← Back to AI Factory Chat

AI Factory Glossary

3,145 technical terms and definitions

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Showing page 47 of 63 (3,145 entries)

quantum advantage for ml, quantum ai

Cases where quantum helps ML.

quantum advantage,quantum ai

When quantum computer outperforms classical.

quantum amplitude estimation, quantum ai

Estimate amplitudes in quantum states.

quantum annealing for optimization, quantum ai

Quantum approach to combinatorial problems.

quantum boltzmann machines, quantum ai

Quantum version of Boltzmann machines.

quantum circuit learning, quantum ai

Train parameterized quantum circuits.

quantum correction models, simulation

Add quantum effects to classical simulation.

quantum error correction, quantum ai

Protect quantum information from noise.

quantum feature maps, quantum ai

Encode classical data in quantum states.

quantum generative models, quantum ai

Use quantum computers for generation.

quantum kernel methods, quantum ai

Use quantum states as feature spaces.

quantum machine learning, quantum ai

Apply QML to chemistry problems.

quantum machine learning,quantum ai

Apply quantum computing to ML problems.

quantum neural network architectures, quantum ai

Design of quantum neural networks.

quantum neural networks,quantum ai

Neural networks running on quantum hardware.

quantum phase estimation, quantum ai

Estimate eigenvalues of operators.

quantum sampling, quantum ai

Use quantum computers for sampling.

quantum walk algorithms, quantum ai

Quantum algorithms based on walks.

quantum-enhanced sampling, quantum ai

Use quantum for better sampling.

quate,graph neural networks

Quaternion embeddings for KGs.

query classification, llm optimization

Query classification categorizes requests to select optimal processing strategies.

question answering as pre-training, nlp

QA as auxiliary task.

r-gcn, r-gcn, graph neural networks

Relational Graph Convolutional Networks extend GCNs to multi-relational data by learning separate transformation matrices for each edge type.

rademacher complexity, advanced training

Rademacher complexity bounds generalization error by measuring how well a function class can fit random noise.

radiology report generation,healthcare ai

Describe medical images in text.

rag, retrieval, knowledge base, retrieval augmented generation, vector search, embeddings, semantic search, llm

# RAG, Retrieval, and Knowledge Bases A comprehensive technical guide with mathematical foundations ## 1. Overview **RAG (Retrieval-Augmented Generation)** is an architecture that enhances Large Language Models (LLMs) by grounding their responses in external knowledge sources. ### Core Components - **Generator**: The LLM that produces the final response - **Retriever**: The system that finds relevant documents - **Knowledge Base**: The corpus of documents being searched ## 2. Mathematical Foundations ### 2.1 Vector Embeddings Documents and queries are converted to dense vectors in $\mathbb{R}^d$ where $d$ is the embedding dimension (typically 384, 768, or 1536). **Embedding Function:** $$ E: \text{Text} \rightarrow \mathbb{R}^d $$ For a document $D$ and query $Q$: $$ \vec{d} = E(D) \in \mathbb{R}^d $$ $$ \vec{q} = E(Q) \in \mathbb{R}^d $$ ### 2.2 Similarity Metrics #### Cosine Similarity $$ \text{sim}_{\cos}(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{||\vec{q}|| \cdot ||\vec{d}||} = \frac{\sum_{i=1}^{d} q_i \cdot d_i}{\sqrt{\sum_{i=1}^{d} q_i^2} \cdot \sqrt{\sum_{i=1}^{d} d_i^2}} $$ #### Euclidean Distance (L2) $$ \text{dist}_{L2}(\vec{q}, \vec{d}) = ||\vec{q} - \vec{d}||_2 = \sqrt{\sum_{i=1}^{d} (q_i - d_i)^2} $$ #### Dot Product $$ \text{sim}_{\text{dot}}(\vec{q}, \vec{d}) = \vec{q} \cdot \vec{d} = \sum_{i=1}^{d} q_i \cdot d_i $$ ### 2.3 BM25 (Sparse Retrieval) $$ \text{BM25}(Q, D) = \sum_{i=1}^{n} \text{IDF}(q_i) \cdot \frac{f(q_i, D) \cdot (k_1 + 1)}{f(q_i, D) + k_1 \cdot \left(1 - b + b \cdot \frac{|D|}{\text{avgdl}}\right)} $$ Where: - $f(q_i, D)$ = frequency of term $q_i$ in document $D$ - $|D|$ = document length - $\text{avgdl}$ = average document length in corpus - $k_1$ = term frequency saturation parameter (typically 1.2–2.0) - $b$ = length normalization parameter (typically 0.75) **Inverse Document Frequency (IDF):** $$ \text{IDF}(q_i) = \ln\left(\frac{N - n(q_i) + 0.5}{n(q_i) + 0.5} + 1\right) $$ Where: - $N$ = total number of documents - $n(q_i)$ = number of documents containing $q_i$ ## 3. RAG Pipeline Architecture ### 3.1 Pipeline Stages 1. **Indexing Phase** - Document ingestion - Chunking strategy selection - Embedding generation - Vector storage 2. **Query Phase** - Query embedding: $\vec{q} = E(Q)$ - Top-$k$ retrieval: $\mathcal{D}_k = \text{argmax}_{D \in \mathcal{C}}^k \text{sim}(\vec{q}, \vec{d})$ - Context assembly - LLM generation ### 3.2 Retrieval Formula Given a query $Q$ and corpus $\mathcal{C}$, retrieve top-$k$ documents: $$ \mathcal{D}_k = \{D_1, D_2, ..., D_k\} \quad \text{where} \quad \text{sim}(Q, D_1) \geq \text{sim}(Q, D_2) \geq ... \geq \text{sim}(Q, D_k) $$ ### 3.3 Generation with Context $$ P(\text{Response} | Q, \mathcal{D}_k) = \text{LLM}(Q \oplus \mathcal{D}_k) $$ Where $\oplus$ denotes context concatenation. ## 4. Chunking Strategies ### 4.1 Fixed-Size Chunking - **Chunk size**: $c$ tokens (typically 256–1024) - **Overlap**: $o$ tokens (typically 10–20% of $c$) $$ \text{Number of chunks} = \left\lceil \frac{|D| - o}{c - o} \right\rceil $$ ### 4.2 Semantic Chunking - Split by semantic boundaries (paragraphs, sections) - Use sentence embeddings to detect topic shifts - Threshold: $\theta$ for similarity drop detection $$ \text{Split at } i \quad \text{if} \quad \text{sim}(s_i, s_{i+1}) < \theta $$ ### 4.3 Recursive Chunking - Hierarchical splitting: Document → Sections → Paragraphs → Sentences - Maintains context hierarchy ## 5. Knowledge Base Design ### 5.1 Metadata Schema ```json { "chunk_id": "string", "document_id": "string", "content": "string", "embedding": "vector[d]", "metadata": { "source": "string", "title": "string", "author": "string", "date_created": "ISO8601", "date_modified": "ISO8601", "section": "string", "page_number": "integer", "chunk_index": "integer", "total_chunks": "integer", "tags": ["string"], "confidence_score": "float" } } ``` ### 5.2 Index Types - **Flat Index**: Exact search, $O(n)$ complexity - **IVF (Inverted File)**: Approximate, $O(\sqrt{n})$ complexity - **HNSW (Hierarchical Navigable Small World)**: Graph-based, $O(\log n)$ complexity **HNSW Search Complexity:** $$ O(d \cdot \log n) $$ Where $d$ is embedding dimension and $n$ is corpus size. ## 6. Evaluation Metrics ### 6.1 Retrieval Metrics #### Recall@k $$ \text{Recall@}k = \frac{|\text{Relevant} \cap \text{Retrieved@}k|}{|\text{Relevant}|} $$ #### Precision@k $$ \text{Precision@}k = \frac{|\text{Relevant} \cap \text{Retrieved@}k|}{k} $$ #### Mean Reciprocal Rank (MRR) $$ \text{MRR} = \frac{1}{|Q|} \sum_{i=1}^{|Q|} \frac{1}{\text{rank}_i} $$ #### Normalized Discounted Cumulative Gain (NDCG) $$ \text{DCG@}k = \sum_{i=1}^{k} \frac{2^{\text{rel}_i} - 1}{\log_2(i + 1)} $$ $$ \text{NDCG@}k = \frac{\text{DCG@}k}{\text{IDCG@}k} $$ ### 6.2 Generation Metrics - **Faithfulness**: Is response grounded in retrieved context? - **Relevance**: Does response answer the query? - **Groundedness Score**: $$ G = \frac{|\text{Claims supported by context}|}{|\text{Total claims}|} $$ ## 7. Advanced Techniques ### 7.1 Hybrid Search Combine dense and sparse retrieval: $$ \text{score}_{\text{hybrid}} = \alpha \cdot \text{score}_{\text{dense}} + (1 - \alpha) \cdot \text{score}_{\text{sparse}} $$ Where $\alpha \in [0, 1]$ is the weighting parameter. ### 7.2 Reranking Apply cross-encoder reranking to top-$k$ results: $$ \text{score}_{\text{rerank}}(Q, D) = \text{CrossEncoder}(Q, D) $$ Cross-encoder complexity: $O(k \cdot |Q| \cdot |D|)$ ### 7.3 Query Expansion - **HyDE (Hypothetical Document Embeddings)**: $$ \vec{q}_{\text{HyDE}} = E(\text{LLM}(Q)) $$ - **Multi-Query Retrieval**: $$ \mathcal{D}_{\text{merged}} = \bigcup_{i=1}^{m} \text{Retrieve}(Q_i) $$ ### 7.4 Contextual Compression Reduce retrieved context before generation: $$ C_{\text{compressed}} = \text{Compress}(\mathcal{D}_k, Q) $$ ## 8. Vector Database Options | Database | Index Types | Hosting | Scalability | |----------|-------------|---------|-------------| | Pinecone | HNSW, IVF | Cloud | High | | Weaviate | HNSW | Self/Cloud | High | | Qdrant | HNSW | Self/Cloud | High | | Milvus | IVF, HNSW | Self/Cloud | Very High | | FAISS | Flat, IVF, HNSW | Self | Medium | | Chroma | HNSW | Self | Low-Medium | | pgvector | IVFFlat, HNSW | Self | Medium | ## 9. Best Practices Checklist - Choose appropriate chunk size based on content type - Implement chunk overlap to preserve context - Store rich metadata for filtering - Use hybrid search for better recall - Implement reranking for precision - Monitor retrieval metrics continuously - Evaluate groundedness of generated responses - Handle edge cases (no results, low confidence) - Implement caching for common queries - Version control your knowledge base ## 10. Code Examples ### 10.1 Cosine Similarity (Python) ```python import numpy as np def cosine_similarity(vec_q: np.ndarray, vec_d: np.ndarray) -> float: """ Calculate cosine similarity between two vectors. $$\text{sim}_{\cos}(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{||\vec{q}|| \cdot ||\vec{d}||}$$ """ dot_product = np.dot(vec_q, vec_d) norm_q = np.linalg.norm(vec_q) norm_d = np.linalg.norm(vec_d) return dot_product / (norm_q * norm_d) ``` ### 10.2 BM25 Implementation ```python import math from collections import Counter def bm25_score( query_terms: list[str], document: list[str], corpus: list[list[str]], k1: float = 1.5, b: float = 0.75 ) -> float: """ Calculate BM25 score for a query-document pair. """ doc_len = len(document) avg_doc_len = sum(len(d) for d in corpus) / len(corpus) doc_freq = Counter(document) N = len(corpus) score = 0.0 for term in query_terms: # Document frequency n_q = sum(1 for d in corpus if term in d) # IDF calculation idf = math.log((N - n_q + 0.5) / (n_q + 0.5) + 1) # Term frequency in document f_q = doc_freq.get(term, 0) # BM25 term score numerator = f_q * (k1 + 1) denominator = f_q + k1 * (1 - b + b * (doc_len / avg_doc_len)) score += idf * (numerator / denominator) return score ```

rainbow dqn, reinforcement learning

Combine multiple DQN improvements.

raised floor,facility

Elevated floor creating space underneath for utilities cabling and air return.

raised source-drain, process integration

Raised source-drain structures elevate junctions above channel reducing parasitic resistance and capacitance.

random failure, business & standards

Random failures occur unpredictably at constant rate during useful life period.

random feature attention,llm architecture

Approximate attention with random features.

random grain boundary, defects

Non-special boundary.

random routing, llm architecture

Random routing assigns tokens to experts stochastically.

random search,model training

Sample random hyperparameter combinations.

random synthesizer, transformer

Use random attention patterns.

randomized smoothing, ai safety

Provable robustness via smoothing.

rare earth recovery, environmental & sustainability

Rare earth recovery extracts valuable lanthanides from electronic waste for reuse.

rate limiting, llm optimization

Rate limiting restricts request frequency preventing abuse and ensuring fair access.

ray marching, multimodal ai

Ray marching samples points along rays through scene accumulating color and opacity.

rba, rba, environmental & sustainability

Responsible Business Alliance establishes labor rights and environmental standards for electronics supply chains.

re-sampling strategies, machine learning

Adjust sampling to handle imbalance.

reachability analysis, ai safety

Compute reachable output set.

react (reasoning + acting),react,reasoning + acting,ai agent

Agent pattern where model alternates between reasoning steps and taking actions.

reaction condition recommendation, chemistry ai

Suggest optimal reaction conditions.

reaction extraction, chemistry ai

Extract chemical reactions from text.

reaction prediction, chemistry ai

Predict products of chemical reactions.

readout functions, graph neural networks

Readout functions aggregate node features into graph-level representations for classification or regression tasks.

reagent selection, chemistry ai

Choose appropriate reagents for synthesis.

real-esrgan, multimodal ai

Real-ESRGAN uses adversarial training for practical blind super-resolution.

realm (retrieval-augmented language model),realm,retrieval-augmented language model,foundation model

End-to-end training of retriever and generator.