← Back to AI Factory Chat

AI Factory Glossary

288 technical terms and definitions

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Showing page 2 of 6 (288 entries)

math model, llm architecture

Math models are enhanced for mathematical reasoning and problem solving.

mathematics,mathematical modeling,semiconductor math,crystal growth math,czochralski equations,dopant segregation,heat transfer equations,lithography math

# Mathematics Modeling 1. Crystal Growth (Czochralski Process) Growing single-crystal silicon ingots requires coupled models for heat transfer, fluid flow, and mass transport. 1.1 Heat Transfer Equation $$ \rho c_p \frac{\partial T}{\partial t} + \rho c_p \mathbf{v} \cdot \nabla T = \nabla \cdot (k \nabla T) + Q $$ Variables: - $\rho$ — density ($\text{kg/m}^3$) - $c_p$ — specific heat capacity ($\text{J/(kg·K)}$) - $T$ — temperature ($\text{K}$) - $\mathbf{v}$ — velocity vector ($\text{m/s}$) - $k$ — thermal conductivity ($\text{W/(m·K)}$) - $Q$ — heat source term ($\text{W/m}^3$) 1.2 Melt Convection Drivers - Buoyancy forces — thermal and solutal gradients - Marangoni flow — surface tension gradients - Forced convection — crystal and crucible rotation 1.3 Dopant Segregation Equilibrium segregation coefficient: $$ k_0 = \frac{C_s}{C_l} $$ Effective segregation coefficient (Burton-Prim-Slichter model): $$ k_{eff} = \frac{k_0}{k_0 + (1 - k_0) \exp\left(-\frac{v \delta}{D}\right)} $$ Variables: - $C_s$ — dopant concentration in solid - $C_l$ — dopant concentration in liquid - $v$ — crystal growth velocity - $\delta$ — boundary layer thickness - $D$ — diffusion coefficient in melt 2. Thermal Oxidation (Deal-Grove Model) The foundational model for growing $\text{SiO}_2$ on silicon. 2.1 General Equation $$ x_o^2 + A x_o = B(t + \tau) $$ Variables: - $x_o$ — oxide thickness ($\mu\text{m}$ or $\text{nm}$) - $A$ — linear rate constant parameter - $B$ — parabolic rate constant - $t$ — oxidation time - $\tau$ — time offset for initial oxide 2.2 Growth Regimes - Linear regime (thin oxide, surface-reaction limited): $$ x_o \approx \frac{B}{A}(t + \tau) $$ - Parabolic regime (thick oxide, diffusion limited): $$ x_o \approx \sqrt{B(t + \tau)} $$ 2.3 Extended Model Considerations - Stress-dependent oxidation rates - Point defect injection into silicon - 2D/3D geometries (LOCOS bird's beak) - High-pressure oxidation kinetics - Thin oxide regime anomalies (<20 nm) 3. Diffusion and Dopant Transport 3.1 Fick's Laws First Law (flux equation): $$ \mathbf{J} = -D \nabla C $$ Second Law (continuity equation): $$ \frac{\partial C}{\partial t} = \nabla \cdot (D \nabla C) $$ For constant $D$: $$ \frac{\partial C}{\partial t} = D \nabla^2 C $$ 3.2 Concentration-Dependent Diffusivity $$ D(C) = D_i + D^{-} \frac{n}{n_i} + D^{2-} \left(\frac{n}{n_i}\right)^2 + D^{+} \frac{p}{n_i} + D^{2+} \left(\frac{p}{n_i}\right)^2 $$ Variables: - $D_i$ — intrinsic diffusivity - $D^{-}, D^{2-}$ — diffusivity via negatively charged defects - $D^{+}, D^{2+}$ — diffusivity via positively charged defects - $n, p$ — electron and hole concentrations - $n_i$ — intrinsic carrier concentration 3.3 Point-Defect Mediated Diffusion Effective diffusivity: $$ D_{eff} = D_I \frac{C_I}{C_I^*} + D_V \frac{C_V}{C_V^*} $$ Point defect continuity equations: $$ \frac{\partial C_I}{\partial t} = D_I \nabla^2 C_I + G_I - R_{IV} $$ $$ \frac{\partial C_V}{\partial t} = D_V \nabla^2 C_V + G_V - R_{IV} $$ Recombination rate: $$ R_{IV} = k_{IV} \left( C_I C_V - C_I^* C_V^* \right) $$ Variables: - $C_I, C_V$ — interstitial and vacancy concentrations - $C_I^*, C_V^*$ — equilibrium concentrations - $G_I, G_V$ — generation rates - $R_{IV}$ — interstitial-vacancy recombination rate 3.4 Transient Enhanced Diffusion (TED) Ion implantation creates excess interstitials causing: - "+1" model: each implanted ion creates one net interstitial - Enhanced diffusion persists until excess defects anneal out - Critical for ultra-shallow junction formation 4. Ion Implantation 4.1 Gaussian Profile Model $$ N(x) = \frac{\phi}{\sqrt{2\pi} \Delta R_p} \exp\left[ -\frac{(x - R_p)^2}{2 (\Delta R_p)^2} \right] $$ Variables: - $N(x)$ — dopant concentration at depth $x$ ($\text{cm}^{-3}$) - $\phi$ — implant dose ($\text{ions/cm}^2$) - $R_p$ — projected range (mean depth) - $\Delta R_p$ — straggle (standard deviation) 4.2 Pearson IV Distribution For asymmetric profiles using four moments: - First moment: $R_p$ (projected range) - Second moment: $\Delta R_p$ (straggle) - Third moment: $\gamma$ (skewness) - Fourth moment: $\beta$ (kurtosis) 4.3 Monte Carlo Methods (TRIM/SRIM) Stopping power: $$ \frac{dE}{dx} = S_n(E) + S_e(E) $$ - $S_n(E)$ — nuclear stopping power - $S_e(E)$ — electronic stopping power Key outputs: - Ion trajectories via binary collision approximation (BCA) - Damage cascade distribution - Sputtering yield - Vacancy and interstitial generation profiles 4.4 Channeling Effects For crystalline targets, ions aligned with crystal axes experience: - Reduced stopping power - Deeper penetration - Modified range distributions - Requires dual-Pearson or Monte Carlo models 5. Plasma Etching 5.1 Surface Kinetics Model $$ \frac{\partial \theta}{\partial t} = J_i s_i (1 - \theta) - k_r \theta $$ Variables: - $\theta$ — fractional surface coverage of reactive species - $J_i$ — incident ion/radical flux - $s_i$ — sticking coefficient - $k_r$ — surface reaction rate constant 5.2 Etching Yield $$ Y = \frac{\text{atoms removed}}{\text{incident ion}} $$ Dependence factors: - Ion energy ($E_{ion}$) - Ion incidence angle ($\theta$) - Ion-to-neutral flux ratio - Surface chemistry and temperature 5.3 Profile Evolution (Level Set Method) $$ \frac{\partial \phi}{\partial t} + V |\nabla \phi| = 0 $$ Variables: - $\phi(\mathbf{x}, t)$ — level set function (surface defined by $\phi = 0$) - $V$ — local etch rate (normal velocity) 5.4 Knudsen Transport in High Aspect Ratio Features For molecular flow regime ($Kn > 1$): $$ \frac{1}{\lambda} \frac{dI}{dx} = -I + \int K(x, x') I(x') dx' $$ Key effects: - Aspect ratio dependent etching (ARDE) - Reactive ion angular distribution (RIAD) - Neutral shadowing 6. Chemical Vapor Deposition (CVD) 6.1 Transport-Reaction Equation $$ \frac{\partial C}{\partial t} + \mathbf{v} \cdot \nabla C = D \nabla^2 C - k C^n $$ Variables: - $C$ — reactant concentration - $\mathbf{v}$ — gas velocity - $D$ — gas-phase diffusivity - $k$ — reaction rate constant - $n$ — reaction order 6.2 Thiele Modulus $$ \phi = L \sqrt{\frac{k}{D}} $$ Regimes: - $\phi \ll 1$ — reaction-limited (uniform deposition) - $\phi \gg 1$ — transport-limited (poor step coverage) 6.3 Step Coverage Conformality factor: $$ S = \frac{\text{thickness at bottom}}{\text{thickness at top}} $$ Models: - Ballistic transport (line-of-sight) - Knudsen diffusion - Surface reaction probability 6.4 Atomic Layer Deposition (ALD) Self-limiting surface coverage: $$ \theta(t) = 1 - \exp\left( -\frac{p \cdot t}{\tau} \right) $$ Variables: - $\theta(t)$ — fractional surface coverage - $p$ — precursor partial pressure - $\tau$ — characteristic adsorption time Growth per cycle (GPC): $$ \text{GPC} = \theta_{sat} \cdot \Gamma_{ML} $$ where $\Gamma_{ML}$ is the monolayer thickness. 7. Chemical Mechanical Polishing (CMP) 7.1 Preston Equation $$ \frac{dz}{dt} = K_p \cdot P \cdot V $$ Variables: - $dz/dt$ — material removal rate (MRR) - $K_p$ — Preston coefficient ($\text{m}^2/\text{N}$) - $P$ — applied pressure - $V$ — relative velocity 7.2 Pattern-Dependent Effects Effective pressure: $$ P_{eff} = \frac{P_{applied}}{\rho_{pattern}} $$ where $\rho_{pattern}$ is local pattern density. Key phenomena: - Dishing: over-polishing of soft materials (e.g., Cu) - Erosion: oxide loss in high-density regions - Within-die non-uniformity (WIDNU) 7.3 Contact Mechanics Hertzian contact pressure: $$ P(r) = P_0 \sqrt{1 - \left(\frac{r}{a}\right)^2} $$ Pad asperity models: - Greenwood-Williamson for rough surfaces - Viscoelastic pad behavior 8. Lithography 8.1 Aerial Image Formation Hopkins formulation (partially coherent): $$ I(\mathbf{x}) = \iint TCC(\mathbf{f}, \mathbf{f}') \, M(\mathbf{f}) \, M^*(\mathbf{f}') \, e^{2\pi i (\mathbf{f} - \mathbf{f}') \cdot \mathbf{x}} \, d\mathbf{f} \, d\mathbf{f}' $$ Variables: - $I(\mathbf{x})$ — intensity at image plane position $\mathbf{x}$ - $TCC$ — transmission cross-coefficient - $M(\mathbf{f})$ — mask spectrum at spatial frequency $\mathbf{f}$ 8.2 Resolution and Depth of Focus Rayleigh resolution criterion: $$ R = k_1 \frac{\lambda}{NA} $$ Depth of focus: $$ DOF = k_2 \frac{\lambda}{NA^2} $$ Variables: - $\lambda$ — exposure wavelength (e.g., 193 nm for DUV, 13.5 nm for EUV) - $NA$ — numerical aperture - $k_1, k_2$ — process-dependent factors 8.3 Photoresist Exposure (Dill Model) Photoactive compound (PAC) decomposition: $$ \frac{\partial m}{\partial t} = -I(z, t) \cdot m \cdot C $$ Intensity attenuation: $$ I(z, t) = I_0 \exp\left( -\int_0^z [A \cdot m(z', t) + B] \, dz' \right) $$ Dill parameters: - $A$ — bleachable absorption coefficient - $B$ — non-bleachable absorption coefficient - $C$ — exposure rate constant - $m$ — normalized PAC concentration 8.4 Development Rate (Mack Model) $$ r = r_{max} \frac{(a + 1)(1 - m)^n}{a + (1 - m)^n} $$ Variables: - $r$ — development rate - $r_{max}$ — maximum development rate - $m$ — normalized PAC concentration - $a, n$ — resist contrast parameters 8.5 Computational Lithography - Optical Proximity Correction (OPC): inverse problem to find mask patterns - Source-Mask Optimization (SMO): co-optimize illumination and mask - Inverse Lithography Technology (ILT): pixel-based mask optimization 9. Device Simulation (TCAD) 9.1 Poisson's Equation $$ \nabla \cdot (\epsilon \nabla \psi) = -q(p - n + N_D^+ - N_A^-) $$ Variables: - $\psi$ — electrostatic potential - $\epsilon$ — permittivity - $q$ — elementary charge - $n, p$ — electron and hole concentrations - $N_D^+, N_A^-$ — ionized donor and acceptor concentrations 9.2 Carrier Continuity Equations Electrons: $$ \frac{\partial n}{\partial t} = \frac{1}{q} \nabla \cdot \mathbf{J}_n + G - R $$ Holes: $$ \frac{\partial p}{\partial t} = -\frac{1}{q} \nabla \cdot \mathbf{J}_p + G - R $$ Variables: - $\mathbf{J}_n, \mathbf{J}_p$ — electron and hole current densities - $G$ — carrier generation rate - $R$ — carrier recombination rate 9.3 Drift-Diffusion Current Equations Electron current: $$ \mathbf{J}_n = q n \mu_n \mathbf{E} + q D_n \nabla n $$ Hole current: $$ \mathbf{J}_p = q p \mu_p \mathbf{E} - q D_p \nabla p $$ Einstein relation: $$ D = \frac{k_B T}{q} \mu $$ 9.4 Advanced Transport Models - Hydrodynamic model: includes carrier temperature - Monte Carlo: tracks individual carrier scattering events - Quantum corrections: density gradient, NEGF for tunneling 10. Yield Modeling 10.1 Poisson Yield Model $$ Y = e^{-A D_0} $$ Variables: - $Y$ — chip yield - $A$ — chip area - $D_0$ — defect density ($\text{defects/cm}^2$) 10.2 Negative Binomial Model (Clustered Defects) $$ Y = \left(1 + \frac{A D_0}{\alpha}\right)^{-\alpha} $$ Variables: - $\alpha$ — clustering parameter - As $\alpha \to \infty$, reduces to Poisson model 10.3 Critical Area Analysis $$ Y = \exp\left( -\sum_i D_i \cdot A_{c,i} \right) $$ Variables: - $D_i$ — defect density for defect type $i$ - $A_{c,i}$ — critical area sensitive to defect type $i$ Critical area depends on: - Defect size distribution - Layout geometry - Defect type (shorts, opens, particles) 11. Statistical and Machine Learning Methods 11.1 Response Surface Methodology (RSM) Second-order model: $$ y = \beta_0 + \sum_{i=1}^{k} \beta_i x_i + \sum_{i=1}^{k} \beta_{ii} x_i^2 + \sum_{i 1 μm | FEM, FDM | Process simulation | | System | Wafer/die | Statistical | Yield modeling | 12.2 Bridging Methods - Coarse-graining: atomistic → mesoscale - Parameter extraction: quantum → continuum - Concurrent multiscale: couple different scales simultaneously 13. Key Mathematical Toolkit 13.1 Partial Differential Equations - Diffusion equation: $\frac{\partial u}{\partial t} = D \nabla^2 u$ - Heat equation: $\rho c_p \frac{\partial T}{\partial t} = \nabla \cdot (k \nabla T)$ - Navier-Stokes: $\rho \frac{D\mathbf{v}}{Dt} = -\nabla p + \mu \nabla^2 \mathbf{v} + \mathbf{f}$ - Poisson: $\nabla^2 \phi = -\rho/\epsilon$ - Level set: $\frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \phi = 0$ 13.2 Numerical Methods - Finite Difference Method (FDM): simple geometries - Finite Element Method (FEM): complex geometries - Finite Volume Method (FVM): conservation laws - Monte Carlo: stochastic processes, particle transport - Level Set / Volume of Fluid: interface tracking 13.3 Optimization Techniques - Gradient descent and conjugate gradient - Newton-Raphson method - Genetic algorithms - Simulated annealing - Bayesian optimization 13.4 Stochastic Processes - Random walk (diffusion) - Poisson processes (defect generation) - Markov chains (KMC) - Birth-death processes (nucleation) 14. Modern Challenges 14.1 Random Dopant Fluctuation (RDF) Threshold voltage variation: $$ \sigma_{V_T} \propto \frac{1}{\sqrt{W \cdot L}} \cdot \frac{t_{ox}}{\sqrt{N_A}} $$ 14.2 Line Edge Roughness (LER) Power spectral density: $$ PSD(f) = \frac{2\sigma^2 \xi}{1 + (2\pi f \xi)^{2(1+H)}} $$ Variables: - $\sigma$ — RMS roughness amplitude - $\xi$ — correlation length - $H$ — Hurst exponent 14.3 Stochastic Effects in EUV Lithography - Photon shot noise: $\sigma_N = \sqrt{N}$ where $N$ = absorbed photons - Secondary electron blur - Resist stochastics: acid generation, diffusion, deprotection 14.4 3D Device Architectures Modern modeling must handle: - FinFET: 3D fin geometry - Gate-All-Around (GAA): nanowire/nanosheet - CFET: stacked complementary FETs - 3D NAND: vertical channel, charge trap 14.5 Emerging Modeling Approaches - Physics-Informed Neural Networks (PINNs) - Digital twins for real-time process control - Reduced-order models for fast simulation - Uncertainty quantification for variability prediction

matrix profile, time series models

Matrix profile is an efficient data structure storing nearest neighbor distances for all subsequences enabling motif discovery and anomaly detection.

max iterations, ai agents

Maximum iterations limit agent loops preventing infinite execution.

max tokens, llm optimization

Max tokens parameter limits total generation length.

maximum mean discrepancy, mmd, domain adaptation

Measure distribution difference.

maxout, neural architecture

Learn piecewise linear activation.

mean time to failure (mttf),mean time to failure,mttf,reliability

Average time until failure.

mean time to failure calculation, mttf, reliability

Average time to failure.

means-ends analysis, ai agents

Means-ends analysis reduces differences between current and goal states through operator selection.

measurement uncertainty, metrology, GUM, type A uncertainty, type B uncertainty, uncertainty propagation

# Semiconductor Manufacturing Process Measurement Uncertainty: Mathematical Modeling ## 1. The Fundamental Challenge At modern nodes (3nm, 2nm), we face a profound problem: **measurement uncertainty can consume 30–50% of the tolerance budget**. Consider typical values: - Feature dimension: ~15nm - Tolerance: ±1nm (≈7% variation allowed) - Measurement repeatability: ~0.3–0.5nm - Reproducibility (tool-to-tool): additional 0.3–0.5nm This means we cannot naively interpret measured variation as process variation—a significant portion is measurement noise. ## 2. Variance Decomposition Framework The foundational mathematical structure is the decomposition of total observed variance: $$ \sigma^2_{\text{observed}} = \sigma^2_{\text{process}} + \sigma^2_{\text{measurement}} $$ ### 2.1 Hierarchical Decomposition For a full fab model: $$ Y_{ijklm} = \mu + L_i + W_{j(i)} + D_{k(ij)} + T_l + (LT)_{il} + \eta_{lm} + \epsilon_{ijklm} $$ Where: | Term | Meaning | Type | |------|---------|------| | $L_i$ | Lot effect | Random | | $W_{j(i)}$ | Wafer nested in lot | Random | | $D_{k(ij)}$ | Die/site within wafer | Random or systematic | | $T_l$ | Measurement tool | Random or fixed | | $(LT)_{il}$ | Lot × tool interaction | Random | | $\eta_{lm}$ | Tool drift/bias | Systematic | | $\epsilon_{ijklm}$ | Pure repeatability | Random | The variance components: $$ \text{Var}(Y) = \sigma^2_L + \sigma^2_W + \sigma^2_D + \sigma^2_T + \sigma^2_{LT} + \sigma^2_\eta + \sigma^2_\epsilon $$ **Measurement system variance:** $$ \sigma^2_{\text{meas}} = \sigma^2_T + \sigma^2_\eta + \sigma^2_\epsilon $$ ## 3. Gauge R&R Mathematics The standard Gauge Repeatability and Reproducibility analysis partitions measurement variance: $$ \sigma^2_{\text{meas}} = \sigma^2_{\text{repeatability}} + \sigma^2_{\text{reproducibility}} $$ ### 3.1 Key Metrics **Precision-to-Tolerance Ratio:** $$ \text{P/T} = \frac{k \cdot \sigma_{\text{meas}}}{\text{USL} - \text{LSL}} $$ where $k = 5.15$ (99% coverage) or $k = 6$ (99.73% coverage) **Discrimination Ratio:** $$ \text{ndc} = 1.41 \times \frac{\sigma_{\text{process}}}{\sigma_{\text{meas}}} $$ This gives the number of distinct categories the measurement system can reliably distinguish. - Industry standard requires: $\text{ndc} \geq 5$ **Signal-to-Noise Ratio:** $$ \text{SNR} = \frac{\sigma_{\text{process}}}{\sigma_{\text{meas}}} $$ ## 4. GUM-Based Uncertainty Propagation Following the Guide to the Expression of Uncertainty in Measurement (GUM): ### 4.1 Combined Standard Uncertainty For a measurand $y = f(x_1, x_2, \ldots, x_n)$: $$ u_c(y) = \sqrt{\sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_i}\right)^2 u^2(x_i) + 2\sum_{i=1}^{n-1}\sum_{j=i+1}^{n} \frac{\partial f}{\partial x_i}\frac{\partial f}{\partial x_j} u(x_i, x_j)} $$ ### 4.2 Type A vs. Type B Uncertainties **Type A** (statistical): $$ u_A(\bar{x}) = \frac{s}{\sqrt{n}} = \sqrt{\frac{1}{n(n-1)}\sum_{i=1}^{n}(x_i - \bar{x})^2} $$ **Type B** (other sources): - Calibration certificates: $u_B = \frac{U}{k}$ where $U$ is expanded uncertainty - Rectangular distribution (tolerance): $u_B = \frac{a}{\sqrt{3}}$ - Triangular distribution: $u_B = \frac{a}{\sqrt{6}}$ ## 5. Spatial Modeling of Within-Wafer Variation Within-wafer variation often has systematic spatial structure that must be separated from random measurement error. ### 5.1 Polynomial Surface Model (Zernike Polynomials) $$ z(r, \theta) = \sum_{n=0}^{N}\sum_{m=-n}^{n} a_{nm} Z_n^m(r, \theta) $$ Using Zernike polynomials—natural for circular wafer geometry: - $Z_0^0$: piston (mean) - $Z_1^1$: tilt - $Z_2^0$: defocus (bowl shape) - Higher orders: astigmatism, coma, spherical aberration analogs ### 5.2 Gaussian Process Model For flexible, non-parametric spatial modeling: $$ z(\mathbf{s}) \sim \mathcal{GP}(m(\mathbf{s}), k(\mathbf{s}, \mathbf{s}')) $$ With squared exponential covariance: $$ k(\mathbf{s}_i, \mathbf{s}_j) = \sigma^2_f \exp\left(-\frac{\|\mathbf{s}_i - \mathbf{s}_j\|^2}{2\ell^2}\right) + \sigma^2_n \delta_{ij} $$ Where: - $\sigma^2_f$: process variance (spatial signal) - $\ell$: length scale (spatial correlation distance) - $\sigma^2_n$: measurement noise (nugget effect) **This naturally separates spatial process variation from measurement noise.** ## 6. Bayesian Hierarchical Modeling Bayesian approaches provide natural uncertainty quantification and handle small samples common in expensive semiconductor metrology. ### 6.1 Basic Hierarchical Model **Level 1** (within-wafer measurements): $$ y_{ij} \mid \theta_i, \sigma^2_{\text{meas}} \sim \mathcal{N}(\theta_i, \sigma^2_{\text{meas}}) $$ **Level 2** (wafer-to-wafer variation): $$ \theta_i \mid \mu, \sigma^2_{\text{proc}} \sim \mathcal{N}(\mu, \sigma^2_{\text{proc}}) $$ **Level 3** (hyperpriors): $$ \begin{aligned} \mu &\sim \mathcal{N}(\mu_0, \tau^2_0) \\ \sigma^2_{\text{meas}} &\sim \text{Inv-Gamma}(\alpha_m, \beta_m) \\ \sigma^2_{\text{proc}} &\sim \text{Inv-Gamma}(\alpha_p, \beta_p) \end{aligned} $$ ### 6.2 Posterior Inference The posterior distribution: $$ p(\mu, \sigma^2_{\text{proc}}, \sigma^2_{\text{meas}} \mid \mathbf{y}) \propto p(\mathbf{y} \mid \boldsymbol{\theta}, \sigma^2_{\text{meas}}) \cdot p(\boldsymbol{\theta} \mid \mu, \sigma^2_{\text{proc}}) \cdot p(\mu, \sigma^2_{\text{proc}}, \sigma^2_{\text{meas}}) $$ Solved via MCMC methods: - Gibbs sampling - Hamiltonian Monte Carlo (HMC) - No-U-Turn Sampler (NUTS) ## 7. Monte Carlo Uncertainty Propagation For complex, non-linear measurement models where analytical propagation fails: ### 7.1 Algorithm (GUM Supplement 1) 1. **Define** probability distributions for all input quantities $X_i$ 2. **Sample** $M$ realizations: $\{x_1^{(k)}, x_2^{(k)}, \ldots, x_n^{(k)}\}$ for $k = 1, \ldots, M$ 3. **Propagate** each sample: $y^{(k)} = f(x_1^{(k)}, \ldots, x_n^{(k)})$ 4. **Analyze** output distribution to obtain uncertainty Typically $M \geq 10^6$ for reliable coverage interval estimation. ### 7.2 Application: OCD (Optical CD) Metrology Scatterometry fits measured spectra to electromagnetic models with parameters: - CD (critical dimension) - Sidewall angle - Height - Layer thicknesses - Optical constants The measurement equation is highly non-linear: $$ \mathbf{R}_{\text{meas}} = \mathbf{R}_{\text{model}}(\text{CD}, \theta_{\text{swa}}, h, \mathbf{t}, \mathbf{n}, \mathbf{k}) + \boldsymbol{\epsilon} $$ Monte Carlo propagation captures correlations and non-linearities that linearized GUM misses. ## 8. The Deconvolution Problem Given observed data that is a convolution of true process variation and measurement noise: $$ f_{\text{obs}}(x) = (f_{\text{true}} * f_{\text{meas}})(x) = \int f_{\text{true}}(t) \cdot f_{\text{meas}}(x-t) \, dt $$ **Goal:** Recover $f_{\text{true}}$ given $f_{\text{obs}}$ and knowledge of $f_{\text{meas}}$. ### 8.1 Fourier Approach In frequency domain: $$ \hat{f}_{\text{obs}}(\omega) = \hat{f}_{\text{true}}(\omega) \cdot \hat{f}_{\text{meas}}(\omega) $$ Naively: $$ \hat{f}_{\text{true}}(\omega) = \frac{\hat{f}_{\text{obs}}(\omega)}{\hat{f}_{\text{meas}}(\omega)} $$ **Problem:** Ill-posed—small errors in $\hat{f}_{\text{obs}}$ amplified where $\hat{f}_{\text{meas}}$ is small. ### 8.2 Regularization Techniques **Tikhonov regularization:** $$ \hat{f}_{\text{true}} = \arg\min_f \left\{ \|f_{\text{obs}} - f * f_{\text{meas}}\|^2 + \lambda \|Lf\|^2 \right\} $$ **Bayesian approach:** $$ p(f_{\text{true}} \mid f_{\text{obs}}) \propto p(f_{\text{obs}} \mid f_{\text{true}}) \cdot p(f_{\text{true}}) $$ With appropriate priors (smoothness, non-negativity) to regularize the solution. ## 9. Virtual Metrology with Uncertainty Quantification Virtual metrology predicts measurements from process tool data, reducing physical sampling requirements. ### 9.1 Model Structure $$ \hat{y} = f(\mathbf{x}_{\text{FDC}}) + \epsilon $$ Where $\mathbf{x}_{\text{FDC}}$ = fault detection and classification data (temperatures, pressures, flows, RF power, etc.) ### 9.2 Uncertainty-Aware ML Approaches **Gaussian Process Regression:** Provides natural predictive uncertainty: $$ p(y^* \mid \mathbf{x}^*, \mathcal{D}) = \mathcal{N}(\mu^*, \sigma^{*2}) $$ $$ \mu^* = \mathbf{k}^{*T}(\mathbf{K} + \sigma^2_n\mathbf{I})^{-1}\mathbf{y} $$ $$ \sigma^{*2} = k(\mathbf{x}^*, \mathbf{x}^*) - \mathbf{k}^{*T}(\mathbf{K} + \sigma^2_n\mathbf{I})^{-1}\mathbf{k}^* $$ **Conformal Prediction:** Distribution-free prediction intervals: $$ \hat{C}(x) = \left[\hat{y}(x) - \hat{q}, \hat{y}(x) + \hat{q}\right] $$ Where $\hat{q}$ is calibrated on held-out data to guarantee coverage probability. ## 10. Control Chart Implications Measurement uncertainty affects statistical process control profoundly. ### 10.1 Inflated Control Limits Standard control chart limits: $$ \text{UCL} = \bar{\bar{x}} + 3\sigma_{\bar{x}} $$ But $\sigma_{\bar{x}}$ includes measurement variance: $$ \sigma^2_{\bar{x}} = \frac{\sigma^2_{\text{proc}} + \sigma^2_{\text{meas}}/n_{\text{rep}}}{n_{\text{sample}}} $$ ### 10.2 Adjusted Process Capability True process capability: $$ \hat{C}_p = \frac{\text{USL} - \text{LSL}}{6\hat{\sigma}_{\text{proc}}} $$ Must correct observed variance: $$ \hat{\sigma}^2_{\text{proc}} = \hat{\sigma}^2_{\text{obs}} - \hat{\sigma}^2_{\text{meas}} $$ > **Warning:** This can yield negative estimates if measurement variance dominates—indicating the measurement system is inadequate. ## 11. Multi-Tool Matching and Reference Frame ### 11.1 Tool-to-Tool Bias Model $$ y_{\text{tool}_k} = y_{\text{true}} + \beta_k + \epsilon_k $$ Where $\beta_k$ is systematic bias for tool $k$. ### 11.2 Mixed-Effects Formulation $$ Y_{ij} = \mu + \tau_i + t_j + \epsilon_{ij} $$ - $\tau_i$: true sample value (random) - $t_j$: tool effect (random or fixed) - $\epsilon_{ij}$: residual **REML (Restricted Maximum Likelihood)** estimation separates these components. ### 11.3 Traceability Chain $$ \text{SI unit} \xrightarrow{u_1} \text{NMI reference} \xrightarrow{u_2} \text{Fab golden tool} \xrightarrow{u_3} \text{Production tools} $$ Total reference uncertainty: $$ u_{\text{ref}} = \sqrt{u_1^2 + u_2^2 + u_3^2} $$ ## 12. Practical Uncertainty Budget Example For CD-SEM measurement of a 20nm line: | Source | Type | $u_i$ (nm) | Sensitivity | Contribution (nm²) | |--------|------|-----------|-------------|-------------------| | Repeatability | A | 0.25 | 1 | 0.0625 | | Tool matching | B | 0.30 | 1 | 0.0900 | | SEM calibration | B | 0.15 | 1 | 0.0225 | | Algorithm uncertainty | B | 0.20 | 1 | 0.0400 | | Edge definition model | B | 0.35 | 1 | 0.1225 | | Charging effects | B | 0.10 | 1 | 0.0100 | **Combined standard uncertainty:** $$ u_c = \sqrt{\sum u_i^2} = \sqrt{0.3475} \approx 0.59 \text{ nm} $$ **Expanded uncertainty** ($k=2$, 95% confidence): $$ U = k \cdot u_c = 2 \times 0.59 = 1.18 \text{ nm} $$ For a ±1nm tolerance, this means **P/T ≈ 60%**—marginally acceptable. ## 13. Key Takeaways The mathematical modeling of measurement uncertainty in semiconductor manufacturing requires: 1. **Hierarchical variance decomposition** (ANOVA, mixed models) to separate process from measurement variation 2. **Spatial statistics** (Gaussian processes, Zernike decomposition) for within-wafer systematic patterns 3. **Bayesian inference** for rigorous uncertainty quantification with limited samples 4. **Monte Carlo methods** for non-linear measurement models (OCD, model-based metrology) 5. **Deconvolution techniques** to recover true process distributions 6. **Machine learning with uncertainty** for virtual metrology ### The Fundamental Insight At nanometer scales, measurement uncertainty is not a nuisance to be ignored—it is a **primary object of study** that directly determines our ability to control and optimize semiconductor processes. ## Key Equations Quick Reference ### Variance Decomposition $$ \sigma^2_{\text{total}} = \sigma^2_{\text{process}} + \sigma^2_{\text{measurement}} $$ ### GUM Combined Uncertainty $$ u_c(y) = \sqrt{\sum_{i=1}^{n} c_i^2 u^2(x_i)} $$ where $c_i = \frac{\partial f}{\partial x_i}$ are sensitivity coefficients. ### Precision-to-Tolerance Ratio $$ \text{P/T} = \frac{6\sigma_{\text{meas}}}{\text{USL} - \text{LSL}} \times 100\% $$ ### Process Capability (Corrected) $$ C_{p,\text{true}} = \frac{\text{USL} - \text{LSL}}{6\sqrt{\sigma^2_{\text{obs}} - \sigma^2_{\text{meas}}}} $$ ## Notation Reference | Symbol | Description | |--------|-------------| | $\sigma^2$ | Variance | | $u$ | Standard uncertainty | | $U$ | Expanded uncertainty | | $k$ | Coverage factor | | $\mu$ | Population mean | | $\bar{x}$ | Sample mean | | $s$ | Sample standard deviation | | $n$ | Sample size | | $\mathcal{N}(\mu, \sigma^2)$ | Normal distribution | | $\mathcal{GP}$ | Gaussian Process | | $\text{USL}$, $\text{LSL}$ | Upper/Lower Specification Limits | | $C_p$, $C_{pk}$ | Process capability indices |

measurement uncertainty, quality & reliability

Measurement uncertainty quantifies doubt about measurement results from systematic and random errors.

mechanistic interpretability, explainable ai

Reverse engineer neural network algorithms.

mechanistic interpretability,ai safety

Reverse-engineer neural network internals to understand computation at neuron/circuit level.

median time to failure, reliability

50th percentile lifetime.

medical abbreviation disambiguation, healthcare ai

Resolve medical acronyms.

medical dialogue generation, healthcare ai

Generate doctor-patient conversations.

medical entity extraction, healthcare ai

Extract medical terms.

medical image analysis,healthcare ai

Analyze X-rays MRI CT scans.

medical literature mining, healthcare ai

Extract knowledge from papers.

medical question answering,healthcare ai

Answer medical questions.

medical report generation,healthcare ai

Draft clinical reports.

medication extraction, healthcare ai

Identify medications mentioned.

medusa heads, llm optimization

Medusa adds multiple prediction heads generating several tokens per forward pass.

megatron-lm, distributed training

NVIDIA's framework for large language models.

membership inference attack,ai safety

Determine if specific data was in the training set.

membrane filtration, environmental & sustainability

Membrane filtration removes particles and microorganisms through size-exclusion using porous membranes.

memit, memit, model editing

Edit multiple facts simultaneously.

memorizing transformer,llm architecture

Retrieve from large external memory.

memory consolidation, ai agents

Memory consolidation transfers important information from working to long-term storage.

memory in language models, theory

How models store information.

memory networks,neural architecture

Networks with explicit external memory for facts.

memory pool, llm optimization

Memory pools preallocate buffers reducing allocation overhead during inference.

memory retrieval agent, ai agents

Memory retrieval selects relevant past information based on current context.

memory systems,ai agent

Give agents long-term persistent memory across sessions using vector stores or databases.

memory transformer-xl,llm architecture

Cache previous segments for longer context.

memory update gnn, graph neural networks

Memory update mechanisms in temporal GNNs maintain node states updated by events and read for predictions.

memory-augmented video models, video understanding

Use external memory for long videos.

memory-bound operations, model optimization

Memory-bound operations are limited by data transfer rather than computation affecting actual deployment speed.

memory-efficient training techniques, optimization

Methods to reduce memory usage.

merging,model merge,soup

Model merging combines weights from multiple fine-tuned models. Can get benefits of each without retraining.

mesh generation, multimodal ai

Mesh generation creates explicit polygonal surface representations of 3D objects.

message chain, code ai

Long chain of method calls.

message passing agents, ai agents

Message passing allows agents to send structured information to collaborators.

message passing neural networks,graph neural networks

GNN framework using message passing.

message passing, graph neural networks

Message passing in graph neural networks aggregates neighborhood information through iterative local message computation and node state updates.

messagepassing base, graph neural networks

Base message passing aggregates neighbor features through summation mean or max pooling in graph neural networks.

meta-learning for domain generalization, domain generalization

Meta-learn domain-invariant features.

meta-reasoning, ai agents

Meta-reasoning deliberates about reasoning itself deciding how to allocate cognitive resources.

metadynamics, chemistry ai

Enhanced sampling using bias potential.