defense in depth,ai safety
Layer multiple safety mechanisms for robustness.
3,145 technical terms and definitions
Layer multiple safety mechanisms for robustness.
Learn offset locations for attention.
Models that can deform to fit data.
Deformation fields warp canonical representations to model non-rigid motion.
Analyze partially degraded units.
Train ViT efficiently with distillation.
Use special markers to separate sections.
Demand control ventilation modulates outdoor air intake based on occupancy reducing conditioning loads.
Demand forecasting predicts future material requirements based on production schedules and market trends.
Democratic co-learning trains multiple diverse models that teach each other through weighted voting on unlabeled examples.
Demographic parity: equal positive rates across groups. May conflict with accuracy. Choose metric carefully.
Model outputs same distribution for all demographic groups.
Core framework for diffusion-based generation.
Learn scores through denoising.
Control generation vs input preservation.
Generate captions for regions.
Standard model where all parameters activate for every input.
Learn attention patterns.
DenseNAS enables efficient one-shot search in dense spaces through dimension-extended sampling.
Depth conditioning guides generation using depth maps preserving spatial structure.
Condition on depth information.
Depthwise convolutions apply separate filters per input channel without cross-channel interaction.
Depthwise separable convolutions factorize standard convolutions into depthwise and pointwise operations reducing computation.
Depthwise temporal convolutions process each channel independently across time.
Desiccant dehumidification removes moisture using hygroscopic materials reducing cooling loads.
Design for recycling optimizes products for material recovery and reuse at end-of-life.
Exception to design rule for special cases.
Ongoing competition between detectors and generators.
Eliminate non-deterministic operations.
Remove toxic or harmful content from generations.
# Device Physics & Mathematical Modeling 1. Fundamental Mathematical Structure Semiconductor modeling is built on coupled nonlinear partial differential equations spanning multiple scales: | Scale | Methods | Typical Equations | |:------|:--------|:------------------| | Quantum (< 1 nm) | DFT, Schrödinger | $H\psi = E\psi$ | | Atomistic (1–100 nm) | MD, Kinetic Monte Carlo | Newton's equations, master equations | | Continuum (nm–mm) | Drift-diffusion, FEM | PDEs (Poisson, continuity, heat) | | Circuit | SPICE | ODEs, compact models | Multiscale Hierarchy The mathematics forms a hierarchy of models through successive averaging: $$ \boxed{\text{Schrödinger} \xrightarrow{\text{averaging}} \text{Boltzmann} \xrightarrow{\text{moments}} \text{Drift-Diffusion} \xrightarrow{\text{fitting}} \text{Compact Models}} $$ 2. Process Physics & Models 2.1 Oxidation: Deal-Grove Model Thermal oxidation of silicon follows linear-parabolic kinetics : $$ \frac{dx_{ox}}{dt} = \frac{B}{A + 2x_{ox}} $$ where: - $x_{ox}$ = oxide thickness - $B/A$ = linear rate constant (surface-reaction limited) - $B$ = parabolic rate constant (diffusion limited) Limiting Cases: - Thin oxide (reaction-limited): $$ x_{ox} \approx \frac{B}{A} \cdot t $$ - Thick oxide (diffusion-limited): $$ x_{ox} \approx \sqrt{B \cdot t} $$ Physical Mechanism: 1. O₂ transport from gas to oxide surface 2. O₂ diffusion through growing SiO₂ layer 3. Reaction at Si/SiO₂ interface: $\text{Si} + \text{O}_2 \rightarrow \text{SiO}_2$ > Note: This is a Stefan problem (moving boundary PDE). 2.2 Diffusion: Fick's Laws Dopant redistribution follows Fick's second law : $$ \frac{\partial C}{\partial t} = \nabla \cdot \left( D(C, T) \nabla C \right) $$ For constant $D$ in 1D: $$ \frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2} $$ Analytical Solutions (1D, constant D): - Constant surface concentration (infinite source): $$ C(x,t) = C_s \cdot \text{erfc}\left( \frac{x}{2\sqrt{Dt}} \right) $$ - Limited source (e.g., implant drive-in): $$ C(x,t) = \frac{Q}{\sqrt{\pi D t}} \exp\left( -\frac{x^2}{4Dt} \right) $$ where $Q$ = dose (atoms/cm²) Complications at High Concentrations: - Concentration-dependent diffusivity: $D = D(C)$ - Electric field effects: Charged point defects create internal fields - Vacancy/interstitial mechanisms: Different diffusion pathways $$ \frac{\partial C}{\partial t} = \frac{\partial}{\partial x}\left[ D(C) \frac{\partial C}{\partial x} \right] + \mu C \frac{\partial \phi}{\partial x} $$ 2.3 Ion Implantation: Range Theory The implanted dopant profile is approximately Gaussian : $$ C(x) = \frac{\Phi}{\sqrt{2\pi} \Delta R_p} \exp\left( -\frac{(x - R_p)^2}{2 (\Delta R_p)^2} \right) $$ where: - $\Phi$ = implant dose (ions/cm²) - $R_p$ = projected range (mean depth) - $\Delta R_p$ = straggle (standard deviation) LSS Theory (Lindhard-Scharff-Schiøtt) predicts stopping power: $$ -\frac{dE}{dx} = N \left[ S_n(E) + S_e(E) \right] $$ where: - $S_n(E)$ = nuclear stopping power (dominant at low energy) - $S_e(E)$ = electronic stopping power (dominant at high energy) - $N$ = target atomic density For asymmetric profiles , the Pearson IV distribution is used: $$ C(x) = \frac{\Phi \cdot K}{\Delta R_p} \left[ 1 + \left( \frac{x - R_p}{a} \right)^2 \right]^{-m} \exp\left[ -\nu \arctan\left( \frac{x - R_p}{a} \right) \right] $$ > Modern approach: Monte Carlo codes (SRIM/TRIM) for accurate profiles including channeling effects. 2.4 Lithography: Optical Imaging Aerial image formation follows Hopkins' partially coherent imaging theory : $$ I(\mathbf{r}) = \iint TCC(f, f') \cdot \tilde{M}(f) \cdot \tilde{M}^*(f') \cdot e^{2\pi i (f - f') \cdot \mathbf{r}} \, df \, df' $$ where: - $TCC$ = Transmission Cross-Coefficient - $\tilde{M}(f)$ = mask spectrum (Fourier transform of mask pattern) - $\mathbf{r}$ = position in image plane Fundamental Limits: - Rayleigh resolution criterion: $$ CD_{\min} = k_1 \frac{\lambda}{NA} $$ - Depth of focus: $$ DOF = k_2 \frac{\lambda}{NA^2} $$ where: - $\lambda$ = wavelength (193 nm for ArF, 13.5 nm for EUV) - $NA$ = numerical aperture - $k_1, k_2$ = process-dependent factors Resist Modeling — Dill Equations: $$ \frac{\partial M}{\partial t} = -C \cdot I(z) \cdot M $$ $$ \frac{dI}{dz} = -(\alpha M + \beta) I $$ where $M$ = photoactive compound concentration. 2.5 Etching & Deposition: Surface Evolution Topography evolution is modeled with the level set method : $$ \frac{\partial \phi}{\partial t} + V |\nabla \phi| = 0 $$ where: - $\phi(\mathbf{r}, t) = 0$ defines the surface - $V$ = local velocity (etch rate or deposition rate) For anisotropic etching: $$ V = V(\theta, \phi, \text{ion flux}, \text{chemistry}) $$ CVD in High Aspect Ratio Features: Knudsen diffusion limits step coverage: $$ \frac{\partial C}{\partial t} = D_K \nabla^2 C - k_s C \cdot \delta_{\text{surface}} $$ where: - $D_K = \frac{d}{3}\sqrt{\frac{8k_BT}{\pi m}}$ (Knudsen diffusivity) - $d$ = feature width - $k_s$ = surface reaction rate ALD (Atomic Layer Deposition): Self-limiting surface reactions follow Langmuir kinetics: $$ \theta = \frac{K \cdot P}{1 + K \cdot P} $$ where $\theta$ = surface coverage, $P$ = precursor partial pressure. 3. Device Physics: Semiconductor Equations The core mathematical framework for device simulation consists of three coupled PDEs : 3.1 Poisson's Equation (Electrostatics) $$ \nabla \cdot (\varepsilon \nabla \psi) = -q \left( p - n + N_D^+ - N_A^- \right) $$ where: - $\psi$ = electrostatic potential - $n, p$ = electron and hole concentrations - $N_D^+, N_A^-$ = ionized donor and acceptor concentrations 3.2 Continuity Equations (Carrier Conservation) Electrons: $$ \frac{\partial n}{\partial t} = \frac{1}{q} \nabla \cdot \mathbf{J}_n + G - R $$ Holes: $$ \frac{\partial p}{\partial t} = -\frac{1}{q} \nabla \cdot \mathbf{J}_p + G - R $$ where: - $G$ = generation rate - $R$ = recombination rate 3.3 Current Density Equations (Transport) Drift-Diffusion Model: $$ \mathbf{J}_n = q \mu_n n \mathbf{E} + q D_n \nabla n $$ $$ \mathbf{J}_p = q \mu_p p \mathbf{E} - q D_p \nabla p $$ Einstein Relation: $$ \frac{D_n}{\mu_n} = \frac{D_p}{\mu_p} = \frac{k_B T}{q} = V_T $$ 3.4 Recombination Models Shockley-Read-Hall (SRH) Recombination: $$ R_{SRH} = \frac{np - n_i^2}{\tau_p (n + n_1) + \tau_n (p + p_1)} $$ Auger Recombination: $$ R_{Auger} = C_n n (np - n_i^2) + C_p p (np - n_i^2) $$ Radiative Recombination: $$ R_{rad} = B (np - n_i^2) $$ 3.5 MOSFET Physics Threshold Voltage: $$ V_T = V_{FB} + 2\phi_B + \frac{\sqrt{2 \varepsilon_{Si} q N_A (2\phi_B)}}{C_{ox}} $$ where: - $V_{FB}$ = flat-band voltage - $\phi_B = \frac{k_BT}{q} \ln\left(\frac{N_A}{n_i}\right)$ = bulk potential - $C_{ox} = \frac{\varepsilon_{ox}}{t_{ox}}$ = oxide capacitance Drain Current (Gradual Channel Approximation): - Linear region ($V_{DS} < V_{GS} - V_T$): $$ I_D = \frac{W}{L} \mu_n C_{ox} \left[ (V_{GS} - V_T) V_{DS} - \frac{V_{DS}^2}{2} \right] $$ - Saturation region ($V_{DS} \geq V_{GS} - V_T$): $$ I_D = \frac{W}{2L} \mu_n C_{ox} (V_{GS} - V_T)^2 $$ 4. Quantum Effects at Nanoscale For modern devices with gate lengths $L_g < 10$ nm, classical models fail. 4.1 Quantum Confinement In thin silicon channels, carrier energy becomes quantized : $$ E_n = \frac{\hbar^2 \pi^2 n^2}{2 m^* t_{Si}^2} $$ where: - $n$ = quantum number (1, 2, 3, ...) - $m^*$ = effective mass - $t_{Si}$ = silicon body thickness Effects: - Increased threshold voltage - Modified density of states: $g_{2D}(E) = \frac{m^*}{\pi \hbar^2}$ (step function) 4.2 Quantum Tunneling Gate Leakage (Direct Tunneling): WKB approximation: $$ T \approx \exp\left( -2 \int_0^{t_{ox}} \kappa(x) \, dx \right) $$ where $\kappa = \sqrt{\frac{2m^*(\Phi_B - E)}{\hbar^2}}$ Source-Drain Tunneling: Limits OFF-state current in ultra-short channels. Band-to-Band Tunneling: Enables Tunnel FETs (TFETs): $$ I_{BTBT} \propto \exp\left( -\frac{4\sqrt{2m^*} E_g^{3/2}}{3q\hbar |\mathbf{E}|} \right) $$ 4.3 Ballistic Transport When channel length $L < \lambda_{mfp}$ (mean free path), the Landauer formalism applies: $$ I = \frac{2q}{h} \int T(E) \left[ f_S(E) - f_D(E) \right] dE $$ where: - $T(E)$ = transmission probability - $f_S, f_D$ = source and drain Fermi functions Ballistic Conductance Quantum: $$ G_0 = \frac{2q^2}{h} \approx 77.5 \, \mu\text{S} $$ 4.4 NEGF Formalism The Non-Equilibrium Green's Function method is the gold standard for quantum transport: $$ G^R = \left[ EI - H - \Sigma_1 - \Sigma_2 \right]^{-1} $$ where: - $H$ = device Hamiltonian - $\Sigma_1, \Sigma_2$ = contact self-energies - $G^R$ = retarded Green's function Observables: - Electron density: $n(\mathbf{r}) = -\frac{1}{\pi} \text{Im}[G^<(\mathbf{r}, \mathbf{r}; E)]$ - Current: $I = \frac{q}{h} \text{Tr}[\Gamma_1 G^R \Gamma_2 G^A]$ 5. Numerical Methods 5.1 Discretization: Scharfetter-Gummel Scheme The drift-diffusion current requires special treatment to avoid numerical instability: $$ J_{n,i+1/2} = \frac{q D_n}{h} \left[ n_{i+1} B\left( -\frac{\Delta \psi}{V_T} \right) - n_i B\left( \frac{\Delta \psi}{V_T} \right) \right] $$ where the Bernoulli function is: $$ B(x) = \frac{x}{e^x - 1} $$ Properties: - $B(0) = 1$ - $B(x) \to 0$ as $x \to \infty$ - $B(-x) = x + B(x)$ 5.2 Solution Strategies Gummel Iteration (Decoupled): 1. Solve Poisson for $\psi$ (fixed $n$, $p$) 2. Solve electron continuity for $n$ (fixed $\psi$, $p$) 3. Solve hole continuity for $p$ (fixed $\psi$, $n$) 4. Repeat until convergence Newton-Raphson (Fully Coupled): Solve the Jacobian system: $$ \begin{pmatrix} \frac{\partial F_\psi}{\partial \psi} & \frac{\partial F_\psi}{\partial n} & \frac{\partial F_\psi}{\partial p} \\ \frac{\partial F_n}{\partial \psi} & \frac{\partial F_n}{\partial n} & \frac{\partial F_n}{\partial p} \\ \frac{\partial F_p}{\partial \psi} & \frac{\partial F_p}{\partial n} & \frac{\partial F_p}{\partial p} \end{pmatrix} \begin{pmatrix} \delta \psi \\ \delta n \\ \delta p \end{pmatrix} = - \begin{pmatrix} F_\psi \\ F_n \\ F_p \end{pmatrix} $$ 5.3 Time Integration Stiffness Problem: Time scales span ~15 orders of magnitude: | Process | Time Scale | |:--------|:-----------| | Carrier relaxation | ~ps | | Thermal response | ~μs–ms | | Dopant diffusion | min–hours | Solution: Use implicit methods (Backward Euler, BDF). 5.4 Mesh Requirements Debye Length Constraint: The mesh must resolve the Debye length: $$ \lambda_D = \sqrt{\frac{\varepsilon k_B T}{q^2 n}} $$ For $n = 10^{18}$ cm⁻³: $\lambda_D \approx 4$ nm Adaptive Mesh Refinement: - Refine near junctions, interfaces, corners - Coarsen in bulk regions - Use Delaunay triangulation for quality 6. Compact Models for Circuit Simulation For SPICE-level simulation, physics is abstracted into algebraic/empirical equations. Industry Standard Models | Model | Device | Key Features | |:------|:-------|:-------------| | BSIM4 | Planar MOSFET | ~300 parameters, channel length modulation | | BSIM-CMG | FinFET | Tri-gate geometry, quantum effects | | BSIM-GAA | Nanosheet | Stacked channels, sheet width | | PSP | Bulk MOSFET | Surface-potential-based | Key Physics Captured - Short-channel effects: DIBL, $V_T$ roll-off - Quantum corrections: Inversion layer quantization - Mobility degradation: Surface scattering, velocity saturation - Parasitic effects: Series resistance, overlap capacitance - Variability: Statistical mismatch models Threshold Voltage Variability (Pelgrom's Law) $$ \sigma_{V_T} = \frac{A_{VT}}{\sqrt{W \cdot L}} $$ where $A_{VT}$ is a technology-dependent constant. 7. TCAD Co-Simulation Workflow The complete semiconductor design flow: ```text ┌─────────────────────────────────────────────────────────────┐ │ ┌───────────────┐ ┌───────────────┐ ┌───────────────┐ │ │ │ Process │──▶│ Device │──▶│ Parameter │ │ │ │ Simulation │ │ Simulation │ │ Extraction │ │ │ │ (Sentaurus) │ │ (Sentaurus) │ │ (BSIM Fit) │ │ │ └───────────────┘ └───────────────┘ └───────────────┘ │ │ │ │ │ │ │ ▼ ▼ ▼ │ │ ┌───────────────┐ ┌───────────────┐ ┌───────────────┐ │ │ │• Implantation │ │• I-V, C-V │ │• BSIM params │ │ │ │• Diffusion │ │• Breakdown │ │• Corner extr. │ │ │ │• Oxidation │ │• Hot carrier │ │• Variability │ │ │ │• Etching │ │• Noise │ │ statistics │ │ │ └───────────────┘ └───────────────┘ └───────────────┘ │ │ │ │ │ ▼ │ │ ┌───────────────┐ │ │ │ Circuit │ │ │ │ Simulation │ │ │ │(SPICE,Spectre)│ │ │ └───────────────┘ │ └─────────────────────────────────────────────────────────────┘ ``` Key Challenge: Propagating variability through the entire chain: - Line Edge Roughness (LER) - Random Dopant Fluctuation (RDF) - Work function variation - Thickness variations 8. Mathematical Frontiers 8.1 Machine Learning + Physics - Physics-Informed Neural Networks (PINNs): $$ \mathcal{L} = \mathcal{L}_{data} + \lambda \mathcal{L}_{physics} $$ where $\mathcal{L}_{physics}$ enforces PDE residuals. - Surrogate models for expensive TCAD simulations - Inverse design and topology optimization - Defect prediction in manufacturing 8.2 Stochastic Modeling Random Dopant Fluctuation: $$ \sigma_{V_T} \propto \frac{t_{ox}}{\sqrt{W \cdot L \cdot N_A}} $$ Approaches: - Atomistic Monte Carlo (place individual dopants) - Statistical impedance field method - Compact model statistical extensions 8.3 Multiphysics Coupling Electro-Thermal Self-Heating: $$ \rho C_p \frac{\partial T}{\partial t} = \nabla \cdot (\kappa \nabla T) + \mathbf{J} \cdot \mathbf{E} $$ Stress Effects on Mobility (Piezoresistance): $$ \frac{\Delta \mu}{\mu_0} = \pi_L \sigma_L + \pi_T \sigma_T $$ Electromigration in Interconnects: $$ \mathbf{J}_{atoms} = \frac{D C}{k_B T} \left( Z^* q \mathbf{E} - \Omega \nabla \sigma \right) $$ 8.4 Atomistic-Continuum Bridging Strategies: - Coarse-graining from MD/DFT - Density gradient quantum corrections: $$ V_{QM} = \frac{\gamma \hbar^2}{12 m^*} \frac{\nabla^2 \sqrt{n}}{\sqrt{n}} $$ - Hybrid methods: atomistic core + continuum far-field The mathematics of semiconductor manufacturing and device physics encompasses: $$ \boxed{ \begin{aligned} &\text{Process:} && \text{Stefan problems, diffusion PDEs, reaction kinetics} \\ &\text{Device:} && \text{Coupled Poisson + continuity equations} \\ &\text{Quantum:} && \text{Schrödinger, NEGF, tunneling} \\ &\text{Numerical:} && \text{FEM/FDM, Scharfetter-Gummel, Newton iteration} \\ &\text{Circuit:} && \text{Compact models (BSIM), variability statistics} \end{aligned} } $$ Each level trades accuracy for computational tractability . The art lies in knowing when each approximation breaks down—and modern scaling is pushing us toward the quantum limit where classical continuum models become inadequate.
# Device Physics, TCAD, and Mathematical Modeling 1. Physical Foundation 1.1 Band Theory and Electronic Structure - Energy bands arise from the periodic potential of the crystal lattice - Conduction band (empty states available for electron transport) - Valence band (filled states; holes represent missing electrons) - Bandgap $E_g$ separates these bands (Si: ~1.12 eV at 300K) - Effective mass approximation - Electrons and holes behave as quasi-particles with modified mass - Electron effective mass: $m_n^*$ - Hole effective mass: $m_p^*$ - Carrier statistics follow Fermi-Dirac distribution: $$ f(E) = \frac{1}{1 + \exp\left(\frac{E - E_F}{k_B T}\right)} $$ - Carrier concentrations in non-degenerate semiconductors: $$ n = N_C \exp\left(-\frac{E_C - E_F}{k_B T}\right) $$ $$ p = N_V \exp\left(-\frac{E_F - E_V}{k_B T}\right) $$ Where: - $N_C$, $N_V$ = effective density of states in conduction/valence bands - $E_C$, $E_V$ = conduction/valence band edges - $E_F$ = Fermi level 1.2 Carrier Transport Mechanisms | Mechanism | Driving Force | Current Density | |-----------|---------------|-----------------| | Drift | Electric field $\mathbf{E}$ | $\mathbf{J} = qn\mu\mathbf{E}$ | | Diffusion | Concentration gradient | $\mathbf{J} = qD\nabla n$ | | Thermionic emission | Thermal energy over barrier | Exponential in $\phi_B/k_BT$ | | Tunneling | Quantum penetration | Exponential in barrier | - Einstein relation connects mobility and diffusivity: $$ D = \frac{k_B T}{q} \mu $$ 1.3 Generation and Recombination - Thermal equilibrium condition: $$ np = n_i^2 $$ - Three primary recombination mechanisms: 1. Shockley-Read-Hall (SRH) — trap-assisted 2. Auger — three-particle process (dominant at high injection) 3. Radiative — photon emission (important in direct bandgap materials) 2. Mathematical Hierarchy 2.1 Quantum Mechanical Level (Most Fundamental) Time-Independent Schrödinger Equation $$ \left[-\frac{\hbar^2}{2m^*}\nabla^2 + V(\mathbf{r})\right]\psi = E\psi $$ Where: - $\hbar$ = reduced Planck constant - $m^*$ = effective mass - $V(\mathbf{r})$ = potential energy - $\psi$ = wavefunction - $E$ = energy eigenvalue Non-Equilibrium Green's Function (NEGF) For open quantum systems (nanoscale devices, tunneling): $$ G^R = [EI - H - \Sigma]^{-1} $$ - $G^R$ = retarded Green's function - $H$ = device Hamiltonian - $\Sigma$ = self-energy (encodes contact coupling) Applications: - Tunnel FETs - Ultra-scaled MOSFETs ($L_g < 10$ nm) - Quantum well devices - Resonant tunneling diodes 2.2 Boltzmann Transport Level Boltzmann Transport Equation (BTE) $$ \frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{r}} f + \frac{\mathbf{F}}{\hbar} \cdot \nabla_{\mathbf{k}} f = \left(\frac{\partial f}{\partial t}\right)_{\text{coll}} $$ Where: - $f(\mathbf{r}, \mathbf{k}, t)$ = distribution function in phase space - $\mathbf{v}$ = group velocity - $\mathbf{F}$ = external force - RHS = collision integral Solution Methods: - Monte Carlo (stochastic particle tracking) - Spherical Harmonics Expansion (SHE) - Moments methods → leads to drift-diffusion, hydrodynamic Captures: - Hot carrier effects - Velocity overshoot - Non-equilibrium distributions - Ballistic transport 2.3 Hydrodynamic / Energy Balance Level Derived from moments of BTE with carrier temperature as variable: $$ \frac{\partial (nw)}{\partial t} + \nabla \cdot \mathbf{S} = \mathbf{J} \cdot \mathbf{E} - \frac{n(w - w_0)}{\tau_w} $$ - $w$ = carrier energy density - $\mathbf{S}$ = energy flux - $\tau_w$ = energy relaxation time - $w_0$ = equilibrium energy density Key feature: Carrier temperature $T_n \neq$ lattice temperature $T_L$ 2.4 Drift-Diffusion Level (The Workhorse) The most widely used TCAD formulation — three coupled PDEs: Poisson's Equation (Electrostatics) $$ \nabla \cdot (\varepsilon \nabla \psi) = -\rho = -q(p - n + N_D^+ - N_A^-) $$ - $\psi$ = electrostatic potential - $\varepsilon$ = permittivity - $\rho$ = charge density - $N_D^+$, $N_A^-$ = ionized donor/acceptor concentrations Electron Continuity Equation $$ \frac{\partial n}{\partial t} = \frac{1}{q}\nabla \cdot \mathbf{J}_n + G_n - R_n $$ Hole Continuity Equation $$ \frac{\partial p}{\partial t} = -\frac{1}{q}\nabla \cdot \mathbf{J}_p + G_p - R_p $$ Current Density Equations Standard form: $$ \mathbf{J}_n = q\mu_n n \mathbf{E} + qD_n \nabla n $$ $$ \mathbf{J}_p = q\mu_p p \mathbf{E} - qD_p \nabla p $$ Quasi-Fermi level formulation: $$ \mathbf{J}_n = q\mu_n n \nabla E_{F,n} $$ $$ \mathbf{J}_p = q\mu_p p \nabla E_{F,p} $$ System characteristics: - Coupled, nonlinear, elliptic-parabolic PDEs - Carrier concentrations vary exponentially with potential - Spans 10+ orders of magnitude across junctions 3. Numerical Methods 3.1 Spatial Discretization Finite Difference Method (FDM) - Simple implementation - Limited to structured (rectangular) grids - Box integration for conservation Finite Element Method (FEM) - Handles complex geometries - Basis function expansion - Weak (variational) formulation Finite Volume Method (FVM) - Ensures local conservation - Natural for semiconductor equations - Control volume integration 3.2 Scharfetter-Gummel Discretization Critical for numerical stability — handles exponential carrier variations: $$ J_{n,i+\frac{1}{2}} = \frac{qD_n}{h}\left[n_i B\left(\frac{\psi_i - \psi_{i+1}}{V_T}\right) - n_{i+1} B\left(\frac{\psi_{i+1} - \psi_i}{V_T}\right)\right] $$ Where the Bernoulli function is: $$ B(x) = \frac{x}{e^x - 1} $$ Properties: - Reduces to central difference for small $\Delta\psi$ - Reduces to upwind for large $\Delta\psi$ - Prevents spurious oscillations - Thermal voltage: $V_T = k_B T / q \approx 26$ mV at 300K 3.3 Mesh Generation - 2D: Delaunay triangulation - 3D: Tetrahedral meshing Adaptive refinement criteria: - Junction regions (high field gradients) - Oxide interfaces - Contact regions - High current density areas Quality metrics: - Aspect ratio - Orthogonality (important for FVM) - Delaunay property (circumsphere criterion) 3.4 Nonlinear Solvers Gummel Iteration (Decoupled) repeat: 1. Solve Poisson equation → ψ 2. Solve electron continuity → n 3. Solve hole continuity → p until convergence Pros: - Simple implementation - Robust for moderate bias - Each subproblem is smaller Cons: - Poor convergence at high injection - Slow for strongly coupled systems Newton-Raphson (Fully Coupled) Solve the linearized system: $$ \mathbf{J} \cdot \delta\mathbf{x} = -\mathbf{F}(\mathbf{x}) $$ Where: - $\mathbf{J}$ = Jacobian matrix $\partial \mathbf{F}/\partial \mathbf{x}$ - $\mathbf{F}$ = residual vector - $\delta\mathbf{x}$ = update vector Pros: - Quadratic convergence near solution - Handles strong coupling Cons: - Requires good initial guess - Expensive Jacobian assembly - Larger linear systems Hybrid Methods - Start with Gummel to get close - Switch to Newton for fast final convergence 3.5 Linear Solvers For large, sparse, ill-conditioned Jacobian systems: | Method | Type | Characteristics | |--------|------|-----------------| | LU (PARDISO, UMFPACK) | Direct | Robust, memory-intensive | | GMRES | Iterative | Krylov subspace, needs preconditioning | | BiCGSTAB | Iterative | Non-symmetric systems | | Multigrid | Iterative | Optimal for Poisson-like equations | 4. Physical Models in TCAD 4.1 Mobility Models Matthiessen's Rule Combines independent scattering mechanisms: $$ \frac{1}{\mu} = \frac{1}{\mu_{\text{lattice}}} + \frac{1}{\mu_{\text{impurity}}} + \frac{1}{\mu_{\text{surface}}} + \cdots $$ Lattice Scattering $$ \mu_L = \mu_0 \left(\frac{T}{300}\right)^{-\alpha} $$ - Si electrons: $\alpha \approx 2.4$ - Si holes: $\alpha \approx 2.2$ Ionized Impurity Scattering Brooks-Herring model: $$ \mu_I \propto \frac{T^{3/2}}{N_I \cdot \ln(1 + b^2) - b^2/(1+b^2)} $$ High-Field Saturation (Caughey-Thomas) $$ \mu(E) = \frac{\mu_0}{\left[1 + \left(\frac{\mu_0 E}{v_{\text{sat}}}\right)^\beta\right]^{1/\beta}} $$ - $v_{\text{sat}}$ = saturation velocity (~$10^7$ cm/s for Si) - $\beta$ = fitting parameter (~2 for electrons, ~1 for holes) 4.2 Recombination Models Shockley-Read-Hall (SRH) $$ R_{\text{SRH}} = \frac{np - n_i^2}{\tau_p(n + n_1) + \tau_n(p + p_1)} $$ Where: - $\tau_n$, $\tau_p$ = carrier lifetimes - $n_1 = n_i \exp[(E_t - E_i)/k_BT]$ - $p_1 = n_i \exp[(E_i - E_t)/k_BT]$ - $E_t$ = trap energy level Auger Recombination $$ R_{\text{Auger}} = (C_n n + C_p p)(np - n_i^2) $$ - $C_n$, $C_p$ = Auger coefficients (~$10^{-31}$ cm$^6$/s for Si) - Dominant at high carrier densities ($>10^{18}$ cm$^{-3}$) Radiative Recombination $$ R_{\text{rad}} = B(np - n_i^2) $$ - $B$ = radiative coefficient - Important in direct bandgap materials (GaAs, InP) 4.3 Band-to-Band Tunneling For tunnel FETs, Zener diodes: $$ G_{\text{BTBT}} = A \cdot E^2 \exp\left(-\frac{B}{E}\right) $$ - $A$, $B$ = material-dependent parameters - $E$ = electric field magnitude 4.4 Quantum Corrections Density Gradient Method Adds quantum potential to classical equations: $$ V_Q = -\frac{\hbar^2}{6m^*} \frac{\nabla^2\sqrt{n}}{\sqrt{n}} $$ Or equivalently, the quantum potential term: $$ \Lambda_n = \frac{\hbar^2}{12 m_n^* k_B T} \nabla^2 \ln(n) $$ Applications: - Inversion layer quantization in MOSFETs - Thin body SOI devices - FinFETs, nanowires 1D Schrödinger-Poisson For stronger quantum confinement: 1. Solve 1D Schrödinger in confinement direction → subbands $E_i$, $\psi_i$ 2. Calculate 2D density of states 3. Compute carrier density from subband occupation 4. Solve 2D Poisson with quantum charge 5. Iterate to self-consistency 4.5 Bandgap Narrowing At high doping ($N > 10^{17}$ cm$^{-3}$): $$ \Delta E_g = A \cdot N^{1/3} + B \cdot \ln\left(\frac{N}{N_{\text{ref}}}\right) $$ Effect: Increases $n_i^2$ → affects recombination and device characteristics 4.6 Interface Models - Interface trap density: $D_{it}(E)$ — states per cm$^2$·eV - Oxide charges: - Fixed oxide charge $Q_f$ - Mobile ionic charge $Q_m$ - Oxide trapped charge $Q_{ot}$ - Interface trapped charge $Q_{it}$ 5. Process TCAD 5.1 Ion Implantation Monte Carlo Method - Track individual ion trajectories - Binary collision approximation - Accurate for low doses, complex geometries Analytical Profiles Gaussian: $$ N(x) = \frac{\Phi}{\sqrt{2\pi}\Delta R_p} \exp\left[-\frac{(x - R_p)^2}{2\Delta R_p^2}\right] $$ - $\Phi$ = dose (ions/cm$^2$) - $R_p$ = projected range - $\Delta R_p$ = straggle Pearson IV: Adds skewness and kurtosis for better accuracy 5.2 Diffusion Fick's First Law: $$ \mathbf{J} = -D \nabla C $$ Fick's Second Law: $$ \frac{\partial C}{\partial t} = \nabla \cdot (D \nabla C) $$ Concentration-dependent diffusion: $$ D = D_i \left(\frac{n}{n_i}\right)^2 + D_v + D_x \left(\frac{n}{n_i}\right) $$ (Accounts for charged point defects) 5.3 Oxidation Deal-Grove Model: $$ x_{ox}^2 + A \cdot x_{ox} = B(t + \tau) $$ - $x_{ox}$ = oxide thickness - $A$, $B$ = temperature-dependent parameters - Linear regime: $x_{ox} \approx (B/A) \cdot t$ (thin oxide) - Parabolic regime: $x_{ox} \approx \sqrt{B \cdot t}$ (thick oxide) 5.4 Etching and Deposition Level-set method for surface evolution: $$ \frac{\partial \phi}{\partial t} + v_n |\nabla \phi| = 0 $$ - $\phi$ = level-set function (zero contour = surface) - $v_n$ = normal velocity (etch/deposition rate) 6. Multiphysics and Advanced Topics 6.1 Electrothermal Coupling Heat equation: $$ \rho c_p \frac{\partial T}{\partial t} = \nabla \cdot (\kappa \nabla T) + H $$ Heat generation: $$ H = \mathbf{J} \cdot \mathbf{E} + (R - G)(E_g + 3k_BT) $$ - First term: Joule heating - Second term: recombination heating Thermoelectric effects: - Seebeck effect - Peltier effect - Thomson effect 6.2 Electromechanical Coupling Strain effects on mobility: $$ \mu_{\text{strained}} = \mu_0 (1 + \Pi \cdot \sigma) $$ - $\Pi$ = piezoresistance coefficient - $\sigma$ = mechanical stress Applications: Strained Si, SiGe channels 6.3 Statistical Variability Sources of random variation: - Random Dopant Fluctuations (RDF) — discrete dopant positions - Line Edge Roughness (LER) — gate patterning variation - Metal Gate Granularity (MGG) — work function variation - Oxide Thickness Variation (OTV) Simulation approach: - Monte Carlo sampling over device instances - Statistical TCAD → threshold voltage distributions 6.4 Reliability Modeling Bias Temperature Instability (BTI): - Defect generation at Si/SiO$_2$ interface - Reaction-diffusion models Hot Carrier Injection (HCI): - High-energy carriers damage interface - Coupled with energy transport 6.5 Noise Modeling Noise sources: - Thermal noise: $S_I = 4k_BT/R$ - Shot noise: $S_I = 2qI$ - 1/f noise (flicker): $S_I \propto I^2/(f \cdot N)$ Impedance field method for spatial correlation 7. Computational Architecture 7.1 Model Hierarchy Comparison | Level | Physics | Math | Cost | Accuracy | |-------|---------|------|------|----------| | NEGF | Quantum coherence | $G = [E-H-\Sigma]^{-1}$ | $$$$$ | Highest | | Monte Carlo | Distribution function | Stochastic DEs | $$$$ | High | | Hydrodynamic | Carrier temperature | Hyperbolic-parabolic PDEs | $$$ | Good | | Drift-Diffusion | Continuum transport | Elliptic-parabolic PDEs | $$ | Moderate | | Compact Models | Empirical | Algebraic | $ | Calibrated | 7.2 Software Architecture ```text ┌─────────────────────────────────────────┐ │ User Interface (GUI) │ ├─────────────────────────────────────────┤ │ Structure Definition │ │ (Geometry, Mesh, Materials) │ ├─────────────────────────────────────────┤ │ Physical Models │ │ (Mobility, Recombination, Quantum) │ ├─────────────────────────────────────────┤ │ Numerical Engine │ │ (Discretization, Solvers, Linear Alg) │ ├─────────────────────────────────────────┤ │ Post-Processing │ │ (Visualization, Parameter Extraction) │ └─────────────────────────────────────────┘ ``` 7.3 TCAD ↔ Compact Model Flow ```text ┌──────────┐ calibrate ┌──────────────┐ │ TCAD │ ──────────────► │ Compact Model│ │(Physics) │ │ (BSIM,PSP) │ └──────────┘ └──────────────┘ │ │ │ validate │ enable ▼ ▼ ┌──────────┐ ┌──────────────┐ │ Silicon │ │ Circuit │ │ Data │ │ Simulation │ └──────────┘ └──────────────┘ ``` Equations: Fundamental Constants | Symbol | Name | Value | |--------|------|-------| | $q$ | Elementary charge | $1.602 \times 10^{-19}$ C | | $k_B$ | Boltzmann constant | $1.381 \times 10^{-23}$ J/K | | $\hbar$ | Reduced Planck | $1.055 \times 10^{-34}$ J·s | | $\varepsilon_0$ | Vacuum permittivity | $8.854 \times 10^{-12}$ F/m | | $V_T$ | Thermal voltage (300K) | 25.9 mV | Silicon Properties (300K) | Property | Value | |----------|-------| | Bandgap $E_g$ | 1.12 eV | | Intrinsic carrier density $n_i$ | $1.0 \times 10^{10}$ cm$^{-3}$ | | Electron mobility $\mu_n$ | 1450 cm$^2$/V·s | | Hole mobility $\mu_p$ | 500 cm$^2$/V·s | | Electron saturation velocity | $1.0 \times 10^7$ cm/s | | Relative permittivity $\varepsilon_r$ | 11.7 |
Deionized water with high resistivity is essential in semiconductor processing for rinsing and chemical preparation minimizing ionic contamination.
Suggest possible diagnoses from symptoms.
Assess what information is present.
Generate diagrams from descriptions. Mermaid, PlantUML.
Find sparse feature representations.
Die shear testing measures die attach adhesion by applying lateral force until separation occurs.
Diffusion-GAN combines diffusion models with adversarial training for diverse graph generation.
Search architectures via gradient descent.
Advanced memory-augmented network.
Differentiable rendering enables gradient-based optimization of 3D representations from images.
Differential privacy adds calibrated noise protecting individual data points during training.
Add noise during training to prevent extracting individual training examples.
Differentiable graph pooling learns hierarchical graph representations by clustering nodes through soft assignment matrices optimized end-to-end.
Differentiable graph pooling.
Diffusers library for diffusion models. Stable Diffusion, ControlNet. Hugging Face.
# Mathematical Modeling of Diffusion and Ion Implantation in Semiconductor Manufacturing Part I: Diffusion Modeling Fundamental Equations Dopant redistribution in silicon at elevated temperatures is governed by Fick's Laws . Fick's First Law Relates flux to concentration gradient: $$ J = -D \frac{\partial C}{\partial x} $$ Where: - $J$ — Atomic flux (atoms/cm²·s) - $D$ — Diffusion coefficient (cm²/s) - $C$ — Concentration (atoms/cm³) - $x$ — Position (cm) Fick's Second Law The diffusion equation follows from continuity: $$ \frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2} $$ This parabolic PDE admits analytical solutions for idealized boundary conditions. Temperature Dependence The diffusion coefficient follows an Arrhenius relationship : $$ D(T) = D_0 \exp\left(-\frac{E_a}{kT}\right) $$ Parameters: - $D_0$ — Pre-exponential factor (cm²/s) - $E_a$ — Activation energy (eV) - $k$ — Boltzmann's constant ($8.617 \times 10^{-5}$ eV/K) - $T$ — Absolute temperature (K) Typical Values for Phosphorus in Silicon: | Parameter | Value | |-----------|-------| | $D_0$ | $3.85$ cm²/s | | $E_a$ | $3.66$ eV | Diffusion approximately doubles every 10–15°C near typical process temperatures (900–1100°C). Classical Analytical Solutions Case 1: Constant Surface Concentration (Predeposition) Boundary Conditions: - $C(0, t) = C_s$ (constant surface concentration) - $C(\infty, t) = 0$ (zero at infinite depth) - $C(x, 0) = 0$ (initially undoped) Solution: $$ C(x,t) = C_s \cdot \text{erfc}\left(\frac{x}{2\sqrt{Dt}}\right) $$ Complementary Error Function: $$ \text{erfc}(z) = 1 - \text{erf}(z) = \frac{2}{\sqrt{\pi}} \int_z^{\infty} e^{-u^2} \, du $$ Total Incorporated Dose: $$ Q(t) = \frac{2 C_s \sqrt{Dt}}{\sqrt{\pi}} $$ Case 2: Fixed Dose (Drive-in Diffusion) Boundary Conditions: - $\displaystyle\int_0^{\infty} C \, dx = Q$ (constant total dose) - $\displaystyle\frac{\partial C}{\partial x}\bigg|_{x=0} = 0$ (no flux at surface) Solution (Gaussian Profile): $$ C(x,t) = \frac{Q}{\sqrt{\pi Dt}} \exp\left(-\frac{x^2}{4Dt}\right) $$ Peak Surface Concentration: $$ C(0,t) = \frac{Q}{\sqrt{\pi Dt}} $$ Junction Depth Calculation The metallurgical junction forms where dopant concentration equals background doping $C_B$. For erfc Profile: $$ x_j = 2\sqrt{Dt} \cdot \text{erfc}^{-1}\left(\frac{C_B}{C_s}\right) $$ For Gaussian Profile: $$ x_j = 2\sqrt{Dt \cdot \ln\left(\frac{Q}{C_B \sqrt{\pi Dt}}\right)} $$ Concentration-Dependent Diffusion At high doping concentrations (approaching or exceeding intrinsic carrier concentration $n_i$), diffusivity becomes concentration-dependent. Generalized Model: $$ D = D^0 + D^{-}\frac{n}{n_i} + D^{+}\frac{p}{n_i} + D^{=}\left(\frac{n}{n_i}\right)^2 $$ Physical Interpretation: | Term | Mechanism | |------|-----------| | $D^0$ | Neutral vacancy diffusion | | $D^{-}$ | Singly negative vacancy diffusion | | $D^{+}$ | Positive vacancy diffusion | | $D^{=}$ | Doubly negative vacancy diffusion | Resulting Nonlinear PDE: $$ \frac{\partial C}{\partial t} = \frac{\partial}{\partial x}\left(D(C) \frac{\partial C}{\partial x}\right) $$ This requires numerical solution methods. Point Defect Mediated Diffusion Modern process modeling couples dopant diffusion to point defect dynamics. Governing System of PDEs: $$ \frac{\partial C_I}{\partial t} = \nabla \cdot (D_I \nabla C_I) - k_{IV} C_I C_V + G_I - R_I $$ $$ \frac{\partial C_V}{\partial t} = \nabla \cdot (D_V \nabla C_V) - k_{IV} C_I C_V + G_V - R_V $$ $$ \frac{\partial C_A}{\partial t} = \nabla \cdot (D_{AI} C_I \nabla C_A) + \text{(clustering terms)} $$ Variable Definitions: - $C_I$ — Interstitial concentration - $C_V$ — Vacancy concentration - $C_A$ — Dopant atom concentration - $k_{IV}$ — Interstitial-vacancy recombination rate - $G$ — Generation rate - $R$ — Surface recombination rate Part II: Ion Implantation Modeling Energy Loss Mechanisms Implanted ions lose energy through two mechanisms: Total Stopping Power: $$ S(E) = -\frac{dE}{dx} = S_n(E) + S_e(E) $$ Nuclear Stopping (Elastic Collisions) Dominates at low energies : $$ S_n(E) = \frac{\pi a^2 \gamma E \cdot s_n(\varepsilon)}{1 + M_2/M_1} $$ Where: - $\gamma = \displaystyle\frac{4 M_1 M_2}{(M_1 + M_2)^2}$ — Energy transfer factor - $a$ — Screening length - $s_n(\varepsilon)$ — Reduced nuclear stopping Electronic Stopping (Inelastic Interactions) Dominates at high energies : $$ S_e(E) \propto \sqrt{E} $$ (at intermediate energies) LSS Theory Lindhard, Scharff, and Schiøtt developed universal scaling using reduced units. Reduced Energy: $$ \varepsilon = \frac{a M_2 E}{Z_1 Z_2 e^2 (M_1 + M_2)} $$ Reduced Path Length: $$ \rho = 4\pi a^2 N \frac{M_1 M_2}{(M_1 + M_2)^2} \cdot x $$ This allows tabulation of universal range curves applicable across ion-target combinations. Gaussian Profile Approximation First-Order Implant Profile: $$ C(x) = \frac{\Phi}{\sqrt{2\pi} \, \Delta R_p} \exp\left(-\frac{(x - R_p)^2}{2 \Delta R_p^2}\right) $$ Parameters: | Symbol | Name | Units | |--------|------|-------| | $\Phi$ | Dose | ions/cm² | | $R_p$ | Projected range (mean stopping depth) | cm | | $\Delta R_p$ | Range straggle (standard deviation) | cm | Peak Concentration: $$ C_{\text{peak}} = \frac{\Phi}{\sqrt{2\pi} \, \Delta R_p} \approx \frac{0.4 \, \Phi}{\Delta R_p} $$ Higher-Order Moment Distributions The Gaussian approximation fails for many practical cases. The Pearson IV distribution uses four statistical moments: | Moment | Symbol | Physical Meaning | |--------|--------|------------------| | 1st | $R_p$ | Projected range | | 2nd | $\Delta R_p$ | Range straggle | | 3rd | $\gamma$ | Skewness | | 4th | $\beta$ | Kurtosis | Pearson IV Form: $$ C(x) = \frac{K}{\left[(x-a)^2 + b^2\right]^m} \exp\left(-\nu \arctan\frac{x-a}{b}\right) $$ Parameters $(a, b, m, \nu, K)$ are derived from the four moments through algebraic relations. Skewness Behavior: - Light ions (B) in heavy substrates → Negative skewness (tail toward surface) - Heavy ions (As, Sb) in silicon → Positive skewness (tail toward bulk) Dual Pearson Model For channeling tails or complex profiles: $$ C(x) = f \cdot C_1(x) + (1-f) \cdot C_2(x) $$ Where: - $C_1(x)$, $C_2(x)$ — Two Pearson distributions with different parameters - $f$ — Weight fraction Lateral Distribution Ions scatter laterally as well: $$ C(x, r) = C(x) \cdot \frac{1}{2\pi \Delta R_{\perp}^2} \exp\left(-\frac{r^2}{2 \Delta R_{\perp}^2}\right) $$ For Amorphous Targets: $$ \Delta R_{\perp} \approx \frac{\Delta R_p}{\sqrt{3}} $$ Lateral straggle is critical for device scaling—it limits minimum feature sizes. Monte Carlo Simulation (TRIM/SRIM) For accurate profiles, especially in multilayer or crystalline structures, Monte Carlo methods track individual ion trajectories. Algorithm: 1. Initialize ion position, direction, energy 2. Select free flight path: $\lambda = 1/(N\pi a^2)$ 3. Calculate impact parameter and scattering angle via screened Coulomb potential 4. Energy transfer to recoil: $$T = T_m \sin^2\left(\frac{\theta}{2}\right)$$ where $T_m = \gamma E$ 5. Apply electronic energy loss over path segment 6. Update ion position/direction; cascade recoils if $T > E_d$ (displacement energy) 7. Repeat until $E < E_{\text{cutoff}}$ 8. Accumulate statistics over $10^4 - 10^6$ ion histories ZBL Interatomic Potential: $$ V(r) = \frac{Z_1 Z_2 e^2}{r} \, \phi(r/a) $$ Where $\phi$ is the screening function tabulated from quantum mechanical calculations. Channeling In crystalline silicon, ions aligned with crystal axes experience reduced stopping. Critical Angle for Channeling: $$ \psi_c \approx \sqrt{\frac{2 Z_1 Z_2 e^2}{E \, d}} $$ Where: - $d$ — Atomic spacing along the channel - $E$ — Ion energy Effects: - Channeled ions penetrate 2–10× deeper - Creates extended tails in profiles - Modern implants use 7° tilt or random-equivalent conditions to minimize Damage Accumulation Implant damage is quantified by: $$ D(x) = \Phi \int_0^{\infty} \nu(E) \cdot F(x, E) \, dE $$ Where: - $\nu(E)$ — Kinchin-Pease damage function (displaced atoms per ion) - $F(x, E)$ — Energy deposition profile Amorphization Threshold for Silicon: $$ \sim 10^{22} \text{ displacements/cm}^3 $$ (approximately 10–15% of atoms displaced) Part III: Post-Implant Diffusion and Transient Enhanced Diffusion Transient Enhanced Diffusion (TED) After implantation, excess interstitials dramatically enhance diffusion until they anneal: $$ D_{\text{eff}} = D^* \left(1 + \frac{C_I}{C_I^*}\right) $$ Where: - $C_I^*$ — Equilibrium interstitial concentration "+1" Model for Boron: $$ \frac{\partial C_B}{\partial t} = \frac{\partial}{\partial x}\left[D_B \left(1 + \frac{C_I}{C_I^*}\right) \frac{\partial C_B}{\partial x}\right] $$ Impact: TED can cause junction depths 2–5× deeper than equilibrium diffusion would predict—critical for modern shallow junctions. {311} Defect Dissolution Kinetics Interstitials cluster into rod-like {311} defects that slowly dissolve: $$ \frac{dN_{311}}{dt} = -\nu_0 \exp\left(-\frac{E_a}{kT}\right) N_{311} $$ The released interstitials sustain TED, explaining why TED persists for times much longer than point defect diffusion would suggest. Part IV: Numerical Methods Finite Difference Discretization For the diffusion equation on uniform grid $(x_i, t_n)$: Explicit (Forward Euler) $$ \frac{C_i^{n+1} - C_i^n}{\Delta t} = D \frac{C_{i+1}^n - 2C_i^n + C_{i-1}^n}{\Delta x^2} $$ Stability Requirement (CFL Condition): $$ \Delta t < \frac{\Delta x^2}{2D} $$ Implicit (Backward Euler) $$ \frac{C_i^{n+1} - C_i^n}{\Delta t} = D \frac{C_{i+1}^{n+1} - 2C_i^{n+1} + C_{i-1}^{n+1}}{\Delta x^2} $$ - Unconditionally stable - Requires solving tridiagonal system each timestep Crank-Nicolson Method - Average of explicit and implicit schemes - Second-order accurate in time - Results in tridiagonal system Adaptive Meshing Concentration gradients vary by orders of magnitude. Adaptive grids refine near: - Junctions - Surface - Implant peaks - Moving interfaces Grid Spacing Scaling: $$ \Delta x \propto \frac{C}{|\nabla C|} $$ Process Simulation Flow (TCAD) Modern simulators (Sentaurus Process, ATHENA, FLOOPS) integrate: 1. Implantation → Monte Carlo or analytical tables 2. Damage model → Amorphization, defect clustering 3. Annealing → Coupled dopant-defect PDEs 4. Oxidation → Deal-Grove kinetics, stress effects, OED 5. Silicidation, epitaxy, etc. → Specialized models Output feeds device simulation (drift-diffusion, Monte Carlo transport). Part V: Key Process Design Equations Thermal Budget The characteristic diffusion length after multiple thermal steps: $$ \sqrt{Dt}_{\text{total}} = \sqrt{\sum_i D_i t_i} $$ For Varying Temperature $T(t)$: $$ Dt = \int_0^{t_f} D_0 \exp\left(-\frac{E_a}{kT(t')}\right) dt' $$ Sheet Resistance $$ R_s = \frac{1}{q \displaystyle\int_0^{x_j} \mu(C) \cdot C(x) \, dx} $$ For Uniform Mobility Approximation: $$ R_s \approx \frac{1}{q \mu Q} $$ Electrical measurements to profile parameters. Implant Dose-Energy Selection Target Peak Concentration: $$ C_{\text{peak}} = \frac{0.4 \, \Phi}{\Delta R_p(E)} $$ Target Depth (Empirical): $$ R_p(E) \approx A \cdot E^n $$ Where: - $n \approx 0.6 - 0.8$ (depending on energy regime) - $A$ — Ion-target dependent constant Key Mathematical Tools: | Process | Core Equation | Solution Method | |---------|---------------|-----------------| | Thermal diffusion | $\displaystyle\frac{\partial C}{\partial t} = \nabla \cdot (D \nabla C)$ | Analytical (erfc, Gaussian) or FEM/FDM | | Implant profile | 4-moment Pearson distribution | Lookup tables or Monte Carlo | | Damage evolution | Coupled defect-dopant kinetics | Stiff ODE solvers | | TED | $D_{\text{eff}} = D^*(1 + C_I/C_I^*)$ | Coupled PDEs | | 2D/3D profiles | $\nabla \cdot (D \nabla C)$ in 2D/3D | Finite element methods | Common Dopant Properties in Silicon: | Dopant | Type | $D_0$ (cm²/s) | $E_a$ (eV) | Typical Use | |--------|------|---------------|------------|-------------| | Boron (B) | p-type | 0.76 | 3.46 | Source/drain, channel doping | | Phosphorus (P) | n-type | 3.85 | 3.66 | Source/drain, n-well | | Arsenic (As) | n-type | 0.32 | 3.56 | Shallow junctions | | Antimony (Sb) | n-type | 0.214 | 3.65 | Buried layers |
Diffusion bonding joins surfaces through atomic interdiffusion at interfaces.
Rate at which dopants diffuse depends on temp and material.