← Back to AI Factory Chat

AI Factory Glossary

356 technical terms and definitions

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Showing page 3 of 8 (356 entries)

bathtub curve regions, reliability

Failure rate over lifetime.

bathtub curve, business & standards

Bathtub curve shows failure rate versus time with infant mortality random and wear-out phases.

bathtub curve,reliability

Failure rate vs time showing infant mortality useful life and wear-out.

battery materials design, materials science

Design materials for energy storage.

bayesian change point, time series models

Bayesian change point detection models segment boundaries as latent variables with posterior inference.

bayesian inference in icl, theory

ICL as approximate Bayesian inference.

bayesian neural networks,machine learning

Neural networks with probabilistic weights.

bayesian optimization for process, optimization

Use Bayesian methods to optimize recipes efficiently.

bayesian optimization,model training

Use probabilistic model to guide hyperparameter search efficiently.

bayesian optimization,prior,efficient

Bayesian optimization uses prior knowledge. Efficient search.

bayesian,posterior,prior

Bayesian deep learning maintains uncertainty through posteriors. Expensive but principled.

bbh, bbh, evaluation

Hardest BIG-bench tasks.

bbq (bias benchmark for qa),bbq,bias benchmark for qa,evaluation

Measure social biases in question answering.

bbq, bbq, evaluation

Question-answering bias test.

bc-reg offline, reinforcement learning advanced

Behavior cloning regularization in offline RL constrains policy to stay close to data-generating distribution while improving performance.

bc, bc, reinforcement learning advanced

Behavioral Cloning learns policies through supervised learning on state-action pairs from expert demonstrations without requiring reward signals.

bcq, bcq, reinforcement learning advanced

Batch-Constrained Q-learning prevents extrapolation error in offline RL by constraining actions to those similar to the behavior policy in the dataset.

beam search, text generation

Maintain top-K sequences.

beam search,inference

Keep track of top-k sequences and expand them to find high-probability outputs.

beam search,sampling,decoding

Beam search keeps top-k hypotheses. Sampling adds randomness. Trade-off between quality and diversity.

beamforming, audio & speech

Beamforming combines multi-channel signals with spatial filtering to enhance target sound sources.

bear, bear, reinforcement learning advanced

Bootstrapping Error Accumulation Reduction minimizes offline RL policy divergence by constraining learned policies to the support of the behavior policy.

bed-of-nails, failure analysis advanced

Bed-of-nails fixtures use arrays of spring-loaded pins to contact PCB test points for in-circuit testing and fault isolation.

before-after comparison, quality & reliability

Before-after comparisons quantify improvement by measuring performance changes.

beginner,explain like 5,simple

When you say explain like I am 5, I will use tiny steps, concrete examples, and avoid jargon, then we can gradually increase depth and formality.

behavioral analysis, testing

Systematically test model capabilities.

behavioral cloning, bc, imitation learning

Imitate expert demonstrations.

behavioral testing, explainable ai

Test model behavior on synthetic data.

beit (bert pre-training of image transformers),beit,bert pre-training of image transformers,computer vision

Masked image modeling for ViT.

beit pre-training, computer vision

Predict discrete visual tokens.

benchmark datasets,evaluation

Standard datasets for comparing model performance (GLUE SuperGLUE MMLU).

benchmark suite,mmlu,humaneval

MMLU tests knowledge, HumanEval tests coding, GSM8K tests math. Standard benchmarks to compare models.

benchmark, evaluation

Benchmarks provide standardized test suites for comparing model performance.

benchmark,performance,compare

Benchmarking compares performance. Standard workloads. Identify regressions, compare systems.

benchmark,throughput,load test

I can design simple benchmarks to measure latency/throughput and interpret results to guide optimization decisions.

benchmarking, design

Compare technologies or designs.

benefit realization, quality & reliability

Benefit realization confirms expected improvements materialize after implementation.

bentoml,framework,agnostic

BentoML is framework-agnostic serving. Build, ship, scale.

beol stack, beol, process integration

Back-End-Of-Line metal stack consists of multiple metal layers and inter-layer dielectrics routing signals and distributing power.

beol,back end of line,back-end-of-line,interconnect,metal layers,via,low-k,cu,copper,interconnect resistance

# BEOL: Back End of Line in Semiconductor Manufacturing ## Overview BEOL (Back End of Line) refers to the second major phase of semiconductor wafer fabrication, occurring after the Front-End-of-Line (FEOL) processes are complete. BEOL focuses on creating the **interconnect structure** that electrically connects all transistors and devices. ## 1. Key Components of BEOL - **Metal Interconnect Layers** - Primary conductor: Copper (Cu) - Historical: Aluminum (Al) - Advanced nodes: Cobalt (Co), Ruthenium (Ru) for local interconnects - **Interlayer Dielectrics (ILD)** - Purpose: Electrical isolation between metal layers - Materials: $\text{SiO}_2$, low-$\kappa$ dielectrics - Target: $\kappa < 3.0$ for advanced nodes - **Vias** - Vertical electrical connections between metal layers - Filled with copper or alternative metals - **Contacts** - Connect first metal layer (M1) to transistor terminals - Critical interface: Metal-to-silicide contact ## 2. BEOL Process Flow ### 2.1 Dual Damascene Process ``` - ┌─────────────────────────────────────────────────────────┐ │ 1. Dielectric Deposition │ │ └── CVD or Spin-on Low-κ dielectric │ │ │ │ 2. Lithography │ │ └── Pattern trenches and via holes │ │ │ │ 3. Reactive Ion Etching (RIE) │ │ └── Etch dielectric to form trenches/vias │ │ │ │ 4. Barrier Layer Deposition │ │ └── TaN/Ta by PVD (~2-5 nm) │ │ │ │ 5. Copper Seed Layer │ │ └── PVD Cu (~50-100 nm) │ │ │ │ 6. Electrochemical Plating (ECP) │ │ └── Fill trenches with Cu │ │ │ │ 7. Chemical Mechanical Polishing (CMP) │ │ └── Planarize surface │ │ │ │ 8. Repeat for each metal layer (M1 → Mn) │ └─────────────────────────────────────────────────────────┘ ``` ### 2.2 Metal Layer Stack (Advanced Node Example) | Layer | Pitch (nm) | Primary Metal | Purpose | |-------|------------|---------------|---------| | M1-M2 | 20-28 | Cu/Co/Ru | Local interconnect | | M3-M5 | 32-40 | Cu | Intermediate routing | | M6-M10 | 40-80 | Cu | Semi-global routing | | M11-M15 | 80-160 | Cu | Global routing, power | ## 3. Critical Physics & Equations ### 3.1 RC Delay The interconnect delay is governed by the RC time constant: $$ \tau_{RC} = R \cdot C $$ Where: - $R$ = Line resistance ($\Omega$) - $C$ = Line capacitance (F) For a wire segment: $$ \tau_{RC} = \rho \cdot \frac{L}{A} \cdot \varepsilon_0 \cdot \kappa \cdot \frac{A_{cap}}{d} $$ Where: - $\rho$ = Resistivity ($\Omega \cdot \text{cm}$) - $L$ = Wire length - $A$ = Wire cross-sectional area - $\kappa$ = Dielectric constant - $d$ = Dielectric thickness ### 3.2 Copper Resistivity Scaling At nanoscale dimensions, resistivity increases due to surface and grain boundary scattering: $$ \rho_{eff} = \rho_{bulk} \left(1 + \frac{\lambda}{w} + \frac{\lambda}{h}\right) $$ Fuchs-Sondheimer model for surface scattering: $$ \frac{\rho}{\rho_0} = 1 + \frac{3}{8}(1-p)\frac{\lambda}{d} $$ Where: - $\rho_0$ = Bulk resistivity - $\lambda$ = Electron mean free path ($\approx 39 \text{ nm}$ for Cu at 300K) - $p$ = Specularity parameter (0 = diffuse, 1 = specular) - $d$ = Film thickness Mayadas-Shatzkes model for grain boundary scattering: $$ \frac{\rho}{\rho_0} = \left[1 - \frac{3}{2}\alpha + 3\alpha^2 - 3\alpha^3 \ln\left(1 + \frac{1}{\alpha}\right)\right]^{-1} $$ Where: $$ \alpha = \frac{\lambda}{g} \cdot \frac{R_g}{1 - R_g} $$ - $g$ = Average grain size - $R_g$ = Grain boundary reflection coefficient ### 3.3 Electromigration Black's equation for Mean Time To Failure (MTTF): $$ \text{MTTF} = A \cdot j^{-n} \cdot \exp\left(\frac{E_a}{k_B T}\right) $$ Where: - $A$ = Constant (material/process dependent) - $j$ = Current density ($\text{A/cm}^2$) - $n$ = Current exponent ($\approx 1-2$) - $E_a$ = Activation energy ($\approx 0.7-0.9 \text{ eV}$ for Cu) - $k_B$ = Boltzmann constant ($8.617 \times 10^{-5} \text{ eV/K}$) - $T$ = Temperature (K) ### 3.4 Capacitance Components Total line capacitance: $$ C_{total} = C_{line-to-line} + C_{line-to-ground} + C_{fringe} $$ Parallel plate approximation: $$ C = \varepsilon_0 \cdot \kappa \cdot \frac{A}{d} $$ Where: - $\varepsilon_0 = 8.854 \times 10^{-12} \text{ F/m}$ - $\kappa$ = Relative permittivity of dielectric ## 4. Dielectric Materials ### 4.1 Low-κ Dielectric Evolution | Generation | Material | $\kappa$ Value | Notes | |------------|----------|----------------|-------| | Traditional | $\text{SiO}_2$ | 3.9-4.2 | Baseline | | FSG | $\text{SiOF}$ | 3.5-3.7 | Fluorine-doped | | Low-κ | $\text{SiCOH}$ | 2.7-3.0 | Carbon-doped oxide | | ULK | Porous $\text{SiCOH}$ | 2.2-2.5 | Porosity-induced | | ELK | Porous $\text{SiCOH}$ | < 2.2 | Extreme low-κ | | Air Gap | Air ($\kappa = 1$) | ~1.5 effective | Selective dielectric removal | ### 4.2 Porosity and Dielectric Constant For porous dielectrics, the effective $\kappa$ follows: $$ \kappa_{eff} = \kappa_{matrix}(1 - P) + \kappa_{air} \cdot P $$ Where: - $P$ = Porosity fraction - $\kappa_{air} = 1.0$ ## 5. Advanced BEOL Challenges ### 5.1 Resistance Crisis at Advanced Nodes ``` Wire Width vs. Resistivity Increase ────────────────────────────────────────────────────── Resistivity │ (μΩ·cm) │ ● │ ● 10.0 ────────┼──────────────────────●─────── │ ● │ ● 5.0 ────────┼──────────●─────────────────── │ ● │ ● 2.0 ────────┼●───────────────────────────── ← Bulk Cu │ ────────┴────────────────────────────── 100 50 30 20 15 10 Wire Width (nm) ``` ### 5.2 Alternative Metals Comparison | Metal | Bulk ρ (μΩ·cm) | λ (nm) | Advantage at < 15 nm | |-------|---------------------|----------------|----------------------| | Cu | 1.68 | 39 | No (high scattering) | | Co | 6.24 | 11.8 | Moderate | | Ru | 7.1 | 6.6 | Yes (short $\lambda$) | | Mo | 5.3 | 11.2 | Yes (refractory) | | W | 5.3 | 15.5 | Moderate | Crossover point estimation: $$ w_{crossover} \approx \frac{\lambda_{Cu} \cdot \rho_{alt}}{\rho_{Cu} \cdot \lambda_{alt}} $$ ## 6. Emerging BEOL Technologies ### 6.1 Backside Power Delivery Network (BSPDN) - **Concept**: Move power rails ($V_{DD}$, $V_{SS}$) to wafer backside - **Benefit**: Free up front-side routing resources - **Implementation**: Requires wafer thinning to $\approx 500 \text{ nm}$ ``` Traditional BEOL vs. BSPDN ──────────────────────────────────────────────────── Signal + Power Signal Only ┌─────────────┐ ┌─────────────┐ │ Metal 15 │ │ Metal 10 │ │ : │ │ : │ │ Metal 1 │ │ Metal 1 │ ├─────────────┤ ├─────────────┤ │ Transistors │ │ Transistors │ └─────────────┘ ├─────────────┤ │ Nano-TSVs │ ├─────────────┤ │ Power Rails │ └─────────────┘ ``` ### 6.2 Hybrid Bonding for 3D Integration Inter-die connection pitch scaling: $$ \text{Density} \propto \frac{1}{(\text{Pitch})^2} $$ | Technology | Pitch (μm) | Density (connections/mm²) | |------------|------------|---------------------------| | Micro-bump | 40-55 | ~400 | | Hybrid bonding | 0.9-10 | $10^4 - 10^6$ | ## 7. Process Control & Metrology ### 7.1 Key Measurements - **Sheet Resistance** ($R_s$): $$ R_s = \frac{\rho}{t} \quad [\Omega/\square] $$ - **Line Resistance**: $$ R_{line} = R_s \cdot \frac{L}{W} $$ - **Via Resistance**: $$ R_{via} = R_c + \rho \cdot \frac{h}{\pi r^2} $$ Where $R_c$ = contact resistance ### 7.2 Reliability Testing - **Electromigration (EM)**: Accelerated at high $j$ and $T$ - **Stress Migration (SM)**: Void formation under mechanical stress - **Time-Dependent Dielectric Breakdown (TDDB)**: $$ \text{TDDB} \propto \exp\left(-\gamma E - \frac{E_a}{k_B T}\right) $$ ## 8. FEOL vs. BEOL | Aspect | FEOL | BEOL | |--------|------|------| | **Focus** | Transistors, active devices | Interconnects, wiring | | **Materials** | Si, high-$\kappa$ oxides, metal gates | Cu, low-$\kappa$ dielectrics, barriers | | **Max Temperature** | > 1000°C | < 400°C (Cu compatible) | | **Key Metric** | $I_{on}/I_{off}$, $V_{th}$ | RC delay, $\rho_{eff}$ | | **Scaling Challenge** | Leakage, short-channel effects | Resistance, reliability |

bert (bidirectional encoder representations),bert,bidirectional encoder representations,foundation model

Masked language model for understanding tasks.

bert4rec, recommendation systems

BERT4Rec applies bidirectional transformer to sequential recommendation through masked item prediction.

bertscore for translation, evaluation

Embedding-based similarity.

bertscore, evaluation

BERTScore computes semantic similarity between generated and reference text.

bertscore,evaluation

Use BERT embeddings to measure semantic similarity.

beta testing, quality

External pre-release testing.

beta-vae,generative models

VAE with adjustable disentanglement.

better-than-worst-case design, design

Design for typical not worst case.

bevel edge, process

Angled wafer edge.

bevel edge,production

Rounded wafer edge prevents chipping.