api calling, api, tool use
Invoke external APIs.
513 technical terms and definitions
Invoke external APIs.
I can help you design clear APIs: endpoints, payloads, error formats, and versioning strategies for REST or gRPC services.
Generate API documentation. OpenAPI specs from code.
Auto-generate API docs from code.
Single entry point routing requests to services.
API integration enables models to retrieve information or perform actions through web services.
Securely store and rotate access keys.
Train models to understand and use external APIs.
Rate limits protect APIs from abuse. Track tokens/requests per minute. Return 429 errors when exceeded. Use queuing for spikes.
Generate correct sequences of API calls.
Evaluation dataset for API use.
Cost of inspection and testing.
Decline genuinely harmful requests.
Simulation-based inference.
Trade accuracy for efficiency.
Approximate computing trades accuracy for efficiency using lower-precision or simplified operations.
Efficient similarity search.
Advanced Product Quality Planning structures product development ensuring quality and customer satisfaction.
Acceptable Quality Level defines maximum defect rate considered acceptable for lot acceptance.
Algebra questions with rationales.
Law school admission test.
Transfer any style without retraining.
Arc-eager is a transition system that builds dependencies eagerly allowing left arcs to be added immediately upon recognition.
Arc-standard is a transition system for dependency parsing using shift reduce and arc operations to construct dependency trees incrementally.
AI2 Reasoning Challenge tests scientific reasoning and knowledge.
Architecture crossover combines parent architectures by exchanging substructures creating offspring networks.
Architecture encoding represents network structures as vectors graphs or sequences enabling architecture optimization.
Design buildings and structures.
Architecture mutations in evolutionary NAS modify network structures through operations like adding layers or changing connections.
AI assists architecture design. Suggest patterns, trade-offs.
Etch rate varies with aspect ratio as mentioned earlier.
Aperture area to sidewall area.
Mismatch decreases with device area.
193nm DUV light source.
Argilla combines annotation and feedback. Human-in-the-loop. Open source.
Invertible functions for discrete data.
Extract arguments from text.
Time series forecasting.
ARIMA models capture autocorrelated process behavior for forecasting and control.
AutoRegressive Integrated Moving Average models time series through differencing and combining autoregression with moving average components.
Operations per byte ratio.
Arrhenius equation models temperature acceleration using activation energy.
Model temperature acceleration of failures.
Apache Arrow is in-memory columnar format. Zero-copy reads. Interoperability standard.
Aerospace quality standard.
Improved version of SAM.
asdf is universal version manager. Python, Node, Ruby, etc.
ASIC = Application-Specific Integrated Circuit. Custom chip designed for one purpose. Maximum efficiency but expensive to develop.
# EUV Lithography ## EUV ## 1. Introduction to EUV ### Market - 100% market share in EUV lithography by top EUV vendor - ~90% market share in advanced DUV lithography - Critical supplier to all leading-edge semiconductor fabs ## 2. Lithography Fundamentals ### The Rayleigh Criterion The fundamental resolution limit in optical lithography is governed by the **Rayleigh Criterion**: $$ R = k_1 \cdot \frac{\lambda}{NA} $$ Where: - $R$ = minimum resolvable feature size (half-pitch) - $k_1$ = process-dependent factor (theoretical minimum: 0.25) - $\lambda$ = wavelength of light - $NA$ = numerical aperture of the optical system ### Depth of Focus (DOF) The depth of focus determines process tolerance: $$ DOF = k_2 \cdot \frac{\lambda}{NA^2} $$ Where: - $DOF$ = depth of focus - $k_2$ = process-dependent constant - $\lambda$ = wavelength - $NA$ = numerical aperture ### Resolution Enhancement Techniques (RET) 1. **Optical Proximity Correction (OPC)** - Sub-resolution assist features (SRAFs) - Serif additions/subtractions - Line-end extensions 2. **Phase-Shift Masks (PSM)** - Alternating PSM - Attenuated PSM - Phase difference: $\Delta\phi = \pi$ (180°) 3. **Multiple Patterning** - LELE (Litho-Etch-Litho-Etch) - SADP (Self-Aligned Double Patterning) - SAQP (Self-Aligned Quadruple Patterning) ## 3. EUV Technology ### Wavelength Comparison | Technology | Wavelength ($\lambda$) | Relative Resolution | |------------|------------------------|---------------------| | i-line | 365 nm | 1.00× | | KrF DUV | 248 nm | 1.47× | | ArF DUV | 193 nm | 1.89× | | ArF Immersion | 193 nm (effective ~134 nm) | 2.72× | | **EUV** | **13.5 nm** | **27.04×** | ### EUV Light Generation Process The **Laser-Produced Plasma (LPP)** source generates EUV light: 1. **Tin Droplet Generation** - Droplet diameter: $\approx 25 \, \mu m$ - Droplet velocity: $v \approx 70 \, m/s$ - Droplet frequency: $f = 50,000 \, Hz$ 2. **Pre-Pulse Laser** - Flattens the tin droplet into a pancake shape - Increases target cross-section 3. **Main Pulse Laser** - CO₂ laser power: $P \approx 20-30 \, kW$ - Creates plasma at temperature: $T \approx 500,000 \, K$ - Plasma emits EUV at $\lambda = 13.5 \, nm$ 4. **Conversion Efficiency** $$ \eta_{CE} = \frac{P_{EUV}}{P_{laser}} \approx 5-6\% $$ ### Optical Since EUV is absorbed by all materials, the system uses **reflective optics**: - **Mirror Material:** Multi-layer Mo/Si (Molybdenum/Silicon) - **Layer Thickness:** $$ d = \frac{\lambda}{2} \approx 6.75 \, nm $$ - **Number of Layer Pairs:** ~40-50 - **Peak Reflectivity:** $R \approx 67-70\%$ - **Total Optical Path Reflectivity:** $$ R_{total} = R^n \approx (0.67)^{11} \approx 1.2\% $$ ### EUV Mask Structure ``` - ┌─────────────────────────────────────┐ │ Absorber (TaN/TaBN) │ ← Pattern layer (~60-80 nm) ├─────────────────────────────────────┤ │ Capping Layer (Ru) │ ← Protective layer (~2.5 nm) ├─────────────────────────────────────┤ │ Multi-Layer Mirror (Mo/Si) │ ← 40-50 bilayer pairs │ ~~~~~~~~~~~~~~~~~~~~~~~~ │ │ ~~~~~~~~~~~~~~~~~~~~~~~~ │ ├─────────────────────────────────────┤ │ Low Thermal Expansion │ ← Substrate │ Material (LTEM) │ └─────────────────────────────────────┘ ``` ## 4. Scanner Systems ### Scanner vs. Stepper | Parameter | Stepper | Scanner | |-----------|---------|---------| | Exposure Method | Full-field | Slit scanning | | Field Size | Limited by lens | Larger effective field | | Throughput | Lower | Higher | | Overlay Control | Good | Excellent | ### Scanning Mechanism The wafer and reticle move in opposite directions during exposure: $$ v_{wafer} = \frac{v_{reticle}}{M} $$ Where: - $v_{wafer}$ = wafer stage velocity - $v_{reticle}$ = reticle stage velocity - $M$ = demagnification factor (typically 4×) ### Stage Positioning Accuracy - **Overlay Requirement:** $$ \sigma_{overlay} < \frac{CD}{4} \approx 1-2 \, nm $$ - **Stage Position Accuracy:** $$ \Delta x, \Delta y < 0.5 \, nm $$ - **Stage Velocity:** $$ v_{stage} \approx 2 \, m/s $$ ## 5. Specifications ### NXE:3600D Current EUV - **Numerical Aperture:** $NA = 0.33$ - **Wavelength:** $\lambda = 13.5 \, nm$ - **Resolution:** $$ R_{min} = k_1 \cdot \frac{13.5}{0.33} = k_1 \cdot 40.9 \, nm $$ With $k_1 = 0.3$: $R_{min} \approx 13 \, nm$ - **Throughput:** $> 160$ wafers per hour (WPH) - **Overlay:** $< 1.4 \, nm$ (machine-to-machine) - **Source Power:** $> 250 \, W$ at intermediate focus - **Cost:** ~€150-200 million ### TWINSCAN EXE:5000 High-NA EUV - **Numerical Aperture:** $NA = 0.55$ - **Wavelength:** $\lambda = 13.5 \, nm$ - **Resolution:** $$ R_{min} = k_1 \cdot \frac{13.5}{0.55} = k_1 \cdot 24.5 \, nm $$ With $k_1 = 0.3$: $R_{min} \approx 8 \, nm$ - **Resolution Improvement:** $$ \frac{R_{0.33}}{R_{0.55}} = \frac{0.55}{0.33} = 1.67\times $$ - **Anamorphic Optics:** 4× reduction in X, 8× reduction in Y - **Cost:** ~€350+ million - **Weight:** ~250 tons ### Throughput Calculation Wafers per hour (WPH) depends on: $$ WPH = \frac{3600}{t_{expose} + t_{move} + t_{align} + t_{overhead}} $$ Where typical values are: - $t_{expose}$ = exposure time per die - $t_{move}$ = stage movement time - $t_{align}$ = alignment time - $t_{overhead}$ = wafer load/unload time ## 6. Geopolitical Context ### Technology Nodes | Company | Node | EUV Layers | |---------|------|------------| | TSMC | N3 | ~20-25 | | TSMC | N2 | ~25-30 | | Samsung | 3GAE | ~20+ | | Intel | Intel 4 | ~5-10 | | Intel | Intel 18A | ~20+ | ### Economic Impact - **EUV System Cost:** $150-350M per tool - **Annual Revenue (ASML 2023):** ~€27.6 billion - **R&D Investment:** ~€4 billion annually - **Backlog:** >€40 billion ## Mathematical ### Equations | Equation | Formula | Application | |----------|---------|-------------| | Rayleigh Resolution | $R = k_1 \frac{\lambda}{NA}$ | Feature size limit | | Depth of Focus | $DOF = k_2 \frac{\lambda}{NA^2}$ | Process window | | Bragg Reflection | $2d\sin\theta = n\lambda$ | Mirror design | | Conversion Efficiency | $\eta = \frac{P_{out}}{P_{in}}$ | Source efficiency | | Throughput | $WPH = \frac{3600}{\sum t_i}$ | Productivity | ### Node Roadmap with Resolution | Node | Half-Pitch | EUV Layers | Year | |------|------------|------------|------| | 7nm | ~36 nm | 5-10 | 2018 | | 5nm | ~27 nm | 10-15 | 2020 | | 3nm | ~21 nm | 20-25 | 2022 | | 2nm | ~15 nm | 25-30 | 2025 | | A14 | ~10 nm | High-NA | 2027+| ## Physical Constants | Constant | Symbol | Value | |----------|--------|-------| | EUV Wavelength | $\lambda_{EUV}$ | $13.5 \, nm$ | | Speed of Light | $c$ | $3 \times 10^8 \, m/s$ | | Planck's Constant | $h$ | $6.626 \times 10^{-34} \, J \cdot s$ | | EUV Photon Energy | $E_{EUV}$ | $91.8 \, eV$ | Photon energy calculation: $$ E = \frac{hc}{\lambda} = \frac{(6.626 \times 10^{-34})(3 \times 10^8)}{13.5 \times 10^{-9}} = 1.47 \times 10^{-17} \, J = 91.8 \, eV $$
# EUV Lithography ## EUV ## 1. Introduction to EUV ### Market - 100% market share in EUV lithography by top EUV vendor - ~90% market share in advanced DUV lithography - Critical supplier to all leading-edge semiconductor fabs ## 2. Lithography Fundamentals ### The Rayleigh Criterion The fundamental resolution limit in optical lithography is governed by the **Rayleigh Criterion**: $$ R = k_1 \cdot \frac{\lambda}{NA} $$ Where: - $R$ = minimum resolvable feature size (half-pitch) - $k_1$ = process-dependent factor (theoretical minimum: 0.25) - $\lambda$ = wavelength of light - $NA$ = numerical aperture of the optical system ### Depth of Focus (DOF) The depth of focus determines process tolerance: $$ DOF = k_2 \cdot \frac{\lambda}{NA^2} $$ Where: - $DOF$ = depth of focus - $k_2$ = process-dependent constant - $\lambda$ = wavelength - $NA$ = numerical aperture ### Resolution Enhancement Techniques (RET) 1. **Optical Proximity Correction (OPC)** - Sub-resolution assist features (SRAFs) - Serif additions/subtractions - Line-end extensions 2. **Phase-Shift Masks (PSM)** - Alternating PSM - Attenuated PSM - Phase difference: $\Delta\phi = \pi$ (180°) 3. **Multiple Patterning** - LELE (Litho-Etch-Litho-Etch) - SADP (Self-Aligned Double Patterning) - SAQP (Self-Aligned Quadruple Patterning) ## 3. EUV Technology ### Wavelength Comparison | Technology | Wavelength ($\lambda$) | Relative Resolution | |------------|------------------------|---------------------| | i-line | 365 nm | 1.00× | | KrF DUV | 248 nm | 1.47× | | ArF DUV | 193 nm | 1.89× | | ArF Immersion | 193 nm (effective ~134 nm) | 2.72× | | **EUV** | **13.5 nm** | **27.04×** | ### EUV Light Generation Process The **Laser-Produced Plasma (LPP)** source generates EUV light: 1. **Tin Droplet Generation** - Droplet diameter: $\approx 25 \, \mu m$ - Droplet velocity: $v \approx 70 \, m/s$ - Droplet frequency: $f = 50,000 \, Hz$ 2. **Pre-Pulse Laser** - Flattens the tin droplet into a pancake shape - Increases target cross-section 3. **Main Pulse Laser** - CO₂ laser power: $P \approx 20-30 \, kW$ - Creates plasma at temperature: $T \approx 500,000 \, K$ - Plasma emits EUV at $\lambda = 13.5 \, nm$ 4. **Conversion Efficiency** $$ \eta_{CE} = \frac{P_{EUV}}{P_{laser}} \approx 5-6\% $$ ### Optical Since EUV is absorbed by all materials, the system uses **reflective optics**: - **Mirror Material:** Multi-layer Mo/Si (Molybdenum/Silicon) - **Layer Thickness:** $$ d = \frac{\lambda}{2} \approx 6.75 \, nm $$ - **Number of Layer Pairs:** ~40-50 - **Peak Reflectivity:** $R \approx 67-70\%$ - **Total Optical Path Reflectivity:** $$ R_{total} = R^n \approx (0.67)^{11} \approx 1.2\% $$ ### EUV Mask Structure ``` - ┌─────────────────────────────────────┐ │ Absorber (TaN/TaBN) │ ← Pattern layer (~60-80 nm) ├─────────────────────────────────────┤ │ Capping Layer (Ru) │ ← Protective layer (~2.5 nm) ├─────────────────────────────────────┤ │ Multi-Layer Mirror (Mo/Si) │ ← 40-50 bilayer pairs │ ~~~~~~~~~~~~~~~~~~~~~~~~ │ │ ~~~~~~~~~~~~~~~~~~~~~~~~ │ ├─────────────────────────────────────┤ │ Low Thermal Expansion │ ← Substrate │ Material (LTEM) │ └─────────────────────────────────────┘ ``` ## 4. Scanner Systems ### Scanner vs. Stepper | Parameter | Stepper | Scanner | |-----------|---------|---------| | Exposure Method | Full-field | Slit scanning | | Field Size | Limited by lens | Larger effective field | | Throughput | Lower | Higher | | Overlay Control | Good | Excellent | ### Scanning Mechanism The wafer and reticle move in opposite directions during exposure: $$ v_{wafer} = \frac{v_{reticle}}{M} $$ Where: - $v_{wafer}$ = wafer stage velocity - $v_{reticle}$ = reticle stage velocity - $M$ = demagnification factor (typically 4×) ### Stage Positioning Accuracy - **Overlay Requirement:** $$ \sigma_{overlay} < \frac{CD}{4} \approx 1-2 \, nm $$ - **Stage Position Accuracy:** $$ \Delta x, \Delta y < 0.5 \, nm $$ - **Stage Velocity:** $$ v_{stage} \approx 2 \, m/s $$ ## 5. Specifications ### NXE:3600D Current EUV - **Numerical Aperture:** $NA = 0.33$ - **Wavelength:** $\lambda = 13.5 \, nm$ - **Resolution:** $$ R_{min} = k_1 \cdot \frac{13.5}{0.33} = k_1 \cdot 40.9 \, nm $$ With $k_1 = 0.3$: $R_{min} \approx 13 \, nm$ - **Throughput:** $> 160$ wafers per hour (WPH) - **Overlay:** $< 1.4 \, nm$ (machine-to-machine) - **Source Power:** $> 250 \, W$ at intermediate focus - **Cost:** ~€150-200 million ### TWINSCAN EXE:5000 High-NA EUV - **Numerical Aperture:** $NA = 0.55$ - **Wavelength:** $\lambda = 13.5 \, nm$ - **Resolution:** $$ R_{min} = k_1 \cdot \frac{13.5}{0.55} = k_1 \cdot 24.5 \, nm $$ With $k_1 = 0.3$: $R_{min} \approx 8 \, nm$ - **Resolution Improvement:** $$ \frac{R_{0.33}}{R_{0.55}} = \frac{0.55}{0.33} = 1.67\times $$ - **Anamorphic Optics:** 4× reduction in X, 8× reduction in Y - **Cost:** ~€350+ million - **Weight:** ~250 tons ### Throughput Calculation Wafers per hour (WPH) depends on: $$ WPH = \frac{3600}{t_{expose} + t_{move} + t_{align} + t_{overhead}} $$ Where typical values are: - $t_{expose}$ = exposure time per die - $t_{move}$ = stage movement time - $t_{align}$ = alignment time - $t_{overhead}$ = wafer load/unload time ## 6. Geopolitical Context ### Technology Nodes | Company | Node | EUV Layers | |---------|------|------------| | TSMC | N3 | ~20-25 | | TSMC | N2 | ~25-30 | | Samsung | 3GAE | ~20+ | | Intel | Intel 4 | ~5-10 | | Intel | Intel 18A | ~20+ | ### Economic Impact - **EUV System Cost:** $150-350M per tool - **Annual Revenue (ASML 2023):** ~€27.6 billion - **R&D Investment:** ~€4 billion annually - **Backlog:** >€40 billion ## Mathematical ### Equations | Equation | Formula | Application | |----------|---------|-------------| | Rayleigh Resolution | $R = k_1 \frac{\lambda}{NA}$ | Feature size limit | | Depth of Focus | $DOF = k_2 \frac{\lambda}{NA^2}$ | Process window | | Bragg Reflection | $2d\sin\theta = n\lambda$ | Mirror design | | Conversion Efficiency | $\eta = \frac{P_{out}}{P_{in}}$ | Source efficiency | | Throughput | $WPH = \frac{3600}{\sum t_i}$ | Productivity | ### Node Roadmap with Resolution | Node | Half-Pitch | EUV Layers | Year | |------|------------|------------|------| | 7nm | ~36 nm | 5-10 | 2018 | | 5nm | ~27 nm | 10-15 | 2020 | | 3nm | ~21 nm | 20-25 | 2022 | | 2nm | ~15 nm | 25-30 | 2025 | | A14 | ~10 nm | High-NA | 2027+| ## Physical Constants | Constant | Symbol | Value | |----------|--------|-------| | EUV Wavelength | $\lambda_{EUV}$ | $13.5 \, nm$ | | Speed of Light | $c$ | $3 \times 10^8 \, m/s$ | | Planck's Constant | $h$ | $6.626 \times 10^{-34} \, J \cdot s$ | | EUV Photon Energy | $E_{EUV}$ | $91.8 \, eV$ | Photon energy calculation: $$ E = \frac{hc}{\lambda} = \frac{(6.626 \times 10^{-34})(3 \times 10^8)}{13.5 \times 10^{-9}} = 1.47 \times 10^{-17} \, J = 91.8 \, eV $$