← Back to AI Factory Chat

AI Factory Glossary

3,145 technical terms and definitions

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Showing page 3 of 63 (3,145 entries)

aluminum etch,al metal etch,aluminum metal etch modeling,al etch modeling,aluminum chlorine etch,alcl3,metal etch plasma,aluminum plasma etch,bcl3 etch

# Aluminum Metal Etch Mathematical Modeling 1. Overview 1.1 Why Aluminum Etch Modeling is Complex Aluminum etching (typically using $\text{Cl}_2/\text{BCl}_3$ plasmas) involves multiple coupled physical and chemical phenomena: - Plasma generation and transport → determines species fluxes to wafer - Ion-surface interactions → physical and chemical mechanisms - Surface reactions → Langmuir-Hinshelwood kinetics - Feature-scale evolution → profile development inside trenches/vias - Redeposition and passivation → sidewall chemistry 1.2 Fundamental Reaction The basic aluminum chlorination reaction: $$ \text{Al} + 3\text{Cl} \rightarrow \text{AlCl}_3 \uparrow $$ Complications requiring sophisticated modeling: - Breaking through native $\text{Al}_2\text{O}_3$ layer (15-30 Å) - Maintaining profile anisotropy - Controlling selectivity to mask and underlayers - Managing Cu residues in Al-Cu alloys 2. Kinetic and Chemical Rate Modeling 2.1 General Etch Rate Formulation A comprehensive etch rate model combines three primary mechanisms: $$ ER = \underbrace{k_{th} \cdot \Gamma_{Cl} \cdot f(\theta)}_{\text{thermal chemical}} + \underbrace{Y_s \cdot \Gamma_{ion} \cdot \sqrt{E_{ion}}}_{\text{physical sputtering}} + \underbrace{\beta \cdot \Gamma_{ion}^a \cdot \Gamma_{Cl}^b \cdot E_{ion}^c}_{\text{ion-enhanced (synergistic)}} $$ Parameter Definitions: | Symbol | Description | Units | |--------|-------------|-------| | $\Gamma_{Cl}$ | Neutral chlorine flux | $\text{cm}^{-2}\text{s}^{-1}$ | | $\Gamma_{ion}$ | Ion flux | $\text{cm}^{-2}\text{s}^{-1}$ | | $E_{ion}$ | Ion energy | eV | | $\theta$ | Surface coverage of reactive species | dimensionless | | $Y_s$ | Physical sputtering yield | atoms/ion | | $\beta$ | Synergy coefficient | varies | | $a, b, c$ | Exponents (typically 0.5-1) | dimensionless | 2.2 Surface Coverage Dynamics The reactive site balance follows Langmuir-Hinshelwood kinetics: $$ \frac{d\theta}{dt} = k_{ads} \cdot \Gamma_{Cl} \cdot (1-\theta) - k_{des} \cdot \theta \cdot \exp\left(-\frac{E_d}{k_B T}\right) - Y_{react}(\theta, E_{ion}) \cdot \Gamma_{ion} \cdot \theta $$ Term-by-term breakdown: - Term 1: $k_{ads} \cdot \Gamma_{Cl} \cdot (1-\theta)$ — Adsorption rate (proportional to empty sites) - Term 2: $k_{des} \cdot \theta \cdot \exp(-E_d/k_B T)$ — Thermal desorption (Arrhenius) - Term 3: $Y_{react} \cdot \Gamma_{ion} \cdot \theta$ — Ion-induced reaction/removal Steady-State Solution ($d\theta/dt = 0$): $$ \theta_{ss} = \frac{k_{ads} \cdot \Gamma_{Cl}}{k_{ads} \cdot \Gamma_{Cl} + k_{des} \cdot e^{-E_d/k_B T} + Y_{react} \cdot \Gamma_{ion}} $$ 2.3 Temperature Dependence All rate constants follow Arrhenius behavior: $$ k_i(T) = A_i \cdot \exp\left(-\frac{E_{a,i}}{k_B T}\right) $$ Typical activation energies for aluminum etching: - Ion-enhanced reactions: $E_a \approx 0.1 - 0.3 \text{ eV}$ - Purely thermal processes: $E_a \approx 0.5 - 1.0 \text{ eV}$ - Chlorine desorption: $E_d \approx 0.3 - 0.5 \text{ eV}$ 2.4 Complete Etch Rate Expression Combining all terms with explicit dependencies: $$ ER(T, \Gamma_{ion}, \Gamma_{Cl}, E_{ion}) = A_1 e^{-E_1/k_B T} \Gamma_{Cl} \theta + Y_0 \Gamma_{ion} \sqrt{E_{ion}} + A_2 e^{-E_2/k_B T} \Gamma_{ion}^{0.5} \Gamma_{Cl}^{0.5} E_{ion}^{0.5} $$ 3. Ion-Surface Interaction Physics 3.1 Ion Energy Distribution Function (IEDF) For RF-biased electrodes, the IEDF is approximately bimodal: $$ f(E) \propto \frac{1}{\sqrt{|E - E_{dc}|}} \quad \text{for } E_{dc} - E_{rf} < E < E_{dc} + E_{rf} $$ Key parameters: - $E_{dc} = e \cdot V_{dc}$ — DC self-bias energy - $E_{rf} = e \cdot V_{rf}$ — RF amplitude energy - Peak separation: $\Delta E = 2 E_{rf}$ Collisional effects: In collisional sheaths, charge-exchange collisions broaden the distribution: $$ f(E) \propto \exp\left(-\frac{E}{\bar{E}}\right) \cdot \left[1 + \text{erf}\left(\frac{E - E_{dc}}{\sigma_E}\right)\right] $$ 3.2 Ion Angular Distribution Function (IADF) The angular spread is approximately Gaussian: $$ f(\theta) = \frac{1}{\sqrt{2\pi}\sigma_\theta} \exp\left(-\frac{\theta^2}{2\sigma_\theta^2}\right) $$ Angular spread calculation: $$ \sigma_\theta \approx \sqrt{\frac{k_B T_i}{e V_{sheath}}} \approx \arctan\left(\sqrt{\frac{T_i}{V_{sheath}}}\right) $$ Typical values: - Ion temperature: $T_i \approx 0.05 - 0.5 \text{ eV}$ - Sheath voltage: $V_{sheath} \approx 50 - 500 \text{ V}$ - Angular spread: $\sigma_\theta \approx 2° - 5°$ 3.3 Physical Sputtering Yield Yamamura Formula (Angular Dependence) $$ Y(\theta) = Y(0°) \cdot \cos^{-f}(\theta) \cdot \exp\left[b\left(1 - \frac{1}{\cos\theta}\right)\right] $$ Parameters for aluminum: - $f \approx 1.5 - 2.0$ - $b \approx 0.1 - 0.3$ (depends on ion/target mass ratio) - Maximum yield typically at $\theta \approx 60° - 70°$ Sigmund Theory (Energy Dependence) $$ Y(E) = \frac{0.042 \cdot Q \cdot \alpha(M_2/M_1) \cdot S_n(E)}{U_s} $$ Where: - $S_n(E)$ = nuclear stopping power (Thomas-Fermi) - $U_s = 3.4 \text{ eV}$ (surface binding energy for Al) - $Q$ = dimensionless factor ($\approx 1$ for metals) - $\alpha$ = mass-dependent parameter - $M_1, M_2$ = projectile and target masses Nuclear Stopping Power $$ S_n(\epsilon) = \frac{0.5 \ln(1 + 1.2288\epsilon)}{\epsilon + 0.1728\sqrt{\epsilon} + 0.008\epsilon^{0.1504}} $$ With reduced energy: $$ \epsilon = \frac{M_2 E}{(M_1 + M_2) Z_1 Z_2 e^2} \cdot \frac{a_{TF}}{1} $$ 3.4 Ion-Enhanced Etching Yield The total etch yield combines mechanisms: $$ Y_{total} = Y_{physical} + Y_{chemical} + Y_{synergistic} $$ Synergistic enhancement factor: $$ \eta = \frac{Y_{total}}{Y_{physical} + Y_{chemical}} > 1 $$ For Al/Cl₂ systems, $\eta$ can exceed 10 under optimal conditions. 4. Plasma Modeling (Reactor Scale) 4.1 Species Continuity Equations For each species $i$ (electrons, ions, neutrals): $$ \frac{\partial n_i}{\partial t} + \nabla \cdot \vec{\Gamma}_i = S_i - L_i $$ Flux expressions: - Drift-diffusion: $\vec{\Gamma}_i = -D_i \nabla n_i + \mu_i n_i \vec{E}$ - Full momentum: $\vec{\Gamma}_i = n_i \vec{v}_i$ with momentum equation Source/sink terms: $$ S_i = \sum_j k_{ij} n_j n_e \quad \text{(ionization, dissociation)} $$ $$ L_i = \sum_j k_{ij}^{loss} n_i n_j \quad \text{(recombination, attachment)} $$ 4.2 Electron Energy Balance $$ \frac{\partial}{\partial t}\left(\frac{3}{2} n_e k_B T_e\right) + \nabla \cdot \vec{Q}_e = P_{abs} - P_{loss} $$ Heat flux: $$ \vec{Q}_e = \frac{5}{2} k_B T_e \vec{\Gamma}_e - \kappa_e \nabla T_e $$ Power absorption (ICP): $$ P_{abs} = \frac{1}{2} \text{Re}(\sigma_p) |E|^2 $$ Collisional losses: $$ P_{loss} = \sum_j n_e n_j k_j \varepsilon_j $$ Where $\varepsilon_j$ is the energy loss per collision event $j$. 4.3 Plasma Conductivity $$ \sigma_p = \frac{n_e e^2}{m_e(\nu_m + i\omega)} $$ Skin depth: $$ \delta = \sqrt{\frac{2}{\omega \mu_0 \text{Re}(\sigma_p)}} $$ 4.4 Electromagnetic Field Equations Maxwell's equations (frequency domain): $$ \nabla \times \vec{E} = -i\omega \vec{B} $$ $$ \nabla \times \vec{B} = \mu_0 \sigma_p \vec{E} + i\omega \mu_0 \epsilon_0 \vec{E} $$ Wave equation: $$ \nabla^2 \vec{E} + \left(\frac{\omega^2}{c^2} - i\omega\mu_0\sigma_p\right)\vec{E} = 0 $$ 4.5 Sheath Physics Child-Langmuir Law (Collisionless Sheath) $$ J_{ion} = \frac{4\epsilon_0}{9}\sqrt{\frac{2e}{M}} \cdot \frac{V_s^{3/2}}{s^2} $$ Where: - $J_{ion}$ = ion current density - $V_s$ = sheath voltage - $s$ = sheath thickness - $M$ = ion mass Bohm Criterion Ions must enter sheath with velocity: $$ v_{Bohm} = \sqrt{\frac{k_B T_e}{M}} $$ Ion flux at sheath edge: $$ \Gamma_{ion} = n_s \cdot v_{Bohm} = 0.61 \cdot n_0 \sqrt{\frac{k_B T_e}{M}} $$ Sheath Thickness $$ s \approx \lambda_D \cdot \left(\frac{2 e V_s}{k_B T_e}\right)^{3/4} $$ Debye length: $$ \lambda_D = \sqrt{\frac{\epsilon_0 k_B T_e}{n_e e^2}} $$ 5. Feature-Scale Profile Evolution 5.1 Level Set Method The surface is represented implicitly by $\phi(\vec{r}, t) = 0$: $$ \frac{\partial \phi}{\partial t} + V_n |\nabla \phi| = 0 $$ Normal velocity calculation: $$ V_n(\vec{r}) = \int_0^{E_{max}} \int_0^{\theta_{max}} Y(E, \theta_{local}) \cdot f_{IEDF}(E) \cdot f_{IADF}(\theta) \cdot \Gamma_{ion}(\vec{r}) \, dE \, d\theta $$ Plus contributions from: - Neutral chemical etching - Redeposition - Surface diffusion 5.2 Hamilton-Jacobi Formulation $$ \frac{\partial \phi}{\partial t} + H(\nabla \phi, \vec{r}, t) = 0 $$ Hamiltonian for etch: $$ H = V_n \sqrt{\phi_x^2 + \phi_y^2 + \phi_z^2} $$ With $V_n$ dependent on: - Local surface normal: $\hat{n} = -\nabla\phi / |\nabla\phi|$ - Local fluxes: $\Gamma(\vec{r})$ - Local angles: $\theta = \arccos(\hat{n} \cdot \hat{z})$ 5.3 Visibility and View Factors Direct Flux The flux reaching a point inside a feature depends on solid angle visibility: $$ \Gamma_{direct}(\vec{r}) = \int_{\Omega_{visible}} \Gamma_0 \cdot \cos\theta \cdot \frac{d\Omega}{\pi} $$ Reflected/Reemitted Flux For neutrals with sticking coefficient $s$: $$ \Gamma_{total}(\vec{r}) = \Gamma_{direct}(\vec{r}) + (1-s) \cdot \Gamma_{reflected}(\vec{r}) $$ This leads to coupled integral equations: $$ \Gamma(\vec{r}) = \Gamma_{plasma}(\vec{r}) + (1-s) \int_{S'} K(\vec{r}, \vec{r'}) \Gamma(\vec{r'}) dS' $$ Kernel function: $$ K(\vec{r}, \vec{r'}) = \frac{\cos\theta \cos\theta'}{\pi |\vec{r} - \vec{r'}|^2} \cdot V(\vec{r}, \vec{r'}) $$ Where $V(\vec{r}, \vec{r'})$ is the visibility function (1 if visible, 0 otherwise). 5.4 Aspect Ratio Dependent Etching (ARDE) Empirical model: $$ \frac{ER(AR)}{ER_0} = \frac{1}{1 + (AR/AR_c)^n} $$ Where: - $AR = \text{depth}/\text{width}$ (aspect ratio) - $AR_c$ = critical aspect ratio (process-dependent) - $n \approx 1 - 2$ Knudsen transport model: $$ \Gamma_{neutral}(z) = \Gamma_0 \cdot \frac{W}{W + \alpha \cdot z} $$ Where: - $z$ = feature depth - $W$ = feature width - $\alpha$ = Clausing factor (depends on geometry and sticking) Clausing factor for cylinder: $$ \alpha = \frac{8}{3} \cdot \frac{1 - s}{s} $$ 6. Aluminum-Specific Phenomena 6.1 Native Oxide Breakthrough $\text{Al}_2\text{O}_3$ (15-30 Å native oxide) requires physical sputtering: $$ ER_{oxide} \approx Y_{\text{BCl}_3^+}(E) \cdot \Gamma_{ion} $$ Why BCl₃ is critical: 1. Heavy $\text{BCl}_3^+$ ions provide efficient momentum transfer 2. BCl₃ scavenges oxygen chemically: $$ 2\text{BCl}_3 + \text{Al}_2\text{O}_3 \rightarrow 2\text{AlCl}_3 \uparrow + \text{B}_2\text{O}_3 $$ Breakthrough time: $$ t_{breakthrough} = \frac{d_{oxide}}{ER_{oxide}} = \frac{d_{oxide}}{Y_{BCl_3^+} \cdot \Gamma_{ion}} $$ 6.2 Sidewall Passivation Dynamics Anisotropic profiles require passivation of sidewalls: $$ \frac{d\tau_{pass}}{dt} = R_{dep}(\Gamma_{redeposition}, s_{stick}) - R_{removal}(\Gamma_{ion}, \theta_{sidewall}) $$ Deposition sources: - $\text{AlCl}_x$ redeposition from etch products - Photoresist erosion products (C, H, O, N) - Intentional additives: $\text{N}_2 \rightarrow \text{AlN}$ formation Why sidewalls are protected: At grazing incidence ($\theta \approx 85° - 90°$): - Ion flux geometric factor: $\Gamma_{sidewall} = \Gamma_0 \cdot \cos(90° - \alpha) \approx \Gamma_0 \cdot \sin\alpha$ - For $\alpha = 5°$: $\Gamma_{sidewall} \approx 0.09 \cdot \Gamma_0$ - Sputtering yield at grazing incidence approaches zero - Net passivation accumulates → blocks lateral etching 6.3 Notching and Charging Effects At dielectric interfaces, differential charging causes ion deflection: Surface charge evolution: $$ \frac{d\sigma}{dt} = J_{ion} - J_{electron} $$ Where: - $\sigma$ = surface charge density (C/cm²) - $J_{ion}$ = ion current (always positive) - $J_{electron}$ = electron current (depends on local potential) Local electric field: $$ \vec{E}_{charging} = -\nabla V_{charging} $$ Laplace equation in feature: $$ \nabla^2 V = -\frac{\rho}{\epsilon_0} \quad \text{(with } \rho = 0 \text{ in vacuum)} $$ Modified ion trajectory: $$ m \frac{d^2\vec{r}}{dt^2} = e\left(\vec{E}_{sheath} + \vec{E}_{charging}\right) $$ Result: Ions deflect toward charged surfaces → notching at feature bottom. Mitigation strategies: - Pulsed plasmas (allow electron neutralization) - Low-frequency bias (time for charge equilibration) - Conductive underlayers 6.4 Copper Residue Formation (Al-Cu Alloys) Al-Cu alloys (0.5-4% Cu) leave Cu residues because Cu chlorides are less volatile: Volatility comparison: | Species | Sublimation/Boiling Point | |---------|---------------------------| | $\text{AlCl}_3$ | 180°C (sublimes) | | $\text{CuCl}$ | 430°C (sublimes) | | $\text{CuCl}_2$ | 300°C (decomposes) | Residue accumulation rate: $$ \frac{d[\text{Cu}]_{surface}}{dt} = x_{Cu} \cdot ER_{Al} - ER_{Cu} $$ Where: - $x_{Cu}$ = Cu atomic fraction in alloy - At low temperature: $ER_{Cu} \ll x_{Cu} \cdot ER_{Al}$ Solutions: - Elevated substrate temperature ($>$150°C) - Increased BCl₃ fraction - Post-etch treatments 7. Numerical Methods 7.1 Level Set Discretization Upwind Finite Differences Using Hamilton-Jacobi ENO (Essentially Non-Oscillatory) schemes: $$ \phi_i^{n+1} = \phi_i^n - \Delta t \cdot H(\phi_x^-, \phi_x^+, \phi_y^-, \phi_y^+) $$ One-sided derivatives: $$ \phi_x^- = \frac{\phi_i - \phi_{i-1}}{\Delta x}, \quad \phi_x^+ = \frac{\phi_{i+1} - \phi_i}{\Delta x} $$ Godunov flux for $H = V_n |\nabla\phi|$: $$ H^{Godunov} = \begin{cases} V_n \sqrt{\max(\phi_x^{-,+},0)^2 + \max(\phi_y^{-,+},0)^2} & \text{if } V_n > 0 \\ V_n \sqrt{\max(\phi_x^{+,-},0)^2 + \max(\phi_y^{+,-},0)^2} & \text{if } V_n < 0 \end{cases} $$ Reinitialization Maintain $|\nabla\phi| = 1$ using: $$ \frac{\partial \phi}{\partial \tau} = \text{sign}(\phi_0)(1 - |\nabla\phi|) $$ Iterate in pseudo-time $\tau$ until convergence. 7.2 Monte Carlo Feature-Scale Simulation Algorithm: 1. INITIALIZE surface mesh 2. FOR each time step: a. FOR i = 1 to N_particles: - Sample particle from IEDF, IADF - Launch from plasma boundary - TRACE trajectory until surface hit - APPLY reaction probability: * Etch (remove cell) with probability P_etch * Reflect with probability P_reflect * Deposit with probability P_deposit b. UPDATE surface mesh c. CHECK for convergence 3. OUTPUT final profile Variance reduction techniques: - Importance sampling: Weight particles toward features of interest - Particle splitting: Increase statistics in critical regions - Russian roulette: Terminate low-weight particles probabilistically 7.3 Coupled Multi-Scale Modeling | Scale | Domain | Method | Outputs | |-------|--------|--------|---------| | Reactor | m | Fluid/hybrid plasma | $n_e$, $T_e$, species densities | | Sheath | mm | PIC or fluid | IEDF, IADF, fluxes | | Feature | nm-μm | Level set / Monte Carlo | Profile evolution | | Atomistic | Å | MD / DFT | Yields, sticking coefficients | Coupling strategy: $$ \text{Reactor} \xrightarrow{\Gamma_i, f(E), f(\theta)} \text{Feature} \xrightarrow{ER(\vec{r})} \text{Reactor} $$ 7.4 Plasma Solver Discretization Finite element for Poisson's equation: $$ \nabla \cdot (\epsilon \nabla V) = -\rho $$ Weak form: $$ \int_\Omega \epsilon \nabla V \cdot \nabla w \, d\Omega = \int_\Omega \rho \, w \, d\Omega $$ Finite volume for transport: $$ \frac{d(n_i V_j)}{dt} = -\sum_{faces} \Gamma_i \cdot \hat{n} \cdot A + S_i V_j $$ 8. Process Window and Optimization 8.1 Response Surface Modeling Quadratic response surface: $$ ER = \beta_0 + \sum_{i=1}^{k} \beta_i x_i + \sum_{i=1}^{k} \beta_{ii} x_i^2 + \sum_{i T_i \end{cases} $$ Optimization problem: $$ \max_{\vec{x}} D(\vec{x}) $$ Subject to: - $85° < \text{sidewall angle} < 90°$ - $\text{Selectivity}_{Al:resist} > 3:1$ - $\text{Selectivity}_{Al:TiN} > 10:1$ - $\text{Uniformity} < 3\%$ (1σ) 8.3 Virtual Metrology Prediction model: $$ \vec{y}_{etch} = f_{ML}\left(\vec{x}_{recipe}, \vec{x}_{OES}, \vec{x}_{chamber}\right) $$ Input features: - Recipe: Power, pressure, flows, time - OES: Emission line intensities (e.g., Al 396nm, Cl 837nm) - Chamber: Impedance, temperature, previous wafer history Machine learning approaches: - Neural networks (for complex nonlinear relationships) - Gaussian processes (with uncertainty quantification) - Partial least squares (for high-dimensional, correlated inputs) 8.4 Run-to-Run Control EWMA (Exponentially Weighted Moving Average) controller: $$ \vec{x}_{k+1} = \vec{x}_k + \Lambda G^{-1}(\vec{y}_{target} - \vec{y}_k) $$ Where: - $\Lambda$ = diagonal weighting matrix (0 < λ < 1) - $G$ = process gain matrix ($\partial y / \partial x$) Drift compensation: $$ \vec{x}_{k+1} = \vec{x}_k + \Lambda_1 G^{-1}(\vec{y}_{target} - \vec{y}_k) + \Lambda_2 (\vec{x}_{k} - \vec{x}_{k-1}) $$ 9. Equations: | Physics | Governing Equation | |---------|-------------------| | Etch rate | $ER = k\Gamma_{Cl}\theta + Y\Gamma_{ion}\sqrt{E} + \beta\Gamma_{ion}\Gamma_{Cl}E^c$ | | Surface coverage | $\theta = \dfrac{k_{ads}\Gamma}{k_{ads}\Gamma + k_{des}e^{-E_d/kT} + Y\Gamma_{ion}}$ | | Profile evolution | $\dfrac{\partial\phi}{\partial t} + V_n|\nabla\phi| = 0$ | | Ion flux (sheath) | $J_{ion} = \dfrac{4\epsilon_0}{9}\sqrt{\dfrac{2e}{M}} \cdot \dfrac{V^{3/2}}{s^2}$ | | ARDE | $\dfrac{ER(AR)}{ER_0} = \dfrac{1}{1 + (AR/AR_c)^n}$ | | View factor | $\Gamma(\vec{r}) = \displaystyle\int_{\Omega} \Gamma_0 \cos\theta \, \dfrac{d\Omega}{\pi}$ | | Sputtering yield | $Y(\theta) = Y_0 \cos^{-f}\theta \cdot \exp\left[b\left(1 - \dfrac{1}{\cos\theta}\right)\right]$ | | Species transport | $\dfrac{\partial n_i}{\partial t} + \nabla \cdot \vec{\Gamma}_i = S_i - L_i$ | 10. Modern Developments 10.1 Machine Learning Integration Applications: - Yield prediction: Neural networks trained on MD simulation data - Surrogate models: Replace expensive PDE solvers for real-time optimization - Process control: Reinforcement learning for adaptive recipes Example: Gaussian Process for Etch Rate: $$ ER(\vec{x}) \sim \mathcal{GP}\left(m(\vec{x}), k(\vec{x}, \vec{x}')\right) $$ With squared exponential kernel: $$ k(\vec{x}, \vec{x}') = \sigma_f^2 \exp\left(-\frac{|\vec{x} - \vec{x}'|^2}{2\ell^2}\right) $$ 10.2 Atomistic-Continuum Bridging ReaxFF molecular dynamics: - Reactive force fields for Al-Cl-O systems - Calculate fundamental yields and sticking coefficients - Feed into continuum models DFT calculations: - Adsorption energies: $E_{ads} = E_{surface+adsorbate} - E_{surface} - E_{adsorbate}$ - Activation barriers via NEB (Nudged Elastic Band) - Electronic structure effects on reactivity 10.3 Digital Twins Components: - Real-time sensor data ingestion - Physics-based + ML hybrid models - Predictive maintenance algorithms - Virtual process development Update equation: $$ \vec{\theta}_{model}^{(k+1)} = \vec{\theta}_{model}^{(k)} + K_k \left(\vec{y}_{measured} - \vec{y}_{predicted}\right) $$ 10.4 Uncertainty Quantification Bayesian calibration: $$ p(\vec{\theta}|\vec{y}) \propto p(\vec{y}|\vec{\theta}) \cdot p(\vec{\theta}) $$ Propagation through models: $$ \text{Var}(y) \approx \sum_i \left(\frac{\partial y}{\partial \theta_i}\right)^2 \text{Var}(\theta_i) $$ Monte Carlo uncertainty: $$ \bar{y} \pm t_{\alpha/2} \cdot \frac{s}{\sqrt{N}} $$ Physical Constants | Constant | Symbol | Value | |----------|--------|-------| | Boltzmann constant | $k_B$ | $1.381 \times 10^{-23}$ J/K | | Electron charge | $e$ | $1.602 \times 10^{-19}$ C | | Electron mass | $m_e$ | $9.109 \times 10^{-31}$ kg | | Permittivity of vacuum | $\epsilon_0$ | $8.854 \times 10^{-12}$ F/m | | Al atomic mass | $M_{Al}$ | 26.98 amu | | Al surface binding energy | $U_s$ | 3.4 eV | Process Conditions | Parameter | Typical Range | |-----------|---------------| | Pressure | 5-50 mTorr | | Source power (ICP) | 200-1000 W | | Bias power (RF) | 50-300 W | | Cl₂ flow | 20-100 sccm | | BCl₃ flow | 20-80 sccm | | Temperature | 20-80°C | | Etch rate | 300-800 nm/min |

always-on domain,design

Power domain that stays on.

ambipolar diffusion, device physics

Coupled electron-hole diffusion.

amoebanet, neural architecture search

AmoebaNet uses regularized evolution for neural architecture search demonstrating that simple aging-based regularization improves discovered architectures.

amsaa model, amsaa, business & standards

AMSAA model provides statistical framework for reliability growth analysis.

amsaa model, amsaa, reliability

Army reliability growth model.

ancestral sampling, generative models

Stochastic diffusion sampling.

ancestral sampling,generative models

Stochastic sampling following original process.

anchors, explainable ai

High-precision rules explaining predictions.

ani, ani, chemistry ai

Neural network potential for organic molecules.

annealed langevin dynamics,generative models

Use schedule of noise levels.

anode, anode, neural architecture

Specific augmentation strategy for Neural ODEs.

anomaly detection, ai safety

Anomaly detection identifies unusual inputs warranting careful handling.

ansor, model optimization

Ansor generates optimized tensor programs through hierarchical search and learned cost models.

antibody design,healthcare ai

Create therapeutic antibodies.

antifuse repair, yield enhancement

Antifuse-based repair creates permanent connections to redundant memory elements by applying high voltage to form conductive links.

any-precision networks, model optimization

Support arbitrary bit-widths.

aot compilation, aot, model optimization

Ahead-of-time compilation generates optimized binaries before deployment reducing startup time.

api documentation generation, api, code ai

Auto-generate API docs from code.

api learning,ai agent

Train models to understand and use external APIs.

api sequence generation,code ai

Generate correct sequences of API calls.

appraisal costs, quality

Cost of inspection and testing.

appropriate refusals, ai safety

Decline genuinely harmful requests.

approximate computing, model optimization

Approximate computing trades accuracy for efficiency using lower-precision or simplified operations.

architecture crossover, neural architecture search

Architecture crossover combines parent architectures by exchanging substructures creating offspring networks.

architecture encoding, neural architecture search

Architecture encoding represents network structures as vectors graphs or sequences enabling architecture optimization.

architecture mutation, neural architecture search

Architecture mutations in evolutionary NAS modify network structures through operations like adding layers or changing connections.

argmax flows, generative models

Invertible functions for discrete data.

arima modeling, arima, statistics

Time series forecasting.

arima, arima, time series models

AutoRegressive Integrated Moving Average models time series through differencing and combining autoregression with moving average components.

assertion generation, code ai

Generate test assertions.

asymmetric loss functions, machine learning

Different penalties for different errors.

async generation, llm optimization

Asynchronous generation handles multiple requests concurrently maximizing throughput.

async,await,concurrency

Async/await enables concurrent I/O without threads. Event loop. Python asyncio, JavaScript promises.

atlas,foundation model

Retrieval-augmented model for knowledge-intensive tasks.

attention distance analysis, explainable ai

Study how far attention reaches.

attention flow, explainable ai

Trace attention patterns through network.

attention forecasting, time series models

Attention mechanisms in time series weight historical values adaptively for improved forecasting accuracy.

attention head roles, explainable ai

Different functions of attention heads.

attention head scaling, transformer

Scale attention by head dimension.

attention mask,transformer

Binary mask indicating which tokens to attend to vs ignore (for padding).

attention pooling graph, graph neural networks

Attention-based graph pooling learns soft cluster assignments through self-attention over node features.

attention rollout in vit, explainable ai

Aggregate attention across layers.

attention rollout, explainable ai

Aggregate attention across layers for interpretability.

attention sink, llm architecture

Keep first tokens for stable attention.

attention transfer, model compression

Transfer attention maps from teacher.

attention visualization in vit, explainable ai

Visualize what model attends to.

attention visualization,ai safety

Inspect attention weights to see what the model focuses on.

attention-based explain, recommendation systems

Attention-based explanations visualize which user history items or features influenced specific recommendations.

attention-based fusion, multimodal ai

Use attention to weight modalities.