GPU communication.
Reduce communication in distributed training.