← Back to AI Factory Chat

AI Factory Glossary

3,145 technical terms and definitions

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Showing page 1 of 63 (3,145 entries)

1-bit sgd, distributed training

Extreme quantization for gradients.

3d gaussian, 3d, multimodal ai

3D Gaussians are primitives with position scale rotation and color rendered through splatting.

a/b testing for models,mlops

Deploy multiple model versions and compare performance.

abc analysis, abc, supply chain & logistics

ABC analysis categorizes inventory by value and usage prioritizing management attention on high-value items contributing most to costs.

ablation cam, explainable ai

Use ablation to generate activation maps.

absorbing state diffusion, generative models

Diffusion where tokens gradually become mask tokens.

abstention,ai safety

Refuse to answer when uncertain.

abstract interpretation for neural networks, ai safety

Sound over-approximation of network behavior.

accordion, distributed training

Adaptive communication-computation tradeoff.

acid gas scrubbing, environmental & sustainability

Acid gas scrubbing neutralizes acidic vapors by contacting with alkaline solution.

acid neutralization, environmental & sustainability

Acid neutralization treats acidic waste streams by adding bases precipitating metals and adjusting pH before discharge.

acid recovery, environmental & sustainability

Acid recovery systems regenerate and concentrate spent acids for reuse in processes.

acoustic microscopy, failure analysis advanced

Acoustic microscopy uses ultrasonic waves to detect delamination voids and cracks in packages through impedance variations at interfaces.

acoustic microscopy,failure analysis

Detect delamination and voids using sound.

action space, ai agents

Action space specifies all possible actions or tools available to agents.

action-conditional video, multimodal ai

Action-conditional video generation synthesizes sequences based on specified actions or controls.

activation beacon,llm architecture

Technique to compress long context into compact representations.

activation function zoo, neural architecture

Various non-linear activation functions.

activation maximization for text, explainable ai

Find inputs maximizing activations.

activation maximization, explainable ai

Optimize input to maximize specific activation.

activation patching, explainable ai

Replace activations to test causality.

activation patching,ai safety

Edit internal activations to understand causal role of specific neurons or layers.

active shift, model optimization

Active shift learns optimal shift directions and magnitudes for each layer.

adam optimizer,model training

Adaptive learning rate optimizer using momentum and RMSprop.

adamw,model training

Adam with decoupled weight decay regularization.

adaptive activation functions, neural architecture

Learn activation shapes.

adaptive attacks, ai safety

Attacks tailored to specific defense.

adaptive discriminator augmentation (ada),adaptive discriminator augmentation,ada,generative models

Prevent overfitting in GANs.

adaptive inference, model optimization

Adaptive inference adjusts model capacity or computation based on input difficulty.

adaptive instance normalization in stylegan, generative models

Control style via normalization.

adaptive instance normalization, generative models

Normalize and modulate with style.

adaptive layer depth, llm architecture

Skip or repeat layers based on input complexity.

adasyn, adasyn, machine learning

Adaptive generation of synthetic samples.

additive hawkes, time series models

Additive Hawkes processes decompose intensity into baseline plus excitation from each past event.

additive noise models, time series models

Additive noise models assume effects are deterministic functions of causes plus independent noise enabling causal discovery.

adjacency matrix nas, neural architecture search

Adjacency matrix encoding represents architecture graphs as matrices for graph neural network processing.

admet prediction, admet, healthcare ai

Predict Absorption Distribution Metabolism Excretion Toxicity.

advanced composition, training techniques

Advanced composition provides tighter privacy bounds than basic composition.

advanced interface bus, aib, advanced packaging

Intel's chiplet interconnect.

advanced oxidation, environmental & sustainability

Advanced oxidation processes generate hydroxyl radicals degrading persistent organic pollutants.

advanced topics, advanced mathematics, semiconductor mathematics, lithography math, plasma physics, diffusion math

# Semiconductor Manufacturing: Advanced Mathematics ## 1. Lithography & Optical Physics This is arguably the most mathematically demanding area of semiconductor manufacturing. ### 1.1 Fourier Optics & Partial Coherence Theory The foundation of photolithography treats optical imaging as a spatial frequency filtering problem. - **Key Concept**: The mask pattern is decomposed into spatial frequency components - **Optical System**: Acts as a low-pass filter on spatial frequencies - **Hopkins Formulation**: Describes partially coherent imaging The aerial image intensity $I(x,y)$ is given by: $$ I(x,y) = \iint\iint TCC(f_1, g_1, f_2, g_2) \cdot M(f_1, g_1) \cdot M^*(f_2, g_2) \cdot e^{2\pi i[(f_1-f_2)x + (g_1-g_2)y]} \, df_1 \, dg_1 \, df_2 \, dg_2 $$ Where: - $TCC$ = Transmission Cross-Coefficient - $M(f,g)$ = Mask spectrum (Fourier transform of mask pattern) - $M^*$ = Complex conjugate of mask spectrum **SOCS Decomposition** (Sum of Coherent Systems): $$ TCC(f_1, g_1, f_2, g_2) = \sum_{k=1}^{N} \lambda_k \phi_k(f_1, g_1) \phi_k^*(f_2, g_2) $$ - Eigenvalue decomposition makes computation tractable - $\lambda_k$ are eigenvalues (typically only 10-20 terms needed) - $\phi_k$ are eigenfunctions ### 1.2 Inverse Lithography Technology (ILT) Given a desired wafer pattern $T(x,y)$, find the optimal mask $M(x,y)$. **Mathematical Framework**: - **Objective Function**: $$ \min_{M} \left\| I[M](x,y) - T(x,y) \right\|^2 + \alpha R[M] $$ - **Key Methods**: - Variational calculus and gradient descent in function spaces - Level-set methods for topology optimization: $$ \frac{\partial \phi}{\partial t} + v|\nabla\phi| = 0 $$ - Tikhonov regularization: $R[M] = \|\nabla M\|^2$ - Total-variation regularization: $R[M] = \int |\nabla M| \, dx \, dy$ - Adjoint methods for efficient gradient computation ### 1.3 EUV & Rigorous Electromagnetics At $\lambda = 13.5$ nm, scalar diffraction theory fails. Full vector Maxwell's equations are required. **Maxwell's Equations** (time-harmonic form): $$ \nabla \times \mathbf{E} = -i\omega\mu\mathbf{H} $$ $$ \nabla \times \mathbf{H} = i\omega\varepsilon\mathbf{E} $$ **Numerical Methods**: - **RCWA** (Rigorous Coupled-Wave Analysis): - Eigenvalue problem for each diffraction order - Transfer matrix for multilayer stacks: $$ \begin{pmatrix} E^+ \\ E^- \end{pmatrix}_{out} = \mathbf{T} \begin{pmatrix} E^+ \\ E^- \end{pmatrix}_{in} $$ - **FDTD** (Finite-Difference Time-Domain): - Yee grid discretization - Leapfrog time integration: $$ E^{n+1} = E^n + \frac{\Delta t}{\varepsilon} \nabla \times H^{n+1/2} $$ - **Multilayer Thin-Film Optics**: - Fresnel coefficients at each interface - Transfer matrix method for $N$ layers ### 1.4 Aberration Theory Optical aberrations characterized using **Zernike Polynomials**: $$ W(\rho, \theta) = \sum_{n,m} Z_n^m R_n^m(\rho) \cdot \begin{cases} \cos(m\theta) & \text{(even)} \\ \sin(m\theta) & \text{(odd)} \end{cases} $$ Where $R_n^m(\rho)$ are radial polynomials: $$ R_n^m(\rho) = \sum_{k=0}^{(n-m)/2} \frac{(-1)^k (n-k)!}{k! \left(\frac{n+m}{2}-k\right)! \left(\frac{n-m}{2}-k\right)!} \rho^{n-2k} $$ **Common Aberrations**: | Zernike Term | Name | Effect | |--------------|------|--------| | $Z_4^0$ | Defocus | Uniform blur | | $Z_3^1$ | Coma | Asymmetric distortion | | $Z_4^0$ | Spherical | Halo effect | | $Z_2^2$ | Astigmatism | Directional blur | ## 2. Quantum Mechanics & Device Physics As transistors reach sub-5nm dimensions, classical models break down. ### 2.1 Schrödinger Equation & Quantum Transport **Time-Independent Schrödinger Equation**: $$ \hat{H}\psi = E\psi $$ $$ \left[-\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{r})\right]\psi(\mathbf{r}) = E\psi(\mathbf{r}) $$ **Non-Equilibrium Green's Function (NEGF) Formalism**: - Retarded Green's function: $$ G^R(E) = \left[(E + i\eta)I - H - \Sigma_L - \Sigma_R\right]^{-1} $$ - Self-energy $\Sigma$ incorporates: - Contact coupling - Scattering mechanisms - Electron-phonon interaction - Current calculation: $$ I = \frac{2e}{h} \int T(E) [f_L(E) - f_R(E)] \, dE $$ - Transmission function: $$ T(E) = \text{Tr}\left[\Gamma_L G^R \Gamma_R G^A\right] $$ **Wigner Function** (bridging quantum and semiclassical): $$ W(x,p) = \frac{1}{2\pi\hbar} \int \psi^*\left(x + \frac{y}{2}\right) \psi\left(x - \frac{y}{2}\right) e^{ipy/\hbar} \, dy $$ ### 2.2 Band Structure Theory **k·p Perturbation Theory**: $$ H_{k \cdot p} = \frac{p^2}{2m_0} + V(\mathbf{r}) + \frac{\hbar}{m_0}\mathbf{k} \cdot \mathbf{p} + \frac{\hbar^2 k^2}{2m_0} $$ **Effective Mass Tensor**: $$ \frac{1}{m^*_{ij}} = \frac{1}{\hbar^2} \frac{\partial^2 E}{\partial k_i \partial k_j} $$ **Tight-Binding Hamiltonian**: $$ H = \sum_i \varepsilon_i |i\rangle\langle i| + \sum_{\langle i,j \rangle} t_{ij} |i\rangle\langle j| $$ - $\varepsilon_i$ = on-site energy - $t_{ij}$ = hopping integral (Slater-Koster parameters) ### 2.3 Semiclassical Transport **Boltzmann Transport Equation**: $$ \frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla_r f + \frac{\mathbf{F}}{\hbar} \cdot \nabla_k f = \left(\frac{\partial f}{\partial t}\right)_{coll} $$ - 6D phase space $(x, y, z, k_x, k_y, k_z)$ - Collision integral (scattering): $$ \left(\frac{\partial f}{\partial t}\right)_{coll} = \sum_{k'} [S(k',k)f(k')(1-f(k)) - S(k,k')f(k)(1-f(k'))] $$ **Drift-Diffusion Equations** (moment expansion): $$ \mathbf{J}_n = q\mu_n n\mathbf{E} + qD_n\nabla n $$ $$ \mathbf{J}_p = q\mu_p p\mathbf{E} - qD_p\nabla p $$ ## 3. Process Simulation PDEs ### 3.1 Dopant Diffusion **Fick's Second Law** (concentration-dependent): $$ \frac{\partial C}{\partial t} = \nabla \cdot (D(C,T) \nabla C) + G - R $$ **Coupled Point-Defect System**: $$ \begin{aligned} \frac{\partial C_A}{\partial t} &= \nabla \cdot (D_A \nabla C_A) + k_{AI}C_AC_I - k_{AV}C_AC_V \\ \frac{\partial C_I}{\partial t} &= \nabla \cdot (D_I \nabla C_I) + G_I - k_{IV}C_IC_V \\ \frac{\partial C_V}{\partial t} &= \nabla \cdot (D_V \nabla C_V) + G_V - k_{IV}C_IC_V \end{aligned} $$ Where: - $C_A$ = dopant concentration - $C_I$ = interstitial concentration - $C_V$ = vacancy concentration - $k_{ij}$ = reaction rate constants ### 3.2 Oxidation & Film Growth **Deal-Grove Model**: $$ x_{ox}^2 + Ax_{ox} = B(t + \tau) $$ - $A$ = linear rate constant (surface reaction limited) - $B$ = parabolic rate constant (diffusion limited) - $\tau$ = time offset for initial oxide **Moving Boundary (Stefan) Problem**: $$ D\frac{\partial C}{\partial x}\bigg|_{x=s(t)} = C^* \frac{ds}{dt} $$ ### 3.3 Ion Implantation **Binary Collision Approximation** (Monte Carlo): - Screened Coulomb potential: $$ V(r) = \frac{Z_1 Z_2 e^2}{r} \phi\left(\frac{r}{a}\right) $$ - Scattering angle from two-body collision integral **As-Implanted Profile** (Pearson IV distribution): $$ f(x) = f_0 \left[1 + \left(\frac{x-R_p}{b}\right)^2\right]^{-m} \exp\left[-r \tan^{-1}\left(\frac{x-R_p}{b}\right)\right] $$ Parameters: $R_p$ (projected range), $\Delta R_p$ (straggle), skewness, kurtosis ### 3.4 Plasma Etching **Electron Energy Distribution** (Boltzmann equation): $$ \frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla f - \frac{e\mathbf{E}}{m} \cdot \nabla_v f = C[f] $$ **Child-Langmuir Law** (sheath ion flux): $$ J = \frac{4\varepsilon_0}{9} \sqrt{\frac{2e}{M}} \frac{V^{3/2}}{d^2} $$ ### 3.5 Chemical-Mechanical Polishing (CMP) **Preston Equation**: $$ \frac{dh}{dt} = K_p \cdot P \cdot V $$ - $K_p$ = Preston coefficient - $P$ = local pressure - $V$ = relative velocity **Pattern-Density Dependent Model**: $$ P_{local} = P_{avg} \cdot \frac{A_{total}}{A_{contact}(\rho)} $$ ## 4. Electromagnetic Simulation ### 4.1 Interconnect Modeling **Capacitance Extraction** (Laplace equation): $$ \nabla^2 \phi = 0 \quad \text{(dielectric regions)} $$ $$ \nabla \cdot (\varepsilon \nabla \phi) = -\rho \quad \text{(with charges)} $$ **Boundary Element Method**: $$ c(\mathbf{r})\phi(\mathbf{r}) = \int_S \left[\phi(\mathbf{r}') \frac{\partial G}{\partial n'} - G(\mathbf{r}, \mathbf{r}') \frac{\partial \phi}{\partial n'}\right] dS' $$ Where $G(\mathbf{r}, \mathbf{r}') = \frac{1}{4\pi|\mathbf{r} - \mathbf{r}'|}$ (free-space Green's function) ### 4.2 Partial Inductance **PEEC Method** (Partial Element Equivalent Circuit): $$ L_{p,ij} = \frac{\mu_0}{4\pi} \frac{1}{a_i a_j} \int_{V_i} \int_{V_j} \frac{d\mathbf{l}_i \cdot d\mathbf{l}_j}{|\mathbf{r}_i - \mathbf{r}_j|} $$ ## 5. Statistical & Stochastic Methods ### 5.1 Process Variability **Multivariate Gaussian Model**: $$ p(\mathbf{x}) = \frac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x}-\boldsymbol{\mu})\right) $$ **Principal Component Analysis**: $$ \mathbf{X} = \mathbf{U}\mathbf{S}\mathbf{V}^T $$ - Transform to uncorrelated variables - Dimensionality reduction: retain components with largest singular values **Polynomial Chaos Expansion**: $$ Y(\boldsymbol{\xi}) = \sum_{k=0}^{P} y_k \Psi_k(\boldsymbol{\xi}) $$ - $\Psi_k$ = orthogonal polynomial basis (Hermite for Gaussian inputs) - Enables uncertainty quantification without Monte Carlo ### 5.2 Yield Modeling **Poisson Defect Model**: $$ Y = e^{-D \cdot A} $$ - $D$ = defect density (defects/cm²) - $A$ = critical area **Negative Binomial** (clustered defects): $$ Y = \left(1 + \frac{DA}{\alpha}\right)^{-\alpha} $$ ### 5.3 Reliability Physics **Weibull Distribution** (lifetime): $$ F(t) = 1 - \exp\left[-\left(\frac{t}{\eta}\right)^\beta\right] $$ - $\eta$ = scale parameter (characteristic life) - $\beta$ = shape parameter (failure mode indicator) **Black's Equation** (electromigration): $$ MTTF = A \cdot J^{-n} \cdot \exp\left(\frac{E_a}{k_B T}\right) $$ ## 6. Optimization & Inverse Problems ### 6.1 Design of Experiments **Response Surface Methodology**: $$ y = \beta_0 + \sum_i \beta_i x_i + \sum_i \beta_{ii} x_i^2 + \sum_{i E_g \\ 0 & E \leq E_g \end{cases} $$ ## 7. Computational Geometry & Graph Theory ### 7.1 VLSI Physical Design **Graph Partitioning** (min-cut): $$ \min_{P} \sum_{(u,v) \in E : u \in P, v \notin P} w(u,v) $$ - Kernighan-Lin algorithm - Spectral methods using Fiedler vector **Placement** (quadratic programming): $$ \min_{\mathbf{x}, \mathbf{y}} \sum_{(i,j) \in E} w_{ij} \left[(x_i - x_j)^2 + (y_i - y_j)^2\right] $$ **Steiner Tree Problem** (routing): - Given pins to connect, find minimum-length tree - NP-hard; use approximation algorithms (RSMT, rectilinear Steiner) ### 7.2 Mask Data Preparation - **Boolean Operations**: Union, intersection, difference of polygons - **Polygon Clipping**: Sutherland-Hodgman, Vatti algorithms - **Fracturing**: Decompose complex shapes into trapezoids for e-beam writing ## 8. Thermal & Mechanical Analysis ### 8.1 Heat Transport **Fourier Heat Equation**: $$ \rho c_p \frac{\partial T}{\partial t} = \nabla \cdot (k \nabla T) + Q $$ **Phonon Boltzmann Transport** (nanoscale): $$ \frac{\partial f}{\partial t} + \mathbf{v}_g \cdot \nabla f = \frac{f_0 - f}{\tau} $$ - Required when feature size $<$ phonon mean free path - Non-Fourier effects: ballistic transport, thermal rectification ### 8.2 Thermo-Mechanical Stress **Linear Elasticity**: $$ \sigma_{ij} = C_{ijkl} \varepsilon_{kl} $$ **Equilibrium**: $$ \nabla \cdot \boldsymbol{\sigma} + \mathbf{f} = 0 $$ **Thin Film Stress** (Stoney Equation): $$ \sigma_f = \frac{E_s h_s^2}{6(1-\nu_s) h_f} \cdot \frac{1}{R} $$ - $R$ = wafer curvature radius - $h_s$, $h_f$ = substrate and film thickness **Thermal Stress**: $$ \varepsilon_{thermal} = \alpha \Delta T $$ $$ \sigma_{thermal} = E(\alpha_{film} - \alpha_{substrate})\Delta T $$ ## 9. Multiscale & Atomistic Methods ### 9.1 Molecular Dynamics **Equation of Motion**: $$ m_i \frac{d^2 \mathbf{r}_i}{dt^2} = -\nabla_i U(\{\mathbf{r}\}) $$ **Interatomic Potentials**: - **Tersoff** (covalent, e.g., Si): $$ V_{ij} = f_c(r_{ij})[f_R(r_{ij}) + b_{ij} f_A(r_{ij})] $$ - **Embedded Atom Method** (metals): $$ E_i = F_i(\rho_i) + \frac{1}{2}\sum_{j \neq i} \phi_{ij}(r_{ij}) $$ **Velocity Verlet Integration**: $$ \mathbf{r}(t+\Delta t) = \mathbf{r}(t) + \mathbf{v}(t)\Delta t + \frac{\mathbf{a}(t)}{2}\Delta t^2 $$ $$ \mathbf{v}(t+\Delta t) = \mathbf{v}(t) + \frac{\mathbf{a}(t) + \mathbf{a}(t+\Delta t)}{2}\Delta t $$ ### 9.2 Kinetic Monte Carlo **Master Equation**: $$ \frac{dP_i}{dt} = \sum_j (W_{ji} P_j - W_{ij} P_i) $$ **Transition Rates** (Arrhenius): $$ W_{ij} = \nu_0 \exp\left(-\frac{E_a}{k_B T}\right) $$ **BKL Algorithm**: 1. Compute all rates $\{r_i\}$ 2. Total rate: $R = \sum_i r_i$ 3. Select event $j$ with probability $r_j / R$ 4. Advance time: $\Delta t = -\ln(u) / R$ where $u \in (0,1)$ ### 9.3 Ab Initio Methods **Kohn-Sham Equations** (DFT): $$ \left[-\frac{\hbar^2}{2m}\nabla^2 + V_{eff}(\mathbf{r})\right]\psi_i(\mathbf{r}) = \varepsilon_i \psi_i(\mathbf{r}) $$ $$ V_{eff} = V_{ext} + V_H[n] + V_{xc}[n] $$ Where: - $V_H[n] = \int \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}'$ (Hartree potential) - $V_{xc}[n] = \frac{\delta E_{xc}[n]}{\delta n}$ (exchange-correlation) ## 10. Machine Learning & Data Science ### 10.1 Virtual Metrology **Regression Models**: - Linear: $y = \mathbf{w}^T \mathbf{x} + b$ - Kernel Ridge Regression: $$ \mathbf{w} = (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y} $$ - Neural Networks: $y = f_L \circ f_{L-1} \circ \cdots \circ f_1(\mathbf{x})$ ### 10.2 Defect Detection **Convolutional Neural Networks**: $$ (f * g)[n] = \sum_m f[m] \cdot g[n-m] $$ - Feature extraction through learned filters - Pooling for translation invariance **Anomaly Detection**: - Autoencoders: $\text{loss} = \|x - D(E(x))\|^2$ - Isolation Forest: anomaly score based on path length ### 10.3 Process Optimization **Bayesian Optimization**: $$ x_{next} = \arg\max_x \alpha(x | \mathcal{D}) $$ **Acquisition Functions**: - Expected Improvement: $\alpha_{EI}(x) = \mathbb{E}[\max(f(x) - f^*, 0)]$ - Upper Confidence Bound: $\alpha_{UCB}(x) = \mu(x) + \kappa \sigma(x)$ ## Summary Table | Domain | Key Mathematical Topics | |--------|-------------------------| | **Lithography** | Fourier analysis, inverse problems, PDEs, optimization | | **Device Physics** | Quantum mechanics, functional analysis, group theory | | **Process Simulation** | Nonlinear PDEs, Monte Carlo, stochastic processes | | **Electromagnetics** | Maxwell's equations, BEM, PEEC, capacitance/inductance extraction | | **Statistics** | Multivariate Gaussian, PCA, polynomial chaos, yield models | | **Optimization** | Response surface, inverse problems, Levenberg-Marquardt | | **Physical Design** | Graph theory, combinatorial optimization, ILP, Steiner trees | | **Thermal/Mechanical** | Continuum mechanics, FEM, tensor analysis | | **Atomistic Modeling** | Statistical mechanics, DFT, KMC, molecular dynamics | | **Machine Learning** | Neural networks, Bayesian inference, optimization |

adversarial examples for interpretability, explainable ai

Use adversarial examples to probe model understanding.

adversarial examples,ai safety

Inputs designed to fool the model into wrong predictions.

adversarial loss in generation, generative models

GAN-style discriminator loss.

adversarial perturbation budget, ai safety

Maximum allowed perturbation size.

adversarial prompt, ai safety

Adversarial prompts attempt to elicit undesired behaviors testing model robustness.

adversarial prompting, ai safety

Test model robustness with adversarial inputs.

adversarial robustness evaluation, ai safety

Measure resilience to adversarial attacks.

adversarial suffix attack,ai safety

Append carefully crafted text to jailbreak model.

adversarial training defense, interpretability

Adversarial training improves robustness by augmenting training with adversarial examples.