← Back to AI Factory Chat

AI Factory Glossary

3,145 technical terms and definitions

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Showing page 26 of 63 (3,145 entries)

hierarchical all-reduce, distributed training

Multi-level aggregation.

hierarchical attention, transformer

Multi-level attention structure.

hierarchical context, llm architecture

Multi-level context organization.

hierarchical fusion, multimodal ai

Multi-level fusion strategy.

hierarchical planning, ai agents

Hierarchical planning operates at multiple abstraction levels from high-level goals to low-level actions.

hierarchical pooling, graph neural networks

Hierarchical pooling creates multi-resolution graph representations through successive coarsening operations.

high availability (ha),high availability,ha,reliability

System remains operational despite failures.

high dimensional optimization, bayesian optimization, gaussian process, response surface, doe, design of experiments, pareto optimization, robust optimization, surrogate modeling, tcad, run to run control

# Semiconductor Manufacturing Process Recipe Optimization: Mathematical Modeling ## 1. Problem Context A semiconductor **recipe** is a vector of controllable parameters: $$ \mathbf{x} = \begin{bmatrix} T \\ P \\ Q_1 \\ Q_2 \\ \vdots \\ t \\ P_{\text{RF}} \end{bmatrix} \in \mathbb{R}^n $$ Where: - $T$ = Temperature (°C or K) - $P$ = Pressure (mTorr or Pa) - $Q_i$ = Gas flow rates (sccm) - $t$ = Process time (seconds) - $P_{\text{RF}}$ = RF power (Watts) **Goal**: Find optimal $\mathbf{x}$ such that output properties $\mathbf{y}$ meet specifications while accounting for variability. ## 2. Mathematical Modeling Approaches ### 2.1 Physics-Based (First-Principles) Models #### Chemical Vapor Deposition (CVD) Example **Mass transport and reaction equation:** $$ \frac{\partial C}{\partial t} + \nabla \cdot (\mathbf{u}C) = D\nabla^2 C + R(C, T) $$ Where: - $C$ = Species concentration - $\mathbf{u}$ = Velocity field - $D$ = Diffusion coefficient - $R(C, T)$ = Reaction rate **Surface reaction kinetics (Arrhenius form):** $$ k_s = A \exp\left(-\frac{E_a}{RT}\right) $$ Where: - $A$ = Pre-exponential factor - $E_a$ = Activation energy - $R$ = Gas constant - $T$ = Temperature **Deposition rate (transport-limited regime):** $$ r = \frac{k_s C_s}{1 + \frac{k_s}{h_g}} $$ Where: - $C_s$ = Surface concentration - $h_g$ = Gas-phase mass transfer coefficient **Characteristics:** - **Advantages**: Extrapolates outside training data, physically interpretable - **Disadvantages**: Computationally expensive, requires detailed mechanism knowledge ### 2.2 Empirical/Statistical Models (Response Surface Methodology) **Second-order polynomial model:** $$ y = \beta_0 + \sum_{i=1}^{n}\beta_i x_i + \sum_{i=1}^{n}\beta_{ii}x_i^2 + \sum_{i 50$ parameters) | PCA, PLS, sparse regression (LASSO), feature selection | | Small datasets (limited wafer runs) | Bayesian methods, transfer learning, multi-fidelity modeling | | Nonlinearity | GPs, neural networks, tree ensembles (RF, XGBoost) | | Equipment-to-equipment variation | Mixed-effects models, hierarchical Bayesian models | | Drift over time | Adaptive/recursive estimation, change-point detection, Kalman filtering | | Multiple correlated responses | Multi-task learning, co-kriging, multivariate GP | | Missing data | EM algorithm, multiple imputation, probabilistic PCA | ## 6. Dimensionality Reduction ### 6.1 Principal Component Analysis (PCA) **Objective:** $$ \max_{\mathbf{w}} \quad \mathbf{w}^T\mathbf{S}\mathbf{w} \quad \text{s.t.} \quad \|\mathbf{w}\|_2 = 1 $$ Where $\mathbf{S}$ is the sample covariance matrix. **Solution:** Eigenvectors of $\mathbf{S}$ $$ \mathbf{S} = \mathbf{W}\boldsymbol{\Lambda}\mathbf{W}^T $$ **Reduced representation:** $$ \mathbf{z} = \mathbf{W}_k^T(\mathbf{x} - \bar{\mathbf{x}}) $$ Where $\mathbf{W}_k$ contains the top $k$ eigenvectors. ### 6.2 Partial Least Squares (PLS) **Objective:** Maximize covariance between $\mathbf{X}$ and $\mathbf{Y}$ $$ \max_{\mathbf{w}, \mathbf{c}} \quad \text{Cov}(\mathbf{Xw}, \mathbf{Yc}) \quad \text{s.t.} \quad \|\mathbf{w}\|=\|\mathbf{c}\|=1 $$ ## 7. Multi-Fidelity Optimization **Combine cheap simulations with expensive experiments:** **Auto-regressive model (Kennedy-O'Hagan):** $$ y_{\text{HF}}(\mathbf{x}) = \rho \cdot y_{\text{LF}}(\mathbf{x}) + \delta(\mathbf{x}) $$ Where: - $y_{\text{HF}}$ = High-fidelity (experimental) response - $y_{\text{LF}}$ = Low-fidelity (simulation) response - $\rho$ = Scaling factor - $\delta(\mathbf{x}) \sim \mathcal{GP}$ = Discrepancy function **Multi-fidelity GP:** $$ \begin{bmatrix} \mathbf{y}_{\text{LF}} \\ \mathbf{y}_{\text{HF}} \end{bmatrix} \sim \mathcal{N}\left(\mathbf{0}, \begin{bmatrix} \mathbf{K}_{\text{LL}} & \rho\mathbf{K}_{\text{LH}} \\ \rho\mathbf{K}_{\text{HL}} & \rho^2\mathbf{K}_{\text{LL}} + \mathbf{K}_{\delta} \end{bmatrix}\right) $$ ## 8. Transfer Learning **Domain adaptation for tool-to-tool transfer:** $$ y_{\text{target}}(\mathbf{x}) = y_{\text{source}}(\mathbf{x}) + \Delta(\mathbf{x}) $$ **Offset model (simple):** $$ \Delta(\mathbf{x}) = c_0 \quad \text{(constant offset)} $$ **Linear adaptation:** $$ \Delta(\mathbf{x}) = \mathbf{c}^T\mathbf{x} + c_0 $$ **GP adaptation:** $$ \Delta(\mathbf{x}) \sim \mathcal{GP}(0, k_\Delta) $$ ## 9. Complete Optimization Framework ``` ┌────────────────────────────────────────────────────────────────────────────────────┐ │ RECIPE OPTIMIZATION FRAMEWORK │ ├────────────────────────────────────────────────────────────────────────────────────┤ │ │ │ RECIPE PARAMETERS PROCESS MODEL │ │ ───────────────── ───────────── │ │ x₁: Temperature (°C) ───► ┌───────────────┐ │ │ x₂: Pressure (mTorr) ───► │ │ │ │ x₃: Gas flow 1 (sccm) ───► │ y = f(x;θ) │ ───► y₁: Thickness (nm) │ │ x₄: Gas flow 2 (sccm) ───► │ │ ───► y₂: Uniformity (%) │ │ x₅: RF power (W) ───► │ + ε │ ───► y₃: CD (nm) │ │ x₆: Time (s) ───► └───────────────┘ ───► y₄: Defects (#/cm²) │ │ ▲ │ │ │ │ │ Uncertainty ξ │ │ │ ├────────────────────────────────────────────────────────────────────────────────────┤ │ OPTIMIZATION PROBLEM: │ │ │ │ min Σⱼ wⱼ(E[yⱼ] - yⱼ,target)² + λ·Var[y] │ │ x │ │ │ │ subject to: │ │ y_L ≤ E[y] ≤ y_U (specification limits) │ │ Pr(y ∈ spec) ≥ 0.9973 (Cpk ≥ 1.0) │ │ x_L ≤ x ≤ x_U (equipment limits) │ │ g(x) ≤ 0 (process constraints) │ │ │ └────────────────────────────────────────────────────────────────────────────────────┘ ``` ## 10. Key Equations Summary ### Process Modeling | Model Type | Equation | |:-----------|:---------| | Linear regression | $y = \mathbf{X}\boldsymbol{\beta} + \varepsilon$ | | Quadratic RSM | $y = \beta_0 + \sum_i \beta_i x_i + \sum_i \beta_{ii}x_i^2 + \sum_{i

high-angle grain boundary, defects

Large misorientation.

high-resolution generation, generative models

Create images beyond training resolution.

higher-order gnn, graph neural networks

Higher-order GNNs increase expressiveness by aggregating information from k-tuples of nodes rather than individuals.

highway networks, neural architecture

Gated skip connections.

hint learning, model compression

Student learns from teacher's intermediate layers.

hmm time series, hmm, time series models

Hidden Markov Models for time series assume observations generated by unobserved discrete states transitioning stochastically.

holt-winters, time series models

Holt-Winters method extends exponential smoothing to capture level trend and seasonality in time series forecasting.

homomorphic encryption, training techniques

Homomorphic encryption enables computation on encrypted data without decryption.

hopfield networks,neural architecture

Associative memory networks now connected to Transformer attention.

hopskipjump, ai safety

Efficient decision-based attack.

horizontal federated, training techniques

Horizontal federated learning trains on different samples with same features across parties.

horovod, distributed training

Distributed training framework.

hot carrier injection modeling, hci, reliability

Model HCI degradation.

hourglass transformer, transformer

Compress then expand sequence.

house abatement, environmental & sustainability

House abatement treats combined exhaust from multiple tools in centralized systems.

hp filter, hp, time series models

Hodrick-Prescott filter separates time series into trend and cyclical components through quadratic penalty on trend acceleration.

htn planning (hierarchical task network),htn planning,hierarchical task network,ai agent

Decompose tasks hierarchically.

huber loss, machine learning

Combine L1 and L2 loss.

hugginggpt,ai agent

Use LLM to orchestrate Hugging Face models as tools.

human body model (hbm),human body model,hbm,reliability

ESD test simulating human touch.

human feedback, training techniques

Human feedback provides quality judgments guiding model training and alignment.

human-in-loop, ai agents

Human-in-the-loop systems incorporate human judgment at critical decision points.

human-in-the-loop moderation, ai safety

Human review of flagged content.

hvac energy recovery, hvac, environmental & sustainability

HVAC energy recovery captures waste heat from exhaust air to precondition supply air.

hybrid cloud training, infrastructure

Combine on-premise and cloud.

hybrid inversion, generative models

Combine encoder and optimization.

hybrid inversion, multimodal ai

Hybrid inversion combines encoder initialization with optimization refinement.

hydrodynamic model, simulation

Include carrier temperature and momentum.

hyena hierarchy, llm architecture

Hyena uses long convolutions with implicit parameterization for efficient long-range modeling.

hyena,llm architecture

Subquadratic alternative to attention using convolutions.

hyperband nas, neural architecture search

Hyperband allocates resources adaptively across architectures using successive halving for efficient search.

hypernetworks for diffusion, generative models

Additional network to modulate weights.

hypernetworks,neural architecture

Networks that generate weights for other networks.

hyperparameter tuning,model training

Search for best hyperparameters (learning rate batch size layers).

hypothetical scenarios, ai safety

Frame harmful queries as hypothetical.

ibis model, ibis, signal & power integrity

Input/Output Buffer Information Specification models I/O buffer behavior with V-I curves and timing data for board-level signal integrity simulation.

ibot pre-training, computer vision

Self-distillation for ViT.

icd coding, icd, healthcare ai

Assign diagnostic codes.

ict, ict, failure analysis advanced

In-Circuit Testing verifies component values and detects manufacturing defects on populated boards using bed-of-nails or flying probe access.

ie-gnn, ie-gnn, graph neural networks

Information Exchange Graph Neural Network handles heterogeneous graphs through iterative information exchange.

im2col convolution, model optimization

Im2col transforms convolution into matrix multiplication enabling optimized BLAS library usage.

image captioning,multimodal ai

Generate text descriptions of images.