← Back to AI Factory Chat

AI Factory Glossary

234 technical terms and definitions

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Showing page 4 of 5 (234 entries)

dmaic (define measure analyze improve control),dmaic,define measure analyze improve control,quality

Six Sigma improvement process.

dmaic, dmaic, quality

Six Sigma methodology.

dmaic, dmaic, quality & reliability

Define-Measure-Analyze-Improve-Control provides structured methodology for process improvement.

dna, dna, neural architecture search

Densely connected NAS search space enables rich architectural diversity through dense connections between layers.

do-calculus, time series models

Do-calculus provides rules for deriving causal effects from observational distributions and causal graphs.

doc,documentation,explain code,comment

Paste code or text and say explain this step by step. I will add comments, clarify logic, and help you refactor or document it clearly.

docker containers, infrastructure

Containerize ML environments.

docker,container,kubernetes,k8s

I can containerize apps with Docker, write Dockerfiles, and explain basic Kubernetes concepts like pods, services, and deployments.

document ai,layout,extraction

Document AI extracts structured data from documents. Layout understanding, table extraction, form parsing.

document classification (legal),document classification,legal,legal ai

Categorize legal documents.

documentation generation,code ai

Generate docstrings and technical documentation from code.

domain adaptation asr, audio & speech

Domain adaptation in ASR transfers models across acoustic environments or speaking styles.

domain adaptation rec, recommendation systems

Domain adaptation techniques reduce distribution shift when applying recommendation models to new domains.

domain adaptation retrieval, rag

Domain adaptation fine-tunes retrievers for specific corpora or use cases.

domain adaptation theory, advanced training

Domain adaptation theory analyzes how models trained on source distributions perform on related target distributions with distribution shift.

domain adaptation,shift,distribution

Domain adaptation handles distribution shift between train and deploy. Fine-tune or use domain-specific data.

domain adaptation,transfer learning

Adapt from source to target domain.

domain confusion, domain adaptation

Train features indistinguishable across domains.

domain discriminator, domain adaptation

Classifier distinguishing domains.

domain generalization, domain generalization

Train to work on unseen domains.

domain generalization,transfer learning

Train to work on unseen domains.

domain mixing, training

Mix data from different domains.

domain randomization, domain generalization

Train on diverse synthetic domains.

domain shift,transfer learning

When test distribution differs from training.

domain-adaptive pre-training, transfer learning

Continue pre-training on domain data.

domain-incremental learning,continual learning

Adapt to new domains over time.

domain-invariant feature learning, domain adaptation

Learn features unchanged across domains.

domain-specific language (dsl) generation,code ai

Create specialized languages for domains.

domain-specific model, llm architecture

Domain-specific models specialize in particular fields through targeted training.

dominant failure mechanism, reliability

Most common cause of failure.

dominant failure mechanism, reliability

Most common failure mode.

dopant diffusion,diffusion

Movement of dopants at high temperature.

doping,ion implantation,p type,n type,boron,phosphorus,arsenic,dopant diffusion,junction formation,mathematical modeling

# Semiconductor Manufacturing: Ion Implantation Mathematical Modeling ## 1. Introduction Ion implantation is a critical process in semiconductor fabrication where dopant ions (B, P, As, Sb) are accelerated and embedded into silicon substrates to precisely control electrical properties. **Key Process Parameters:** - **Energy (keV)**: Controls implant depth ($R_p$) - **Dose (ions/cm²)**: Controls peak concentration - **Tilt angle (°)**: Minimizes channeling effects - **Twist angle (°)**: Avoids major crystal planes - **Beam current (mA)**: Affects dose rate and wafer heating ## 2. Foundational Physics: Ion Stopping When an energetic ion enters a solid, it loses energy through two primary mechanisms. ### 2.1 Total Stopping Power $$ \frac{dE}{dx} = N \left[ S_n(E) + S_e(E) \right] $$ Where: - $N$ = atomic density of target ($\approx 5 \times 10^{22}$ atoms/cm³ for Si) - $S_n(E)$ = nuclear stopping cross-section (elastic collisions with nuclei) - $S_e(E)$ = electronic stopping cross-section (inelastic energy loss to electrons) ### 2.2 Nuclear Stopping: ZBL Universal Potential The Ziegler-Biersack-Littmark (ZBL) universal screening function: $$ \phi(x) = 0.1818 e^{-3.2x} + 0.5099 e^{-0.9423x} + 0.2802 e^{-0.4028x} + 0.02817 e^{-0.2016x} $$ Where $x = r/a_u$ is the reduced interatomic distance. **Universal screening length:** $$ a_u = \frac{0.8854 \, a_0}{Z_1^{0.23} + Z_2^{0.23}} $$ Where: - $a_0$ = Bohr radius (0.529 Å) - $Z_1$ = atomic number of incident ion - $Z_2$ = atomic number of target atom ### 2.3 Electronic Stopping **Low energy regime** (velocity-proportional, Lindhard-Scharff): $$ S_e = k_e \sqrt{E} $$ Where: $$ k_e = \frac{1.212 \, Z_1^{7/6} \, Z_2}{(Z_1^{2/3} + Z_2^{2/3})^{3/2} \, M_1^{1/2}} $$ **High energy regime** (Bethe-Bloch formula): $$ S_e = \frac{4\pi Z_1^2 e^4 N Z_2}{m_e v^2} \ln\left(\frac{2 m_e v^2}{I}\right) $$ Where: - $m_e$ = electron mass - $v$ = ion velocity - $I$ = mean ionization potential of target ## 3. Range Statistics and Profile Models ### 3.1 Gaussian Approximation (First Order) For amorphous targets, the as-implanted profile: $$ C(x) = \frac{\Phi}{\sqrt{2\pi} \, \Delta R_p} \exp\left[ -\frac{(x - R_p)^2}{2 \Delta R_p^2} \right] $$ | Symbol | Definition | Units | |--------|------------|-------| | $\Phi$ | Implant dose | ions/cm² | | $R_p$ | Projected range (mean depth) | nm or cm | | $\Delta R_p$ | Range straggle (standard deviation) | nm or cm | **Peak concentration:** $$ C_{max} = \frac{\Phi}{\sqrt{2\pi} \, \Delta R_p} \approx \frac{0.4 \, \Phi}{\Delta R_p} $$ ### 3.2 Pearson IV Distribution (Industry Standard) Real profiles exhibit asymmetry. The Pearson IV distribution uses four statistical moments: $$ f(x) = K \left[ 1 + \left( \frac{x - \lambda}{a} \right)^2 \right]^{-m} \exp\left[ -\nu \arctan\left( \frac{x - \lambda}{a} \right) \right] $$ **Four Moments:** 1. **First Moment (Mean)**: $R_p$ — projected range 2. **Second Moment (Variance)**: $\Delta R_p^2$ — spread 3. **Third Moment (Skewness)**: $\gamma$ — asymmetry - $\gamma < 0$: tail extends deeper into substrate (light ions: B) - $\gamma > 0$: tail extends toward surface (heavy ions: As) 4. **Fourth Moment (Kurtosis)**: $\beta$ — peakedness relative to Gaussian **Typical values for Si:** | Dopant | Skewness ($\gamma$) | Kurtosis ($\beta$) | |--------|---------------------|---------------------| | Boron (B) | -0.5 to +0.5 | 2.5 to 4.0 | | Phosphorus (P) | -0.3 to +0.3 | 2.5 to 3.5 | | Arsenic (As) | +0.5 to +1.5 | 3.0 to 5.0 | | Antimony (Sb) | +0.8 to +2.0 | 3.5 to 6.0 | ### 3.3 Dual Pearson Model (Channeling Effects) For implants into crystalline silicon with channeling tails: $$ C(x) = (1 - f_{ch}) \cdot P_{random}(x) + f_{ch} \cdot P_{channel}(x) $$ Where: - $P_{random}(x)$ = Pearson distribution for random (amorphous) stopping - $P_{channel}(x)$ = Pearson distribution for channeled ions - $f_{ch}$ = channeling fraction (depends on tilt, beam divergence, surface oxide) **Channeling fraction dependencies:** - Beam divergence: $f_{ch} \downarrow$ as divergence $\uparrow$ - Tilt angle: $f_{ch} \downarrow$ as tilt $\uparrow$ (typically 7° off-axis) - Surface oxide: $f_{ch} \downarrow$ with screen oxide - Pre-amorphization: $f_{ch} \approx 0$ with PAI ## 4. Monte Carlo Simulation (BCA Method) The Binary Collision Approximation provides the highest accuracy for profile prediction. ### 4.1 Algorithm Overview ``` FOR each ion i = 1 to N_ions (typically 10⁵ - 10⁶): 1. Initialize: - Energy: E = E₀ - Position: (x, y, z) = (0, 0, 0) - Direction: (cos θ, sin θ cos φ, sin θ sin φ) 2. WHILE E > E_cutoff: a. Calculate mean free path: λ = 1 / (N · π · p_max²) b. Select random impact parameter: p = p_max · √(random[0,1]) c. Solve scattering integral for deflection angle Θ d. Calculate energy transfer to target atom: T = T_max · sin²(Θ/2) e. Update ion energy: E → E - T - ΔE_electronic f. IF T > E_displacement: Create recoil cascade (track secondary) g. Update position and direction vectors 3. Record final ion position (x_final, y_final, z_final) END FOR 4. Build histogram of final positions → Dopant profile ``` ### 4.2 Scattering Integral The classical scattering integral for deflection angle: $$ \Theta = \pi - 2p \int_{r_{min}}^{\infty} \frac{dr}{r^2 \sqrt{1 - \frac{V(r)}{E_c} - \frac{p^2}{r^2}}} $$ Where: - $p$ = impact parameter - $r_{min}$ = distance of closest approach - $V(r)$ = interatomic potential (e.g., ZBL) - $E_c$ = center-of-mass energy **Center-of-mass energy:** $$ E_c = \frac{M_2}{M_1 + M_2} E $$ ### 4.3 Energy Transfer Maximum energy transfer in elastic collision: $$ T_{max} = \frac{4 M_1 M_2}{(M_1 + M_2)^2} \cdot E = \gamma \cdot E $$ Where $\gamma$ is the kinematic factor: | Ion → Si | $M_1$ (amu) | $\gamma$ | |----------|-------------|----------| | B → Si | 11 | 0.702 | | P → Si | 31 | 0.968 | | As → Si | 75 | 0.746 | ### 4.4 Electronic Energy Loss (Continuous) Along the free flight path: $$ \Delta E_{electronic} = \int_0^{\lambda} S_e(E) \, dx \approx S_e(E) \cdot \lambda $$ ## 5. Multi-Layer and Through-Film Implantation ### 5.1 Screen Oxide Implantation For implantation through oxide layer of thickness $t_{ox}$: **Range correction:** $$ R_p^{eff} = R_p^{Si} - t_{ox} \left( \frac{R_p^{Si} - R_p^{ox}}{R_p^{ox}} \right) $$ **Straggle correction:** $$ (\Delta R_p^{eff})^2 = (\Delta R_p^{Si})^2 - t_{ox} \left( \frac{(\Delta R_p^{Si})^2 - (\Delta R_p^{ox})^2}{R_p^{ox}} \right) $$ ### 5.2 Moment Matching at Interfaces For multi-layer structures, use moment conservation: $$ \langle x^n \rangle_{total} = \sum_i \langle x^n \rangle_i \cdot w_i $$ Where $w_i$ is the weighting factor for layer $i$. ## 6. Two-Dimensional Profile Modeling ### 6.1 Lateral Straggle The lateral distribution follows: $$ C(x, y) = C(x) \cdot \frac{1}{\sqrt{2\pi} \, \Delta R_\perp} \exp\left[ -\frac{y^2}{2 \Delta R_\perp^2} \right] $$ **Relationship between straggles:** $$ \Delta R_\perp \approx (0.7 \text{ to } 1.0) \times \Delta R_p $$ ### 6.2 Masked Implant with Edge Effects For a mask opening of width $W$: $$ C(x, y) = C(x) \cdot \frac{1}{2} \left[ \text{erf}\left( \frac{y + W/2}{\sqrt{2} \, \Delta R_\perp} \right) - \text{erf}\left( \frac{y - W/2}{\sqrt{2} \, \Delta R_\perp} \right) \right] $$ ### 6.3 Full 3D Distribution $$ C(x, y, z) = \frac{\Phi}{(2\pi)^{3/2} \Delta R_p \, \Delta R_\perp^2} \exp\left[ -\frac{(x - R_p)^2}{2 \Delta R_p^2} - \frac{y^2 + z^2}{2 \Delta R_\perp^2} \right] $$ ## 7. Damage and Defect Modeling ### 7.1 Kinchin-Pease Model Number of displaced atoms per incident ion: $$ N_d = \begin{cases} 0 & \text{if } E_D < E_d \\ 1 & \text{if } E_d < E_D < 2E_d \\ \displaystyle\frac{E_D}{2E_d} & \text{if } E_D > 2E_d \end{cases} $$ Where: - $E_D$ = damage energy (energy deposited into nuclear collisions) - $E_d$ = displacement threshold energy ($\approx 15$ eV for Si) ### 7.2 Modified NRT Model (Norgett-Robinson-Torrens) $$ N_d = \frac{0.8 \, E_D}{2 E_d} $$ The factor 0.8 accounts for forward scattering efficiency. ### 7.3 Damage Energy Partition Lindhard partition function: $$ E_D = \frac{E_0}{1 + k \cdot g(\varepsilon)} $$ Where: $$ k = 0.1337 \, Z_1^{1/6} \left( \frac{Z_1}{Z_2} \right)^{1/2} $$ $$ \varepsilon = \frac{32.53 \, M_2 \, E_0}{Z_1 Z_2 (M_1 + M_2)(Z_1^{0.23} + Z_2^{0.23})} $$ ### 7.4 Amorphization Threshold Critical dose for amorphization: $$ \Phi_c \approx \frac{N_0}{N_d \cdot \sigma_{damage}} $$ **Typical values:** | Ion | Critical Dose (cm⁻²) | |-----|----------------------| | B⁺ | $\sim 10^{15}$ | | P⁺ | $\sim 5 \times 10^{14}$ | | As⁺ | $\sim 10^{14}$ | | Sb⁺ | $\sim 5 \times 10^{13}$ | ### 7.5 Damage Profile The damage distribution differs from dopant distribution: $$ D(x) = \frac{\Phi \cdot N_d(E)}{\sqrt{2\pi} \, \Delta R_d} \exp\left[ -\frac{(x - R_d)^2}{2 \Delta R_d^2} \right] $$ Where $R_d < R_p$ (damage peaks shallower than dopant). ## 8. Process-Relevant Calculations ### 8.1 Junction Depth For Gaussian profile meeting background concentration $C_B$: $$ x_j = R_p + \Delta R_p \sqrt{2 \ln\left( \frac{C_{max}}{C_B} \right)} $$ **For asymmetric Pearson profiles:** $$ x_j = R_p + \Delta R_p \left[ \gamma + \sqrt{\gamma^2 + 2 \ln\left( \frac{C_{max}}{C_B} \right)} \right] $$ ### 8.2 Sheet Resistance $$ R_s = \frac{1}{q \displaystyle\int_0^{x_j} \mu(C(x)) \cdot C(x) \, dx} $$ **With concentration-dependent mobility (Masetti model):** $$ \mu(C) = \mu_{min} + \frac{\mu_0}{1 + (C/C_r)^\alpha} - \frac{\mu_1}{1 + (C_s/C)^\beta} $$ | Parameter | Electrons | Holes | |-----------|-----------|-------| | $\mu_{min}$ | 52.2 | 44.9 | | $\mu_0$ | 1417 | 470.5 | | $C_r$ | $9.68 \times 10^{16}$ | $2.23 \times 10^{17}$ | | $\alpha$ | 0.68 | 0.719 | ### 8.3 Threshold Voltage Shift For channel implant: $$ \Delta V_T = \frac{q}{\varepsilon_{ox}} \int_0^{x_{max}} C(x) \cdot x \, dx $$ **Simplified (shallow implant):** $$ \Delta V_T \approx \frac{q \, \Phi \, R_p}{\varepsilon_{ox}} $$ ### 8.4 Dose Calculation from Profile $$ \Phi = \int_0^{\infty} C(x) \, dx $$ **Verification:** $$ \Phi_{measured} = \frac{I \cdot t}{q \cdot A} $$ Where: - $I$ = beam current - $t$ = implant time - $A$ = implanted area ## 9. Advanced Effects ### 9.1 Transient Enhanced Diffusion (TED) The "+1 Model": Each implanted ion creates approximately one net interstitial. **Enhanced diffusion equation:** $$ \frac{\partial C}{\partial t} = \frac{\partial}{\partial x} \left[ D^* \frac{\partial C}{\partial x} \right] $$ **Enhanced diffusivity:** $$ D^* = D_i \cdot \left( 1 + \frac{C_I}{C_I^*} \right) $$ Where: - $D_i$ = intrinsic diffusivity - $C_I$ = interstitial concentration - $C_I^*$ = equilibrium interstitial concentration ### 9.2 Dose Loss Mechanisms **Sputtering yield:** $$ Y = \frac{0.042 \, \alpha \, S_n(E_0)}{U_0} $$ Where: - $\alpha$ = angular factor ($\approx 0.2$ for light ions, $\approx 0.4$ for heavy ions) - $U_0$ = surface binding energy ($\approx 4.7$ eV for Si) **Retained dose:** $$ \Phi_{retained} = \Phi_{implanted} \cdot (1 - \eta_{sputter} - \eta_{backscatter}) $$ ### 9.3 High Dose Effects **Dose saturation:** $$ C_{max}^{sat} = \frac{N_0}{\sqrt{2\pi} \, \Delta R_p} $$ **Snow-plow effect** at very high doses pushes peak toward surface. ### 9.4 Temperature Effects **Dynamic annealing:** Competes with damage accumulation $$ \Phi_c(T) = \Phi_c(0) \exp\left( \frac{E_a}{k_B T} \right) $$ Where $E_a \approx 0.3$ eV for Si self-interstitial migration. ## 10. Tables ### 10.1 Key Scaling Relationships | Parameter | Scaling with Energy | |-----------|---------------------| | Projected Range | $R_p \propto E^n$ where $n \approx 0.5 - 0.8$ | | Range Straggle | $\Delta R_p \approx 0.4 R_p$ (light ions) to $0.2 R_p$ (heavy ions) | | Lateral Straggle | $\Delta R_\perp \approx 0.7 - 1.0 \times \Delta R_p$ | | Damage Energy | $E_D/E_0$ increases with ion mass | ### 10.2 Common Implant Parameters in Si | Dopant | Type | Energy (keV) | $R_p$ (nm) | $\Delta R_p$ (nm) | |--------|------|--------------|------------|-------------------| | B | p | 10 | 35 | 14 | | B | p | 50 | 160 | 52 | | P | n | 30 | 40 | 15 | | P | n | 100 | 120 | 40 | | As | n | 50 | 35 | 12 | | As | n | 150 | 95 | 28 | ### 10.3 Simulation Tools Comparison | Approach | Speed | Accuracy | Primary Use | |----------|-------|----------|-------------| | Analytical (Gaussian) | ★★★★★ | ★★☆☆☆ | Quick estimates | | Pearson IV Tables | ★★★★☆ | ★★★☆☆ | Process simulation | | Monte Carlo (SRIM/TRIM) | ★★☆☆☆ | ★★★★☆ | Profile calibration | | Molecular Dynamics | ★☆☆☆☆ | ★★★★★ | Damage cascade studies | ## Reference Formulas ### Essential Equations Card ``` - ┌─────────────────────────────────────────────────────────────────┐ │ GAUSSIAN PROFILE │ │ C(x) = Φ/(√(2π)·ΔRp) · exp[-(x-Rp)²/(2ΔRp²)] │ ├─────────────────────────────────────────────────────────────────┤ │ PEAK CONCENTRATION │ │ Cmax ≈ 0.4·Φ/ΔRp │ ├─────────────────────────────────────────────────────────────────┤ │ JUNCTION DEPTH │ │ xj = Rp + ΔRp·√(2·ln(Cmax/CB)) │ ├─────────────────────────────────────────────────────────────────┤ │ SHEET RESISTANCE │ │ Rs = 1/(q·∫μ(C)·C(x)dx) │ ├─────────────────────────────────────────────────────────────────┤ │ DISPLACEMENT DAMAGE │ │ Nd = 0.8·ED/(2Ed) │ └─────────────────────────────────────────────────────────────────┘ ```

doping,ion implantation,p type,n type,boron,phosphorus,arsenic,dopant diffusion,junction formation,mathematical modeling

# Semiconductor Manufacturing: Ion Implantation Mathematical Modeling ## 1. Introduction Ion implantation is a critical process in semiconductor fabrication where dopant ions (B, P, As, Sb) are accelerated and embedded into silicon substrates to precisely control electrical properties. **Key Process Parameters:** - **Energy (keV)**: Controls implant depth ($R_p$) - **Dose (ions/cm²)**: Controls peak concentration - **Tilt angle (°)**: Minimizes channeling effects - **Twist angle (°)**: Avoids major crystal planes - **Beam current (mA)**: Affects dose rate and wafer heating ## 2. Foundational Physics: Ion Stopping When an energetic ion enters a solid, it loses energy through two primary mechanisms. ### 2.1 Total Stopping Power $$ \frac{dE}{dx} = N \left[ S_n(E) + S_e(E) \right] $$ Where: - $N$ = atomic density of target ($\approx 5 \times 10^{22}$ atoms/cm³ for Si) - $S_n(E)$ = nuclear stopping cross-section (elastic collisions with nuclei) - $S_e(E)$ = electronic stopping cross-section (inelastic energy loss to electrons) ### 2.2 Nuclear Stopping: ZBL Universal Potential The Ziegler-Biersack-Littmark (ZBL) universal screening function: $$ \phi(x) = 0.1818 e^{-3.2x} + 0.5099 e^{-0.9423x} + 0.2802 e^{-0.4028x} + 0.02817 e^{-0.2016x} $$ Where $x = r/a_u$ is the reduced interatomic distance. **Universal screening length:** $$ a_u = \frac{0.8854 \, a_0}{Z_1^{0.23} + Z_2^{0.23}} $$ Where: - $a_0$ = Bohr radius (0.529 Å) - $Z_1$ = atomic number of incident ion - $Z_2$ = atomic number of target atom ### 2.3 Electronic Stopping **Low energy regime** (velocity-proportional, Lindhard-Scharff): $$ S_e = k_e \sqrt{E} $$ Where: $$ k_e = \frac{1.212 \, Z_1^{7/6} \, Z_2}{(Z_1^{2/3} + Z_2^{2/3})^{3/2} \, M_1^{1/2}} $$ **High energy regime** (Bethe-Bloch formula): $$ S_e = \frac{4\pi Z_1^2 e^4 N Z_2}{m_e v^2} \ln\left(\frac{2 m_e v^2}{I}\right) $$ Where: - $m_e$ = electron mass - $v$ = ion velocity - $I$ = mean ionization potential of target ## 3. Range Statistics and Profile Models ### 3.1 Gaussian Approximation (First Order) For amorphous targets, the as-implanted profile: $$ C(x) = \frac{\Phi}{\sqrt{2\pi} \, \Delta R_p} \exp\left[ -\frac{(x - R_p)^2}{2 \Delta R_p^2} \right] $$ | Symbol | Definition | Units | |--------|------------|-------| | $\Phi$ | Implant dose | ions/cm² | | $R_p$ | Projected range (mean depth) | nm or cm | | $\Delta R_p$ | Range straggle (standard deviation) | nm or cm | **Peak concentration:** $$ C_{max} = \frac{\Phi}{\sqrt{2\pi} \, \Delta R_p} \approx \frac{0.4 \, \Phi}{\Delta R_p} $$ ### 3.2 Pearson IV Distribution (Industry Standard) Real profiles exhibit asymmetry. The Pearson IV distribution uses four statistical moments: $$ f(x) = K \left[ 1 + \left( \frac{x - \lambda}{a} \right)^2 \right]^{-m} \exp\left[ -\nu \arctan\left( \frac{x - \lambda}{a} \right) \right] $$ **Four Moments:** 1. **First Moment (Mean)**: $R_p$ — projected range 2. **Second Moment (Variance)**: $\Delta R_p^2$ — spread 3. **Third Moment (Skewness)**: $\gamma$ — asymmetry - $\gamma < 0$: tail extends deeper into substrate (light ions: B) - $\gamma > 0$: tail extends toward surface (heavy ions: As) 4. **Fourth Moment (Kurtosis)**: $\beta$ — peakedness relative to Gaussian **Typical values for Si:** | Dopant | Skewness ($\gamma$) | Kurtosis ($\beta$) | |--------|---------------------|---------------------| | Boron (B) | -0.5 to +0.5 | 2.5 to 4.0 | | Phosphorus (P) | -0.3 to +0.3 | 2.5 to 3.5 | | Arsenic (As) | +0.5 to +1.5 | 3.0 to 5.0 | | Antimony (Sb) | +0.8 to +2.0 | 3.5 to 6.0 | ### 3.3 Dual Pearson Model (Channeling Effects) For implants into crystalline silicon with channeling tails: $$ C(x) = (1 - f_{ch}) \cdot P_{random}(x) + f_{ch} \cdot P_{channel}(x) $$ Where: - $P_{random}(x)$ = Pearson distribution for random (amorphous) stopping - $P_{channel}(x)$ = Pearson distribution for channeled ions - $f_{ch}$ = channeling fraction (depends on tilt, beam divergence, surface oxide) **Channeling fraction dependencies:** - Beam divergence: $f_{ch} \downarrow$ as divergence $\uparrow$ - Tilt angle: $f_{ch} \downarrow$ as tilt $\uparrow$ (typically 7° off-axis) - Surface oxide: $f_{ch} \downarrow$ with screen oxide - Pre-amorphization: $f_{ch} \approx 0$ with PAI ## 4. Monte Carlo Simulation (BCA Method) The Binary Collision Approximation provides the highest accuracy for profile prediction. ### 4.1 Algorithm Overview ``` FOR each ion i = 1 to N_ions (typically 10⁵ - 10⁶): 1. Initialize: - Energy: E = E₀ - Position: (x, y, z) = (0, 0, 0) - Direction: (cos θ, sin θ cos φ, sin θ sin φ) 2. WHILE E > E_cutoff: a. Calculate mean free path: λ = 1 / (N · π · p_max²) b. Select random impact parameter: p = p_max · √(random[0,1]) c. Solve scattering integral for deflection angle Θ d. Calculate energy transfer to target atom: T = T_max · sin²(Θ/2) e. Update ion energy: E → E - T - ΔE_electronic f. IF T > E_displacement: Create recoil cascade (track secondary) g. Update position and direction vectors 3. Record final ion position (x_final, y_final, z_final) END FOR 4. Build histogram of final positions → Dopant profile ``` ### 4.2 Scattering Integral The classical scattering integral for deflection angle: $$ \Theta = \pi - 2p \int_{r_{min}}^{\infty} \frac{dr}{r^2 \sqrt{1 - \frac{V(r)}{E_c} - \frac{p^2}{r^2}}} $$ Where: - $p$ = impact parameter - $r_{min}$ = distance of closest approach - $V(r)$ = interatomic potential (e.g., ZBL) - $E_c$ = center-of-mass energy **Center-of-mass energy:** $$ E_c = \frac{M_2}{M_1 + M_2} E $$ ### 4.3 Energy Transfer Maximum energy transfer in elastic collision: $$ T_{max} = \frac{4 M_1 M_2}{(M_1 + M_2)^2} \cdot E = \gamma \cdot E $$ Where $\gamma$ is the kinematic factor: | Ion → Si | $M_1$ (amu) | $\gamma$ | |----------|-------------|----------| | B → Si | 11 | 0.702 | | P → Si | 31 | 0.968 | | As → Si | 75 | 0.746 | ### 4.4 Electronic Energy Loss (Continuous) Along the free flight path: $$ \Delta E_{electronic} = \int_0^{\lambda} S_e(E) \, dx \approx S_e(E) \cdot \lambda $$ ## 5. Multi-Layer and Through-Film Implantation ### 5.1 Screen Oxide Implantation For implantation through oxide layer of thickness $t_{ox}$: **Range correction:** $$ R_p^{eff} = R_p^{Si} - t_{ox} \left( \frac{R_p^{Si} - R_p^{ox}}{R_p^{ox}} \right) $$ **Straggle correction:** $$ (\Delta R_p^{eff})^2 = (\Delta R_p^{Si})^2 - t_{ox} \left( \frac{(\Delta R_p^{Si})^2 - (\Delta R_p^{ox})^2}{R_p^{ox}} \right) $$ ### 5.2 Moment Matching at Interfaces For multi-layer structures, use moment conservation: $$ \langle x^n \rangle_{total} = \sum_i \langle x^n \rangle_i \cdot w_i $$ Where $w_i$ is the weighting factor for layer $i$. ## 6. Two-Dimensional Profile Modeling ### 6.1 Lateral Straggle The lateral distribution follows: $$ C(x, y) = C(x) \cdot \frac{1}{\sqrt{2\pi} \, \Delta R_\perp} \exp\left[ -\frac{y^2}{2 \Delta R_\perp^2} \right] $$ **Relationship between straggles:** $$ \Delta R_\perp \approx (0.7 \text{ to } 1.0) \times \Delta R_p $$ ### 6.2 Masked Implant with Edge Effects For a mask opening of width $W$: $$ C(x, y) = C(x) \cdot \frac{1}{2} \left[ \text{erf}\left( \frac{y + W/2}{\sqrt{2} \, \Delta R_\perp} \right) - \text{erf}\left( \frac{y - W/2}{\sqrt{2} \, \Delta R_\perp} \right) \right] $$ ### 6.3 Full 3D Distribution $$ C(x, y, z) = \frac{\Phi}{(2\pi)^{3/2} \Delta R_p \, \Delta R_\perp^2} \exp\left[ -\frac{(x - R_p)^2}{2 \Delta R_p^2} - \frac{y^2 + z^2}{2 \Delta R_\perp^2} \right] $$ ## 7. Damage and Defect Modeling ### 7.1 Kinchin-Pease Model Number of displaced atoms per incident ion: $$ N_d = \begin{cases} 0 & \text{if } E_D < E_d \\ 1 & \text{if } E_d < E_D < 2E_d \\ \displaystyle\frac{E_D}{2E_d} & \text{if } E_D > 2E_d \end{cases} $$ Where: - $E_D$ = damage energy (energy deposited into nuclear collisions) - $E_d$ = displacement threshold energy ($\approx 15$ eV for Si) ### 7.2 Modified NRT Model (Norgett-Robinson-Torrens) $$ N_d = \frac{0.8 \, E_D}{2 E_d} $$ The factor 0.8 accounts for forward scattering efficiency. ### 7.3 Damage Energy Partition Lindhard partition function: $$ E_D = \frac{E_0}{1 + k \cdot g(\varepsilon)} $$ Where: $$ k = 0.1337 \, Z_1^{1/6} \left( \frac{Z_1}{Z_2} \right)^{1/2} $$ $$ \varepsilon = \frac{32.53 \, M_2 \, E_0}{Z_1 Z_2 (M_1 + M_2)(Z_1^{0.23} + Z_2^{0.23})} $$ ### 7.4 Amorphization Threshold Critical dose for amorphization: $$ \Phi_c \approx \frac{N_0}{N_d \cdot \sigma_{damage}} $$ **Typical values:** | Ion | Critical Dose (cm⁻²) | |-----|----------------------| | B⁺ | $\sim 10^{15}$ | | P⁺ | $\sim 5 \times 10^{14}$ | | As⁺ | $\sim 10^{14}$ | | Sb⁺ | $\sim 5 \times 10^{13}$ | ### 7.5 Damage Profile The damage distribution differs from dopant distribution: $$ D(x) = \frac{\Phi \cdot N_d(E)}{\sqrt{2\pi} \, \Delta R_d} \exp\left[ -\frac{(x - R_d)^2}{2 \Delta R_d^2} \right] $$ Where $R_d < R_p$ (damage peaks shallower than dopant). ## 8. Process-Relevant Calculations ### 8.1 Junction Depth For Gaussian profile meeting background concentration $C_B$: $$ x_j = R_p + \Delta R_p \sqrt{2 \ln\left( \frac{C_{max}}{C_B} \right)} $$ **For asymmetric Pearson profiles:** $$ x_j = R_p + \Delta R_p \left[ \gamma + \sqrt{\gamma^2 + 2 \ln\left( \frac{C_{max}}{C_B} \right)} \right] $$ ### 8.2 Sheet Resistance $$ R_s = \frac{1}{q \displaystyle\int_0^{x_j} \mu(C(x)) \cdot C(x) \, dx} $$ **With concentration-dependent mobility (Masetti model):** $$ \mu(C) = \mu_{min} + \frac{\mu_0}{1 + (C/C_r)^\alpha} - \frac{\mu_1}{1 + (C_s/C)^\beta} $$ | Parameter | Electrons | Holes | |-----------|-----------|-------| | $\mu_{min}$ | 52.2 | 44.9 | | $\mu_0$ | 1417 | 470.5 | | $C_r$ | $9.68 \times 10^{16}$ | $2.23 \times 10^{17}$ | | $\alpha$ | 0.68 | 0.719 | ### 8.3 Threshold Voltage Shift For channel implant: $$ \Delta V_T = \frac{q}{\varepsilon_{ox}} \int_0^{x_{max}} C(x) \cdot x \, dx $$ **Simplified (shallow implant):** $$ \Delta V_T \approx \frac{q \, \Phi \, R_p}{\varepsilon_{ox}} $$ ### 8.4 Dose Calculation from Profile $$ \Phi = \int_0^{\infty} C(x) \, dx $$ **Verification:** $$ \Phi_{measured} = \frac{I \cdot t}{q \cdot A} $$ Where: - $I$ = beam current - $t$ = implant time - $A$ = implanted area ## 9. Advanced Effects ### 9.1 Transient Enhanced Diffusion (TED) The "+1 Model": Each implanted ion creates approximately one net interstitial. **Enhanced diffusion equation:** $$ \frac{\partial C}{\partial t} = \frac{\partial}{\partial x} \left[ D^* \frac{\partial C}{\partial x} \right] $$ **Enhanced diffusivity:** $$ D^* = D_i \cdot \left( 1 + \frac{C_I}{C_I^*} \right) $$ Where: - $D_i$ = intrinsic diffusivity - $C_I$ = interstitial concentration - $C_I^*$ = equilibrium interstitial concentration ### 9.2 Dose Loss Mechanisms **Sputtering yield:** $$ Y = \frac{0.042 \, \alpha \, S_n(E_0)}{U_0} $$ Where: - $\alpha$ = angular factor ($\approx 0.2$ for light ions, $\approx 0.4$ for heavy ions) - $U_0$ = surface binding energy ($\approx 4.7$ eV for Si) **Retained dose:** $$ \Phi_{retained} = \Phi_{implanted} \cdot (1 - \eta_{sputter} - \eta_{backscatter}) $$ ### 9.3 High Dose Effects **Dose saturation:** $$ C_{max}^{sat} = \frac{N_0}{\sqrt{2\pi} \, \Delta R_p} $$ **Snow-plow effect** at very high doses pushes peak toward surface. ### 9.4 Temperature Effects **Dynamic annealing:** Competes with damage accumulation $$ \Phi_c(T) = \Phi_c(0) \exp\left( \frac{E_a}{k_B T} \right) $$ Where $E_a \approx 0.3$ eV for Si self-interstitial migration. ## 10. Tables ### 10.1 Key Scaling Relationships | Parameter | Scaling with Energy | |-----------|---------------------| | Projected Range | $R_p \propto E^n$ where $n \approx 0.5 - 0.8$ | | Range Straggle | $\Delta R_p \approx 0.4 R_p$ (light ions) to $0.2 R_p$ (heavy ions) | | Lateral Straggle | $\Delta R_\perp \approx 0.7 - 1.0 \times \Delta R_p$ | | Damage Energy | $E_D/E_0$ increases with ion mass | ### 10.2 Common Implant Parameters in Si | Dopant | Type | Energy (keV) | $R_p$ (nm) | $\Delta R_p$ (nm) | |--------|------|--------------|------------|-------------------| | B | p | 10 | 35 | 14 | | B | p | 50 | 160 | 52 | | P | n | 30 | 40 | 15 | | P | n | 100 | 120 | 40 | | As | n | 50 | 35 | 12 | | As | n | 150 | 95 | 28 | ### 10.3 Simulation Tools Comparison | Approach | Speed | Accuracy | Primary Use | |----------|-------|----------|-------------| | Analytical (Gaussian) | ★★★★★ | ★★☆☆☆ | Quick estimates | | Pearson IV Tables | ★★★★☆ | ★★★☆☆ | Process simulation | | Monte Carlo (SRIM/TRIM) | ★★☆☆☆ | ★★★★☆ | Profile calibration | | Molecular Dynamics | ★☆☆☆☆ | ★★★★★ | Damage cascade studies | ## Reference Formulas ### Essential Equations Card ``` - ┌─────────────────────────────────────────────────────────────────┐ │ GAUSSIAN PROFILE │ │ C(x) = Φ/(√(2π)·ΔRp) · exp[-(x-Rp)²/(2ΔRp²)] │ ├─────────────────────────────────────────────────────────────────┤ │ PEAK CONCENTRATION │ │ Cmax ≈ 0.4·Φ/ΔRp │ ├─────────────────────────────────────────────────────────────────┤ │ JUNCTION DEPTH │ │ xj = Rp + ΔRp·√(2·ln(Cmax/CB)) │ ├─────────────────────────────────────────────────────────────────┤ │ SHEET RESISTANCE │ │ Rs = 1/(q·∫μ(C)·C(x)dx) │ ├─────────────────────────────────────────────────────────────────┤ │ DISPLACEMENT DAMAGE │ │ Nd = 0.8·ED/(2Ed) │ └─────────────────────────────────────────────────────────────────┘ ```

dosage extraction, healthcare ai

Extract medication dosages.

double descent,training phenomena

Test error decreases then increases then decreases again as model size grows.

down-sampling, training

Use subset of data.

dp-sgd, dp-sgd, training techniques

Differentially Private Stochastic Gradient Descent clips and noises gradients for privacy.

dpm-solver, generative models

Fast ODE-based diffusion solver.

dpm-solver,generative models

Fast ODE solver for diffusion sampling.

dpm++ sampling, dpm++, generative models

Improved DPM solver.

draft model selection, inference

Choose appropriate draft model.

draft model, llm optimization

Draft models quickly generate candidate tokens for speculative decoding.

dreambooth, generative models

Fine-tune on specific subject.

dreambooth, multimodal ai

DreamBooth personalizes text-to-image models by fine-tuning on few subject images.

dreambooth,generative models

Fine-tune diffusion models to generate specific subjects or styles.

dreamfusion, multimodal ai

DreamFusion optimizes NeRF from text using score distillation from diffusion models.

drift-diffusion model, simulation

Classical transport equations.

drive-in,diffusion

Diffuse dopants deeper into wafer at high temperature.

drop test, failure analysis advanced

Drop testing simulates mechanical shock from device drops assessing package and interconnect integrity.