gating networks, neural architecture
Decide which paths to activate.
3,145 technical terms and definitions
Decide which paths to activate.
Kernel-based force field.
Optimize Gaussian parameters.
Gaussian splatting represents scenes as collections of 3D Gaussians for real-time differentiable rendering.
Spectral graph convolutional networks define convolutions through graph Laplacian eigendecomposition.
Graph Convolutional Policy Network generates graphs through reinforcement learning with domain-specific rewards for molecular design.
Gradient-based architecture search with differentiable sampling enables efficient single-path supernet training.
GELU-gated linear unit.
Smooth activation used in Transformers.
Robust loss for outliers.
Google's multimodal model.
Google's multimodal AI model family.
GemNet combines geometric message passing with Bessel basis functions for accurate quantum chemical predictions.
Change gender in examples.
Optimize CRISPR and gene editing.
Find gene-disease links in literature.
Extend GAMs with deep learning.
Adversarial approach to imitation.
Generate synthetic defect images for training.
Assess significance of genetic variants.
Connect domains via geodesic.
Deep learning on non-Euclidean domains.
# Semiconductor Manufacturing Process Geometry and Computational Geometry Mathematical Modeling ## 1. The Fundamental Geometric Challenge Modern semiconductor manufacturing operates at scales where the features being printed (3–7 nm effective dimensions) are far smaller than the wavelength of light used to pattern them (193 nm for DUV, 13.5 nm for EUV). This creates a regime where **diffraction physics dominates**, and the relationship between the designed geometry and the printed geometry becomes highly nonlinear. ### Resolution and Depth-of-Focus Equations The governing resolution relationship: $$ R = k_1 \cdot \frac{\lambda}{NA} $$ $$ DOF = k_2 \cdot \frac{\lambda}{NA^2} $$ Where: - $R$ — minimum resolvable feature size - $DOF$ — depth of focus - $\lambda$ — exposure wavelength - $NA$ — numerical aperture of the projection lens - $k_1, k_2$ — process-dependent factors (typically $k_1 \approx 0.25$ for advanced nodes) The tension between resolution and depth-of-focus defines much of the geometric problem space. ## 2. Computational Geometry in Layout and Verification ### 2.1 Polygon Representations Semiconductor layouts are fundamentally **rectilinear polygon problems** (Manhattan geometry). The core data structure represents billions of polygons across hierarchical cells. **Key algorithms employed:** | Problem | Algorithm | Complexity | |---------|-----------|------------| | Polygon Boolean operations | Vatti clipping, Greiner-Hormann | $O(n \log n)$ | | Design rule checking | Sweep-line with interval trees | $O(n \log n)$ | | Spatial queries | R-trees, quad-trees | $O(\log n)$ query | | Nearest-neighbor | Voronoi diagrams | $O(n \log n)$ construction | | Polygon sizing/offsetting | Minkowski sum/difference | $O(n^2)$ worst case | ### 2.2 Design Rule Checking as Geometric Constraint Satisfaction Design rules translate to geometric predicates: - **Minimum width**: polygon thinning check - Constraint: $w_{feature} \geq w_{min}$ - **Minimum spacing**: Minkowski sum expansion + intersection test - Constraint: $d(P_1, P_2) \geq s_{min}$ - **Enclosure**: polygon containment - Constraint: $P_{inner} \subseteq P_{outer} \ominus r$ - **Extension**: segment overlap calculations The computational geometry challenge is performing these checks on $10^{9}$–$10^{11}$ edges efficiently, requiring sophisticated spatial indexing and hierarchical decomposition. ### 2.3 Minkowski Operations For polygon $A$ and structuring element $B$: **Dilation (Minkowski Sum):** $$ A \oplus B = \{a + b \mid a \in A, b \in B\} $$ **Erosion (Minkowski Difference):** $$ A \ominus B = \{x \mid B_x \subseteq A\} $$ These operations are fundamental to: - Design rule checking (spacing verification) - Optical proximity correction (edge biasing) - Manufacturing constraint validation ## 3. Optical Lithography Modeling ### 3.1 Hopkins Formulation for Partially Coherent Imaging The aerial image intensity at point $\mathbf{x}$: $$ I(\mathbf{x}) = \iint TCC(\mathbf{f}, \mathbf{f'}) \cdot \tilde{M}(\mathbf{f}) \cdot \tilde{M}^*(\mathbf{f'}) \cdot e^{2\pi i (\mathbf{f} - \mathbf{f'}) \cdot \mathbf{x}} \, d\mathbf{f} \, d\mathbf{f'} $$ Where: - $TCC(\mathbf{f}, \mathbf{f'})$ — Transmission Cross-Coefficient (encodes source and pupil) - $\tilde{M}(\mathbf{f})$ — Fourier transform of the mask transmission function - $\tilde{M}^*(\mathbf{f'})$ — complex conjugate ### 3.2 Eigendecomposition for Efficient Computation **Computational approach:** Eigendecomposition of TCC yields "kernels" for efficient simulation: $$ I(\mathbf{x}) = \sum_{k=1}^{N} \lambda_k \left| \phi_k(\mathbf{x}) \otimes M(\mathbf{x}) \right|^2 $$ Where: - $\lambda_k$ — eigenvalues (sorted by magnitude) - $\phi_k(\mathbf{x})$ — eigenfunctions (SOCS kernels) - $\otimes$ — convolution operator - $N$ — number of kernels retained (typically 10–30) This converts a 4D integral to a sum of 2D convolutions, enabling FFT-based computation with complexity $O(N \cdot n^2 \log n)$ for an $n \times n$ image. ### 3.3 Coherence Factor and Illumination The partial coherence factor $\sigma$ relates to imaging: $$ \sigma = \frac{NA_{condenser}}{NA_{objective}} $$ - $\sigma = 0$: Fully coherent illumination - $\sigma = 1$: Matched illumination - $\sigma > 1$: Overfilled illumination ### 3.4 Mask 3D Effects (EUV-Specific) At EUV wavelengths (13.5 nm), the mask is a 3D scattering structure. Rigorous electromagnetic modeling requires: - **RCWA** (Rigorous Coupled-Wave Analysis) - Solves: $\nabla \times \mathbf{E} = -\mu_0 \frac{\partial \mathbf{H}}{\partial t}$ - **FDTD** (Finite-Difference Time-Domain) - Discretization: $\frac{\partial E_x}{\partial t} = \frac{1}{\epsilon} \left( \frac{\partial H_z}{\partial y} - \frac{\partial H_y}{\partial z} \right)$ - **Waveguide methods** The mask shadowing effect introduces asymmetry: $$ \Delta x_{shadow} = d_{absorber} \cdot \tan(\theta_{chief ray}) $$ ## 4. Inverse Lithography and Computational Optimization ### 4.1 Optical Proximity Correction (OPC) **Forward problem:** Mask → Aerial Image → Printed Pattern **Inverse problem:** Desired Pattern → Optimal Mask **Mathematical formulation:** $$ \min_M \sum_{i=1}^{N_{eval}} \left[ I(x_i, y_i; M) - I_{threshold} \right]^2 \cdot W_i $$ Subject to mask manufacturing constraints: - Minimum feature size: $w_{mask} \geq w_{min}^{mask}$ - Minimum spacing: $s_{mask} \geq s_{min}^{mask}$ - Corner rounding radius: $r_{corner} \geq r_{min}$ ### 4.2 Algorithmic Approaches **1. Gradient Descent:** Compute sensitivity and iteratively adjust: $$ \frac{\partial I}{\partial e_j} = \frac{\partial I}{\partial M} \cdot \frac{\partial M}{\partial e_j} $$ $$ e_j^{(k+1)} = e_j^{(k)} - \alpha \cdot \frac{\partial \mathcal{L}}{\partial e_j} $$ Where $e_j$ represents edge segment positions. **2. Level-Set Methods:** Represent mask as zero level set of $\phi(x,y)$, evolve via: $$ \frac{\partial \phi}{\partial t} = -\nabla_M \mathcal{L} \cdot |\nabla \phi| $$ The mask boundary is implicitly defined as: $$ \Gamma = \{(x,y) : \phi(x,y) = 0\} $$ **3. Inverse Lithography Technology (ILT):** Pixel-based optimization treating each mask pixel as a continuous variable: $$ \min_{\{m_{ij}\}} \mathcal{L}(I(\{m_{ij}\}), I_{target}) + \lambda \cdot R(\{m_{ij}\}) $$ Where $m_{ij} \in [0,1]$ and $R$ is a regularization term encouraging binary solutions. ### 4.3 Source-Mask Optimization (SMO) Joint optimization of illumination source shape $S$ and mask pattern $M$: $$ \min_{S, M} \mathcal{L}(I(S, M), I_{target}) + \alpha \cdot R_{mask}(M) + \beta \cdot R_{source}(S) $$ This is a bilinear optimization problem, typically solved by alternating optimization: 1. Fix $S$, optimize $M$ (OPC subproblem) 2. Fix $M$, optimize $S$ (source optimization) 3. Repeat until convergence ## 5. Process Simulation: Surface Evolution Mathematics ### 5.1 Level-Set Formulation for Etch/Deposition The evolution of a surface during etching or deposition is captured by: $$ \frac{\partial \phi}{\partial t} + V(\mathbf{x}, t) \cdot |\nabla \phi| = 0 $$ Where: - $\phi(\mathbf{x}, t)$ — level-set function - $\phi = 0$ — defines the surface implicitly - $V(\mathbf{x}, t)$ — local velocity (etch rate or deposition rate) **Advantages of level-set formulation:** - Natural handling of topology changes (merging, splitting) - Easy curvature computation: $$ \kappa = \nabla \cdot \left( \frac{\nabla \phi}{|\nabla \phi|} \right) = \frac{\phi_{xx}\phi_y^2 - 2\phi_x\phi_y\phi_{xy} + \phi_{yy}\phi_x^2}{(\phi_x^2 + \phi_y^2)^{3/2}} $$ - Extension to 3D straightforward ### 5.2 Velocity Models **Isotropic etch:** $$ V = V_0 = \text{constant} $$ **Anisotropic (crystallographic) etch:** $$ V = V(\theta, \phi) $$ Where $\theta, \phi$ are angles defining crystal orientation relative to surface normal. **Ion-enhanced reactive ion etch (RIE):** $$ V = V_{ion} \cdot \Gamma_{ion}(\mathbf{x}) \cdot f(\theta) + V_{chem} $$ Where: - $\Gamma_{ion}(\mathbf{x})$ — ion flux at point $\mathbf{x}$ - $f(\theta)$ — angular dependence (typically $\cos^n \theta$) - $V_{chem}$ — isotropic chemical component **Deposition with angular distribution:** $$ V(\theta) = V_0 \cdot \cos^n(\theta) \cdot \mathcal{V}(\mathbf{x}) $$ Where $\mathcal{V}(\mathbf{x}) \in [0,1]$ is the visibility factor. ### 5.3 Visibility Calculations For physical vapor deposition or directional etch, computing visible solid angle: $$ \mathcal{V}(\mathbf{x}) = \frac{1}{\pi} \int_{\Omega_{visible}} \cos\theta \, d\omega $$ For a point source at position $\mathbf{r}_s$: $$ \mathcal{V}(\mathbf{x}) = \begin{cases} \frac{(\mathbf{r}_s - \mathbf{x}) \cdot \mathbf{n}}{|\mathbf{r}_s - \mathbf{x}|^3} & \text{if line of sight clear} \\ 0 & \text{otherwise} \end{cases} $$ This requires ray-tracing or hemispherical integration at each surface point. ### 5.4 Hamilton-Jacobi Formulation The level-set equation can be written as a Hamilton-Jacobi equation: $$ \phi_t + H(\nabla \phi) = 0 $$ With Hamiltonian: $$ H(\mathbf{p}) = V \cdot |\mathbf{p}| $$ Numerical schemes include: - Godunov's method - ENO/WENO schemes for higher accuracy - Fast marching for monotonic velocities ## 6. Resist Modeling: Reaction-Diffusion Systems ### 6.1 Chemically Amplified Resist (CAR) Dynamics **Exposure — Generation of photoacid:** $$ \frac{\partial [PAG]}{\partial t} = -C \cdot I(\mathbf{x}) \cdot [PAG] $$ Integrated form: $$ [H^+]_0 = [PAG]_0 \cdot \left(1 - e^{-C \cdot E(\mathbf{x})}\right) $$ Where: - $[PAG]$ — photo-acid generator concentration - $C$ — Dill C parameter (sensitivity) - $I(\mathbf{x})$ — local intensity - $E(\mathbf{x})$ — total exposure dose **Post-Exposure Bake (PEB) — Acid-catalyzed deprotection with diffusion:** $$ \frac{\partial [H^+]}{\partial t} = D_H \nabla^2 [H^+] - k_q [H^+][Q] - k_{loss}[H^+] $$ $$ \frac{\partial [Q]}{\partial t} = D_Q \nabla^2 [Q] - k_q [H^+][Q] $$ $$ \frac{\partial [M]}{\partial t} = -k_{amp} [H^+] [M] $$ Where: - $[H^+]$ — acid concentration - $[Q]$ — quencher concentration - $[M]$ — protected (blocked) polymer concentration - $D_H, D_Q$ — diffusion coefficients - $k_q$ — quenching rate constant - $k_{amp}$ — amplification rate constant ### 6.2 Acid Diffusion Length Characteristic blur from diffusion: $$ \sigma_{diff} = \sqrt{2 D_H t_{PEB}} $$ This fundamentally limits resolution: $$ LER \propto \sqrt{\frac{1}{D_0 \cdot \sigma_{diff}}} $$ Where $D_0$ is photon dose. ### 6.3 Development Rate Models **Mack Model (Enhanced Notch Model):** $$ R_{dev}(m) = R_{max} \cdot \frac{(1-m)^n + R_{min}/R_{max}}{(1-m)^n + 1} $$ Where: - $R_{dev}$ — development rate - $m$ — protected fraction (normalized) - $R_{max}$ — maximum development rate (fully deprotected) - $R_{min}$ — minimum development rate (fully protected) - $n$ — dissolution selectivity parameter **Critical ionization model:** $$ R_{dev} = R_0 \cdot \left(\frac{[I^-]}{[I^-]_{crit}}\right)^n \cdot H\left([I^-] - [I^-]_{crit}\right) $$ Where $H$ is the Heaviside function. ### 6.4 Stochastic Effects at Small Scales At EUV (13.5 nm), photon shot noise becomes significant. The number of photons absorbed per pixel follows Poisson statistics: $$ P(n; \bar{n}) = \frac{\bar{n}^n e^{-\bar{n}}}{n!} $$ **Mean absorbed photons:** $$ \bar{n} = \frac{E \cdot A \cdot \alpha}{h\nu} $$ Where: - $E$ — dose (mJ/cm²) - $A$ — pixel area - $\alpha$ — absorption coefficient - $h\nu$ — photon energy (91.8 eV for EUV) **Resulting Line Edge Roughness (LER):** $$ \sigma_{LER}^2 \approx \frac{1}{\bar{n}} \cdot \left(\frac{\partial CD}{\partial E}\right)^2 \cdot \sigma_E^2 $$ Typical values: LER ≈ 1–2 nm (3σ) ## 7. CMP (Chemical-Mechanical Planarization) Modeling ### 7.1 Preston Equation Foundation $$ \frac{dz}{dt} = K_p \cdot P \cdot V $$ Where: - $z$ — removed thickness - $K_p$ — Preston coefficient (material-dependent) - $P$ — applied pressure - $V$ — relative velocity between wafer and pad ### 7.2 Pattern-Density Dependent Models Real CMP depends on local pattern density. The effective pressure at a point depends on surrounding features. **Effective pressure model:** $$ P_{eff}(\mathbf{x}) = P_{nominal} \cdot \frac{1}{\rho(\mathbf{x})} $$ Where $\rho$ is local pattern density, computed via convolution with a planarization kernel $K$: $$ \rho(\mathbf{x}) = K(\mathbf{x}) \otimes D(\mathbf{x}) $$ **Kernel form (typically Gaussian or exponential):** $$ K(r) = \frac{1}{2\pi L^2} e^{-r^2 / (2L^2)} $$ Where $L$ is the planarization length (~3–10 mm). ### 7.3 Multi-Step Evolution For oxide CMP over metal (e.g., copper damascene): **Step 1 — Bulk removal:** $$ \frac{dz_1}{dt} = K_{p,oxide} \cdot P_{eff}(\mathbf{x}) \cdot V $$ **Step 2 — Dishing and erosion:** $$ \text{Dishing} = K_p \cdot P \cdot V \cdot t_{over} \cdot f(w) $$ $$ \text{Erosion} = K_p \cdot P \cdot V \cdot t_{over} \cdot g(\rho) $$ Where $f(w)$ depends on line width and $g(\rho)$ depends on local density. ## 8. Multi-Scale Modeling Framework ### 8.1 Scale Hierarchy | Scale | Domain | Size | Methods | |-------|--------|------|---------| | Atomistic | Ion implantation, surface reactions | Å–nm | MD, KMC, BCA | | Feature | Etch, deposition, litho | nm–μm | Level-set, FEM, ray-tracing | | Die | CMP, thermal, stress | mm | Continuum mechanics | | Wafer | Uniformity, thermal | cm | FEM, statistical | ### 8.2 Scale Bridging Techniques **Homogenization theory:** $$ \langle \sigma_{ij} \rangle = C_{ijkl}^{eff} \langle \epsilon_{kl} \rangle $$ **Representative Volume Element (RVE):** $$ \langle f \rangle_{RVE} = \frac{1}{|V|} \int_V f(\mathbf{x}) \, dV $$ **Surrogate models:** $$ y = f_{surrogate}(\mathbf{x}; \theta) \approx f_{physics}(\mathbf{x}) $$ Where $\theta$ are parameters fitted from physics simulations. ### 8.3 Ion Implantation: Binary Collision Approximation (BCA) Ion trajectory evolution: $$ \frac{d\mathbf{r}}{dt} = \mathbf{v} $$ $$ \frac{d\mathbf{v}}{dt} = -\nabla U(\mathbf{r}) / m $$ With screened Coulomb potential: $$ U(r) = \frac{Z_1 Z_2 e^2}{r} \cdot \Phi\left(\frac{r}{a}\right) $$ Where $\Phi$ is the screening function (e.g., ZBL universal). **Resulting concentration profile:** $$ C(x) = \frac{\Phi}{\sqrt{2\pi} \Delta R_p} \exp\left(-\frac{(x - R_p)^2}{2 \Delta R_p^2}\right) $$ Where: - $\Phi$ — dose (ions/cm²) - $R_p$ — projected range - $\Delta R_p$ — range straggle ## 9. Machine Learning Integration ### 9.1 Forward Modeling Acceleration **Neural network surrogate:** $$ I_{predicted}(\mathbf{x}) = \mathcal{N}_\theta(M, S, \text{process params}) $$ Where $\mathcal{N}_\theta$ is a trained neural network (often CNN). **Training objective:** $$ \min_\theta \sum_{i=1}^{N_{train}} \left\| \mathcal{N}_\theta(M_i) - I_{physics}(M_i) \right\|^2 $$ ### 9.2 Physics-Informed Neural Networks (PINNs) For solving PDEs (e.g., diffusion): $$ \mathcal{L} = \mathcal{L}_{data} + \lambda \cdot \mathcal{L}_{physics} $$ Where: $$ \mathcal{L}_{physics} = \left\| \frac{\partial u}{\partial t} - D\nabla^2 u \right\|^2 $$ ### 9.3 Hotspot Detection Pattern classification using CNNs: $$ P(\text{hotspot} | \text{layout clip}) = \sigma(W \cdot \text{features} + b) $$ Features extracted from: - Local pattern density - Edge interactions - Spatial frequency content ## 10. Emerging Geometric Challenges ### 10.1 3D Architectures **3D NAND:** - 200+ vertically stacked layers - High aspect ratio etching: $AR > 60:1$ - Geometric challenge: $\frac{depth}{width} = \frac{d}{w}$ **CFET (Complementary FET):** - Stacked nFET over pFET - 3D transistor geometry optimization **Backside Power Delivery:** - Through-silicon vias (TSVs) - Via geometry: diameter, pitch, depth ### 10.2 Curvilinear Masks ILT produces non-Manhattan mask shapes: **Spline representation:** $$ \mathbf{r}(t) = \sum_{i=0}^{n} P_i \cdot B_{i,k}(t) $$ Where $B_{i,k}(t)$ are B-spline basis functions. **Challenges:** - Fracturing for e-beam mask writing - DRC for curved features - Data volume increase ### 10.3 Design-Technology Co-Optimization (DTCO) **Unified optimization:** $$ \min_{\text{design}, \text{process}} \mathcal{L}_{performance} + \alpha \cdot \mathcal{L}_{yield} + \beta \cdot \mathcal{L}_{cost} $$ Subject to: - Design rules: $\mathcal{G}_{DRC}(\text{layout}) \leq 0$ - Process window: $PW(\text{process}) \geq PW_{min}$ - Electrical constraints: $\mathcal{C}_{elec}(\text{design}) \leq 0$ ## 11. Mathematical Framework Overview The intersection of semiconductor manufacturing and computational geometry involves: 1. **Classical computational geometry** - Polygon operations at massive scale ($10^{9}$–$10^{11}$ edges) - Spatial queries and indexing - Visibility computations 2. **Fourier optics and inverse problems** - Aerial image: $I(\mathbf{x}) = \sum_k \lambda_k |\phi_k \otimes M|^2$ - OPC/ILT: $\min_M \|I(M) - I_{target}\|^2$ 3. **Surface evolution PDEs** - Level-set: $\phi_t + V|\nabla\phi| = 0$ - Curvature-dependent flow 4. **Reaction-diffusion systems** - Resist: $\frac{\partial [H^+]}{\partial t} = D\nabla^2[H^+] - k[H^+][Q]$ - Acid diffusion blur 5. **Stochastic modeling** - Photon statistics: $P(n) = \frac{\bar{n}^n e^{-\bar{n}}}{n!}$ - LER, LCDU, yield 6. **Multi-physics coupling** - Thermal-mechanical-electrical-chemical - Multi-scale bridging 7. **Optimization theory** - Large-scale constrained optimization - Bilinear problems (SMO) - Regularization and constraints ## Key Notation Reference | Symbol | Meaning | |--------|---------| | $\lambda$ | Exposure wavelength | | $NA$ | Numerical aperture | | $CD$ | Critical dimension | | $DOF$ | Depth of focus | | $\phi$ | Level-set function | | $TCC$ | Transmission cross-coefficient | | $\sigma$ | Partial coherence factor | | $R_p$ | Projected range (implant) | | $K_p$ | Preston coefficient (CMP) | | $D_H$ | Acid diffusion coefficient | | $\Gamma$ | Surface boundary | | $\kappa$ | Surface curvature |
Trap impurities away from active device regions.
Ghost modules generate redundant features through cheap linear operations reducing computation.
# Graph Isomorphism Network (GIN) in Graph Neural Networks ## Overview The **Graph Isomorphism Network (GIN)** is a graph neural network architecture introduced by Xu et al. in their seminal 2019 paper *"How Powerful are Graph Neural Networks?"*. GIN was specifically designed to maximize the expressive power of message-passing neural networks. ### Key Contributions - Established a theoretical framework connecting GNN expressiveness to the Weisfeiler-Lehman (WL) test - Proved that standard GNNs are at most as powerful as the 1-WL test - Designed GIN to achieve the maximum possible expressiveness for message-passing GNNs - Demonstrated that aggregation function choice fundamentally limits GNN power ## Theoretical Foundation ### The Weisfeiler-Lehman Test The **Weisfeiler-Lehman (WL) graph isomorphism test** is a classical algorithm for determining whether two graphs are structurally identical (isomorphic). #### 1-WL Algorithm Steps 1. **Initialize**: Assign each node an initial label (typically based on node features or degree) 2. **Aggregate**: For each node, collect the multiset of neighbor labels 3. **Hash**: Create a new label by hashing the node's current label with the aggregated neighbor information 4. **Iterate**: Repeat steps 2-3 until labels stabilize 5. **Compare**: Two graphs are potentially isomorphic if they have identical label histograms #### Mathematical Representation For node $v$ at iteration $k$: $$ c^{(k)}(v) = \text{HASH}\left( c^{(k-1)}(v), \{\!\!\{ c^{(k-1)}(u) : u \in \mathcal{N}(v) \}\!\!\} \right) $$ Where: - $c^{(k)}(v)$ is the label of node $v$ at iteration $k$ - $\mathcal{N}(v)$ denotes the neighborhood of node $v$ - $\{\!\!\{ \cdot \}\!\!\}$ denotes a multiset (bag) ## The GIN Architecture ### Core Insight The authors proved that for a GNN to be maximally powerful (i.e., as powerful as the 1-WL test), its aggregation function must be **injective** over multisets. ### Design Principles - **Injective aggregation**: The function must map different multisets to different representations - **Sum aggregation**: Chosen because it preserves multiset information completely - **MLP transformation**: Provides universal approximation capability - **Learnable center weighting**: The $\epsilon$ parameter distinguishes center node from neighbors ## Mathematical Formulation ### GIN Update Rule The GIN layer updates node representations as follows: $$ h_v^{(k)} = \text{MLP}^{(k)}\left( \left(1 + \epsilon^{(k)}\right) \cdot h_v^{(k-1)} + \sum_{u \in \mathcal{N}(v)} h_u^{(k-1)} \right) $$ Where: - $h_v^{(k)}$ is the feature vector of node $v$ at layer $k$ - $h_v^{(k-1)}$ is the feature vector from the previous layer - $\epsilon^{(k)}$ is a learnable parameter (or fixed scalar) - $\mathcal{N}(v)$ is the set of neighbors of node $v$ - $\text{MLP}^{(k)}$ is a multi-layer perceptron at layer $k$ ### Expanded Form Breaking down the computation: $$ h_v^{(k)} = \text{MLP}^{(k)}\left( (1 + \epsilon^{(k)}) \cdot h_v^{(k-1)} + \text{AGGREGATE}\left( \{ h_u^{(k-1)} : u \in \mathcal{N}(v) \} \right) \right) $$ ### Graph-Level Readout For graph classification, GIN uses a readout function combining features from all layers: $$ h_G = \text{CONCAT}\left( \text{READOUT}\left( \{ h_v^{(k)} : v \in G \} \right) \, \Big| \, k = 0, 1, \ldots, K \right) $$ Common readout functions: - **Sum**: $\text{READOUT}(\{h_v\}) = \sum_{v \in G} h_v$ - **Mean**: $\text{READOUT}(\{h_v\}) = \frac{1}{|G|} \sum_{v \in G} h_v$ - **Max**: $\text{READOUT}(\{h_v\}) = \max_{v \in G} h_v$ ## Aggregation Function Analysis ### Why Sum Aggregation? The choice of aggregation function is critical for GNN expressiveness. The key requirement is **injectivity over multisets**. ### Comparison of Aggregation Functions | Aggregator | Formula | Injectivity | Information Loss | |------------|---------|-------------|------------------| | **Sum** | $\sum h_u$ for all neighbors u | ✅ Injective | None | | **Mean** | $(1 / \text{deg}(v)) \cdot \sum h_u$ | ❌ Not injective | Count information | | **Max** | $\max(h_u)$ for all neighbors u | ❌ Not injective | Multiplicity | **Formal mathematical notation:** - **Sum**: $$\text{AGG}_{\text{sum}} = \sum_{u \in \mathcal{N}(v)} h_u$$ - **Mean**: $$\text{AGG}_{\text{mean}} = \frac{1}{|\mathcal{N}(v)|} \sum_{u \in \mathcal{N}(v)} h_u$$ - **Max**: $$\text{AGG}_{\text{max}} = \max_{u \in \mathcal{N}(v)} h_u$$ ### Concrete Examples #### Mean Aggregation Failure Mean cannot distinguish these multisets: $mean({1, 1, 1}) = 1 = mean({1})$ $mean({1, 2, 3}) = 2 = mean({2, 2, 2})$ #### Max Aggregation Failure Max cannot distinguish these multisets: $max({1, 2, 2, 2}) = 2 = max({1, 2})$ $max({5, 5, 5, 5}) = 5 = max({5})$ #### Sum Preserves Information Sum is injective on bounded multisets: $$ \text{sum}(\{1, 1, 1\}) = 3 \neq \text{sum}(\{1\}) = 1 $$ $$ \text{sum}(\{1, 2, 3\}) = 6 \neq \text{sum}(\{2, 2, 2\}) = 6 \text{ (need additional features)} $$ ### Theorem: Sum-Based Aggregation **Theorem (Xu et al., 2019)**: With sufficient MLP capacity, the function: $$ f\left( c, X \right) = (1 + \epsilon) \cdot \phi(c) + \sum_{x \in X} \phi(x) $$ is injective over pairs $(c, X)$ where $c$ is a center element and $X$ is a countable multiset. ## Expressiveness and Limitations ### What GIN Can Distinguish GIN (matching 1-WL) can distinguish: - Graphs with different node counts - Graphs with different edge counts - Graphs with different degree distributions - Most random graphs - Trees with different structures ### What GIN Cannot Distinguish GIN (and 1-WL) fails on: - **Regular graphs**: Cannot distinguish some $k$-regular graphs - **Symmetric structures**: Certain pairs of non-isomorphic graphs with high symmetry #### Classic 1-WL Failure Example The following pair of non-isomorphic graphs cannot be distinguished by 1-WL: **Graph 1**: Two triangles connected by an edge **Graph 1**: Two triangles connected by an edge ``` - A - - - B E - - - F \ / \ / C - - - - - - - - - D ``` **Graph 2**: A hexagon with a chord ``` - A - - - B / \ F C \ / E - - - D ``` Both have: - 6 nodes, all of degree 2 or 3 - Same multiset of neighbor degree sequences ### Higher-Order Extensions To overcome 1-WL limitations: | Method | Power | Complexity | |--------|-------|------------| | 1-WL / GIN | Baseline | O(n × d) per layer | | 2-WL | Strictly stronger | O(n²) | | k-WL | Increasing with k | O(nᵏ) | | k-FWL (Folklore) | Hierarchy | O(nᵏ) | ## Implementation Details ### GIN Layer (PyTorch-style Pseudocode) ```python class GINLayer: def __init__(self, input_dim, hidden_dim, epsilon=0): self.mlp = MLP(input_dim, hidden_dim) self.epsilon = Parameter(epsilon) # learnable or fixed def forward(self, h, adjacency): # h: node features [N, D] # adjacency: adjacency matrix [N, N] # Aggregate neighbor features (sum) neighbor_sum = adjacency @ h # [N, D] # Combine with center node combined = (1 + self.epsilon) * h + neighbor_sum # Apply MLP return self.mlp(combined) ``` ### MLP Architecture Recommendations The MLP in GIN typically consists of: $$ \text{MLP}(x) = W_2 \cdot \sigma(W_1 \cdot x + b_1) + b_2 $$ Where: - $\sigma$ is a non-linear activation (ReLU, LeakyReLU) - At least 2 layers are recommended - Batch normalization often improves training ### Hyperparameter Guidelines | Hyperparameter | Typical Values | Notes | |----------------|----------------|-------| | Number of layers $K$ | 3-5 | More layers = larger receptive field | | Hidden dimension | 64-256 | Task-dependent | | $\epsilon$ | Learnable or 0 | Learnable often works better | | Dropout | 0.0-0.5 | Regularization | | Learning rate | 0.001-0.01 | With Adam optimizer | ## Applications ### Molecular Property Prediction GIN excels at: - Drug discovery (molecular classification) - Toxicity prediction - Solubility estimation ### Graph Classification Benchmarks Performance on standard datasets: | Dataset | Type | GIN Accuracy | |---------|------|--------------| | MUTAG | Molecules | ~89% | | PTC | Molecules | ~64% | | PROTEINS | Bioinformatics | ~76% | | IMDB-BINARY | Social | ~75% | | COLLAB | Social | ~80% | ### Other Applications - Social network analysis - Knowledge graph reasoning - Point cloud processing - Program analysis ## Variants and Extensions ### GIN-ε (Learnable Epsilon) $$ h_v^{(k)} = \text{MLP}^{(k)}\left( (1 + \epsilon^{(k)}) \cdot h_v^{(k-1)} + \sum_{u \in \mathcal{N}(v)} h_u^{(k-1)} \right) $$ Where $\epsilon^{(k)}$ is learned via backpropagation. ### GIN-0 (Fixed Epsilon) $$ h_v^{(k)} = \text{MLP}^{(k)}\left( h_v^{(k-1)} + \sum_{u \in \mathcal{N}(v)} h_u^{(k-1)} \right) $$ Setting $\epsilon = 0$ simplifies the architecture while maintaining expressiveness. ### Edge-Featured GIN For graphs with edge features $e_{uv}$: $$ h_v^{(k)} = \text{MLP}^{(k)}\left( (1 + \epsilon) \cdot h_v^{(k-1)} + \sum_{u \in \mathcal{N}(v)} \text{ReLU}(h_u^{(k-1)} + e_{uv}) \right) $$ ## Summary ### Key Takeaways - GIN achieves maximum expressiveness among message-passing GNNs - Sum aggregation is crucial for injectivity - MLP provides universal approximation capability - The $\epsilon$ parameter helps distinguish center nodes from neighbors - GIN matches the power of the 1-WL graph isomorphism test ### When to Use GIN **Recommended for:** - Tasks requiring fine-grained structural discrimination - Graph classification problems - Molecular property prediction - When theoretical guarantees matter **Consider alternatives when:** - Node features dominate structure - Computational efficiency is critical - Graph size varies significantly (may need normalization) ## Mathematical | Symbol | Meaning | |--------|---------| | $G = (V, E)$ | Graph with vertices $V$ and edges $E$ | | $\mathcal{N}(v)$ | Neighborhood of node $v$ | | $h_v^{(k)}$ | Feature vector of node $v$ at layer $k$ | | $\epsilon^{(k)}$ | Learnable/fixed scalar at layer $k$ | | $\{\!\!\{ \cdot \}\!\!\}$ | Multiset notation | | $\text{MLP}^{(k)}$ | Multi-layer perceptron at layer $k$ | | $\sigma(\cdot)$ | Non-linear activation function | | $\oplus$ | Concatenation operation |
AI pair programmer that suggests code completions.
Sparse MoE language model from Google.
Unified grounding and detection.
Global-to-Local Neural Architecture Search discovers hierarchical vision transformer architectures efficiently.
Total batch across all devices.
Global pooling aggregates all node features into graph-level representations using operations like sum mean or attention-weighted averaging.
Different gated activation functions.
Gating mechanism for sequences.
MLP with gating for language.
Graph Multiset Transformer uses multiset attention and virtual nodes for expressive graph-level representation learning.
GNN expressiveness theory studies which graph properties can be distinguished by different message passing architectures.
Goal achievement detection recognizes when objectives are satisfied enabling termination.
Goal stacks organize objectives hierarchically tracking completion dependencies.
Find classes doing too much.
DeepMind's large language model.
LLM trained to use APIs and tools effectively.
Autoregressive model family for text generation.
OpenAI's multimodal large language model.
OpenAI's multimodal GPT-4.
Interconnected GPUs for parallel training.
Graceful degradation maintains partial functionality when components fail.
Graclus pooling uses deterministic graph coarsening algorithm for hierarchical graph classification.
Visualize important regions for predictions.
Improved version of GradCAM.