← Back to AI Factory Chat

AI Factory Glossary

169 technical terms and definitions

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Showing page 2 of 4 (169 entries)

lazy class, code ai

Class not doing enough.

lazy training regime, theory

Networks stay close to initialization.

lead optimization, healthcare ai

Improve drug candidate properties.

lead time management, supply chain & logistics

Lead time management optimizes procurement and delivery schedules minimizing delays and carrying costs.

leaky relu, neural architecture

Fixed small negative slope.

learnable position embedding, transformer

Position embeddings as parameters.

learned layer selection, neural architecture

Train which layers to use per input.

learned noise schedule, generative models

Train noise schedule.

learned routing, llm architecture

Learned routing trains networks to assign tokens to experts.

learned step size, model optimization

Learned step size quantization optimizes quantization scale factors during training.

learning curve prediction, neural architecture search

Learning curve prediction forecasts final performance from initial training enabling efficient architecture selection.

learning rate schedule,model training

Plan for adjusting learning rate during training (cosine linear step decay).

learning to rank,machine learning

ML approaches to ranking.

learning using privileged information, lupi, machine learning

Framework for privileged information.

led lighting, led, environmental & sustainability

LED lighting in fabs reduces energy consumption for illumination while providing compatible wavelengths for photolithography processes.

legal bert,law,domain

Legal-BERT is trained on legal text. Contract analysis, case law.

legal document analysis,legal ai

Analyze contracts and legal texts.

legal question answering,legal ai

Answer questions about law.

legal research,legal ai

Find relevant cases and statutes.

length extrapolation,llm architecture

Generalize to sequences longer than seen during training.

length of diffusion (lod) effect,design

Channel length depends on nearby diffusions.

length penalty, llm optimization

Length penalty adjusts probabilities favoring shorter or longer sequences.

levenshtein transformer, nlp

Edit sequences via insertions and deletions.

library learning,code ai

Discover reusable code abstractions.

licensing model, business & strategy

Licensing models grant rights to use semiconductor IP through royalties or upfront fees.

lie group networks, neural architecture

Networks using Lie group theory.

life cycle assessment, environmental & sustainability

Life cycle assessment evaluates environmental impacts across entire product lifecycle from materials to disposal.

lifelong learning in llms, continual learning

Continuous learning over time.

lifted bond, failure analysis

Bond pad delamination.

lime (local interpretable model-agnostic explanations),lime,local interpretable model-agnostic explanations,explainable ai

Explain individual predictions using local linear approximations.

line, line, graph neural networks

Network embedding method.

linear attention, llm architecture

Linear attention reduces complexity by avoiding softmax normalization.

linear attention,llm architecture

Approximate attention with linear complexity.

linear bottleneck, model optimization

Linear bottlenecks remove nonlinearity from final layer preserving information in low-dimensional spaces.

linear noise schedule, generative models

Linearly increasing variance.

linear probing for syntax, explainable ai

Test if syntax is linearly encoded.

lines of code, loc, code ai

Count code lines.

linformer, llm architecture

Linformer projects keys and values to lower dimension reducing attention complexity.

linformer,llm architecture

Linear attention using low-rank projections.

lingam, time series models

Linear Non-Gaussian Acyclic Models discover causal structure exploiting non-Gaussianity and independence of noise.

link prediction, graph neural networks

Link prediction estimates likelihood of edges between node pairs for graph completion and recommendation.

lion optimizer,model training

Memory-efficient optimizer using sign of gradients.

lipschitz constant estimation, ai safety

Bound sensitivity to input changes.

lipschitz constrained networks, ai safety

Architectures with bounded Lipschitz constant.

liquid crystal hot spot detection,failure analysis

Use liquid crystals to find hot spots.

liquid crystal hot spot, failure analysis advanced, thermal imaging, defect detection, semiconductor failure, hot spot analysis

# Liquid Crystal Hot Spot Failure Analysis: Advanced Techniques ## 1. Introduction Liquid crystal thermography (LCT) is a **non-destructive failure analysis (FA)** technique used in semiconductor and electronics testing. It exploits the temperature-sensitive optical properties of **cholesteric (chiral nematic) liquid crystals**. ## 2. Fundamental Principles ### 2.1 Thermochromic Behavior Cholesteric liquid crystals selectively reflect light at wavelengths dependent on their helical pitch $p$, which changes with temperature $T$. The **Bragg reflection condition** for peak wavelength: $$ \lambda_{\text{max}} = n_{\text{avg}} \cdot p $$ Where: - $\lambda_{\text{max}}$ = peak reflected wavelength (nm) - $n_{\text{avg}}$ = average refractive index of the liquid crystal - $p$ = helical pitch (nm) The pitch-temperature relationship: $$ p(T) = p_0 \left[ 1 + \alpha (T - T_0) \right]^{-1} $$ Where: - $p_0$ = pitch at reference temperature $T_0$ - $\alpha$ = thermal expansion coefficient of the pitch ($\text{K}^{-1}$) ### 2.2 Joule Heating at Defect Sites Power dissipation at a defect location: $$ P = I^2 R = \frac{V^2}{R} $$ Temperature rise due to localized heating: $$ \Delta T = \frac{P}{G_{\text{th}}} = \frac{P \cdot R_{\text{th}}}{1} $$ Where: - $P$ = power dissipation (W) - $G_{\text{th}}$ = thermal conductance (W/K) - $R_{\text{th}}$ = thermal resistance (K/W) ### 2.3 Thermal Diffusion The **heat diffusion equation** governing temperature distribution: $$ \frac{\partial T}{\partial t} = \alpha_{\text{th}} \nabla^2 T + \frac{Q}{\rho c_p} $$ Where: - $\alpha_{\text{th}} = \frac{k}{\rho c_p}$ = thermal diffusivity ($\text{m}^2/\text{s}$) - k = thermal conductivity (W/m-K) - $\rho$ = density (kg/m³) - c_p = specific heat capacity (J/kg-K) - $Q$ = volumetric heat source (W/m³) **Thermal diffusion length** (for pulsed excitation at frequency $f$): $$ \mu = \sqrt{\frac{\alpha_{\text{th}}}{\pi f}} $$ ## 3. Spatial Resolution and Sensitivity ### 3.1 Resolution Limits The effective spatial resolution $\delta$ is limited by: $$ \delta = \sqrt{\delta_{\text{opt}}^2 + \delta_{\text{th}}^2} $$ Where: - $\delta_{\text{opt}}$ = optical resolution limit (diffraction-limited: $\delta_{\text{opt}} \approx \frac{\lambda}{2 \cdot \text{NA}}$) - $\delta_{\text{th}}$ = thermal spreading in the substrate ### 3.2 Minimum Detectable Power $$ P_{\text{min}} = \frac{\Delta T_{\text{min}} \cdot k \cdot A}{d} $$ Where: - $\Delta T_{\text{min}}$ = minimum detectable temperature change (~0.1°C) - $k$ = thermal conductivity of substrate - $A$ = defect area - $d$ = depth of defect below surface ## 4. Advanced Failure Modes Detectable ### 4.1 Electrical Defects - **Gate oxide shorts and leakage paths** - Current through defective oxide: $I_{\text{leak}} = \frac{V_{\text{ox}}}{R_{\text{defect}}}$ - Power: $P = I_{\text{leak}} \cdot V_{\text{ox}}$ - **Metal bridging and shorts** - Bridge resistance: $R_{\text{bridge}} = \frac{\rho L}{A}$ - Localized dissipation creates thermal signature - **Junction leakage and latch-up** - Parasitic thyristor current: $I_{\text{latch}} = \frac{V_{DD}}{R_{\text{well}} + R_{\text{sub}}}$ - **Electromigration damage** - Current density threshold (Black's equation): $$ \text{MTTF} = A \cdot J^{-n} \cdot \exp\left(\frac{E_a}{k_B T}\right) $$ ### 4.2 Thermal/Mechanical Defects - **Die-attach voids** - Effective thermal resistance with void fraction $\phi$: $$ R_{\text{th,eff}} = \frac{R_{\text{th,0}}}{1 - \phi} $$ - **Delamination** - Creates thermal barrier, increasing local $\Delta T$ ## 5. Advanced Methodologies ### 5.1 Backside Analysis For flip-chip or devices with opaque frontside metallization: - **Die thinning requirement**: Thickness $t \approx 50-100 \, \mu\text{m}$ - **Silicon transparency**: $\lambda > 1.1 \, \mu\text{m}$ (bandgap energy $E_g = 1.12 \, \text{eV}$) $$ E_g = \frac{hc}{\lambda_{\text{cutoff}}} \Rightarrow \lambda_{\text{cutoff}} = \frac{1.24 \, \mu\text{m} \cdot \text{eV}}{E_g} $$ ### 5.2 Lock-in Thermography Modulated power excitation with lock-in detection: $$ P(t) = P_0 \left[1 + \cos(2\pi f_{\text{mod}} t)\right] $$ **Temperature response (amplitude and phase)**: $$ T(x, t) = T_0 + \Delta T(x) \cos\left(2\pi f_{\text{mod}} t - \phi(x)\right) $$ Phase lag due to thermal diffusion: $$ \phi(x) = \frac{x}{\mu} = x \sqrt{\frac{\pi f_{\text{mod}}}{\alpha_{\text{th}}}} $$ **Signal-to-noise improvement**: $$ \text{SNR}_{\text{lock-in}} = \text{SNR}_{\text{DC}} \cdot \sqrt{N_{\text{cycles}}} $$ ### 5.3 Pulsed Excitation For transient thermal analysis: $$ \Delta T(t) = \frac{P}{G_{\text{th}}} \left(1 - e^{-t/\tau_{\text{th}}}\right) $$ Where thermal time constant: $$ \tau_{\text{th}} = R_{\text{th}} \cdot C_{\text{th}} = \frac{\rho c_p V}{k A / d} $$ ## 6. Comparison with Other Thermal Techniques | Technique | Resolution | Sensitivity | Speed | Equation Basis | |-----------|-----------|-------------|-------|----------------| | Liquid Crystal | $5-20 \, \mu\text{m}$ | $\sim 0.1°\text{C}$ | Moderate | Bragg: $\lambda = np$ | | IR Thermography | $3-5 \, \mu\text{m}$ | $\sim 10 \, \text{mK}$ | Fast | Stefan-Boltzmann: $P = \varepsilon \sigma T^4$ | | Thermoreflectance | $< 1 \, \mu\text{m}$ | $\sim 10 \, \text{mK}$ | Fast | $\frac{\Delta R}{R} = \kappa \Delta T$ | | Scanning Thermal | $< 100 \, \text{nm}$ | $\sim 1 \, \text{mK}$ | Slow | Fourier: $q = -k\nabla T$ | ## 7. Practical Workflow ### 7.1 Sample Preparation 1. **Decapsulation** - Chemical (fuming $\text{HNO}_3$, $\text{H}_2\text{SO}_4$) - Plasma etching - Mechanical (for ceramic packages) 2. **Surface cleaning** - Solvent rinse (acetone, IPA) - Plasma cleaning for organic residue 3. **Liquid crystal application** - Airbrush: layer thickness $\sim 10-50 \, \mu\text{m}$ - Spin coating: $\omega \sim 1000-3000 \, \text{rpm}$ ### 7.2 Bias Conditions - **DC bias**: $V_{\text{test}} = V_{\text{DD}} \times (1.0 - 1.2)$ - **Current limiting**: $I_{\text{max}}$ to prevent thermal runaway - **Power budget**: $$ P_{\text{total}} = P_{\text{quiescent}} + P_{\text{defect}} $$ ### 7.3 Temperature Control Stage temperature setpoint: $$ T_{\text{stage}} = T_{\text{LC,center}} - \Delta T_{\text{expected}} $$ Where $T_{\text{LC,center}}$ is the center of the liquid crystal's active color-play range. ## 8. Detection Limits ### 8.1 Minimum Detectable Power For a defect at depth d in silicon (k_Si = 148 W/m-K): $$ P_{\text{min}} \approx 4\pi k d \cdot \Delta T_{\text{min}} $$ **Example calculation**: - $d = 10 \, \mu\text{m} = 10 \times 10^{-6} \, \text{m}$ - $\Delta T_{\text{min}} = 0.1 \, \text{K}$ - k = 148 W/m-K $$ P_{\text{min}} = 4\pi \times 148 \times 10 \times 10^{-6} \times 0.1 \approx 1.86 \, \text{mW} $$ ### 8.2 Defect Size vs. Power Relationship Assuming hemispherical heat spreading: $$ \Delta T = \frac{P}{2\pi k r} $$ Solving for minimum detectable defect radius at given power: $$ r_{\text{min}} = \frac{P}{2\pi k \Delta T_{\text{min}}} $$ ## 9. Integration with Physical Failure Analysis ### 9.1 FIB Cross-Sectioning Workflow 1. **Coordinate transfer** - Optical microscope coordinates $\rightarrow$ FIB stage coordinates - Alignment markers for registration 2. **Protective deposition** - Pt or W layer: $\sim 1-2 \, \mu\text{m}$ thick 3. **Cross-section milling** - Rough cut: $30 \, \text{kV}$, high current ($\sim \text{nA}$) - Fine polish: $30 \, \text{kV}$, low current ($\sim \text{pA}$) ### 9.2 Failure Signature Correlation | Thermal Signature | Likely Physical Defect | |-------------------|------------------------| | Point source | Gate oxide pinhole, metal spike | | Linear | Metal bridge, crack | | Diffuse area | Junction leakage, ESD damage | | Periodic pattern | Systematic process defect | ## 10. Error Analysis ### 10.1 Temperature Measurement Uncertainty $$ \sigma_T = \sqrt{\sigma_{\text{LC}}^2 + \sigma_{\text{stage}}^2 + \sigma_{\text{optical}}^2} $$ ### 10.2 Position Uncertainty Due to thermal spreading: $$ \sigma_x \approx \mu = \sqrt{\frac{\alpha_{\text{th}} \cdot t_{\text{exposure}}}{\pi}} $$ ## 11. Equations | Parameter | Equation | |-----------|----------| | Bragg wavelength | $\lambda_{\text{max}} = n_{\text{avg}} \cdot p$ | | Power dissipation | $P = I^2 R = V^2/R$ | | Thermal diffusion length | $\mu = \sqrt{\alpha_{\text{th}} / \pi f}$ | | Temperature rise | $\Delta T = P \cdot R_{\text{th}}$ | | Lock-in phase | $\phi = x/\mu$ | | Minimum power | $P_{\text{min}} = 4\pi k d \cdot \Delta T_{\text{min}}$ | ## 12. Standards - **JEDEC JESD22-A** — Failure analysis procedures - **MIL-STD-883** — Test methods for microelectronics - **SEMI E10** — Equipment reliability metrics

liquid neural network, llm architecture

Liquid neural networks adapt dynamics based on inputs enabling continual learning.

liquid neural networks, lnn, neural architecture

Dynamically adapting networks with time-varying parameters inspired by biological neurons.

liquid neural networks,neural architecture

Continuously adapting networks inspired by biological neurons.

liquid time-constant networks,neural architecture

Continuous-time RNNs with adaptive dynamics.