dielectric loss, signal & power integrity
Dielectric loss dissipates signal energy in insulator materials increasing with frequency.
656 technical terms and definitions
Dielectric loss dissipates signal energy in insulator materials increasing with frequency.
Diffusion-GAN combines diffusion models with adversarial training for diverse graph generation.
Search architectures via gradient descent.
MPC with differentiable dynamics for end-to-end learning.
Advanced memory-augmented network.
Physics simulators with gradients.
Programs where components are differentiable.
Render Gaussians with gradients.
Differentiable rendering enables gradient-based optimization of 3D representations from images.
Rendering with gradients for optimization.
Differential impedance is the ratio of differential voltage to differential current in paired transmission lines.
Map electric fields in materials.
Add DP noise to protect privacy.
Differential privacy in recommendations adds calibrated noise to protect individual user information during training.
Differential privacy adds calibrated noise protecting individual data points during training.
Add noise during training to prevent extracting individual training examples.
Differential privacy adds noise to protect individual data. Epsilon measures privacy level.
Differential privacy adds noise to prevent identifying individuals in training data. Formal privacy guarantee.
Differential signaling transmits signals as voltage difference between complementary lines rejecting common-mode noise.
Use signal pairs for noise immunity.
Compare outputs across implementations.
Differentiable graph pooling learns hierarchical graph representations by clustering nodes through soft assignment matrices optimized end-to-end.
Differentiable graph pooling.
Measure overlay using diffraction gratings.
Diffusers library for diffusion models. Stable Diffusion, ControlNet. Hugging Face.
# Mathematical Modeling of Diffusion and Ion Implantation in Semiconductor Manufacturing Part I: Diffusion Modeling Fundamental Equations Dopant redistribution in silicon at elevated temperatures is governed by Fick's Laws . Fick's First Law Relates flux to concentration gradient: $$ J = -D \frac{\partial C}{\partial x} $$ Where: - $J$ — Atomic flux (atoms/cm²·s) - $D$ — Diffusion coefficient (cm²/s) - $C$ — Concentration (atoms/cm³) - $x$ — Position (cm) Fick's Second Law The diffusion equation follows from continuity: $$ \frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2} $$ This parabolic PDE admits analytical solutions for idealized boundary conditions. Temperature Dependence The diffusion coefficient follows an Arrhenius relationship : $$ D(T) = D_0 \exp\left(-\frac{E_a}{kT}\right) $$ Parameters: - $D_0$ — Pre-exponential factor (cm²/s) - $E_a$ — Activation energy (eV) - $k$ — Boltzmann's constant ($8.617 \times 10^{-5}$ eV/K) - $T$ — Absolute temperature (K) Typical Values for Phosphorus in Silicon: | Parameter | Value | |-----------|-------| | $D_0$ | $3.85$ cm²/s | | $E_a$ | $3.66$ eV | Diffusion approximately doubles every 10–15°C near typical process temperatures (900–1100°C). Classical Analytical Solutions Case 1: Constant Surface Concentration (Predeposition) Boundary Conditions: - $C(0, t) = C_s$ (constant surface concentration) - $C(\infty, t) = 0$ (zero at infinite depth) - $C(x, 0) = 0$ (initially undoped) Solution: $$ C(x,t) = C_s \cdot \text{erfc}\left(\frac{x}{2\sqrt{Dt}}\right) $$ Complementary Error Function: $$ \text{erfc}(z) = 1 - \text{erf}(z) = \frac{2}{\sqrt{\pi}} \int_z^{\infty} e^{-u^2} \, du $$ Total Incorporated Dose: $$ Q(t) = \frac{2 C_s \sqrt{Dt}}{\sqrt{\pi}} $$ Case 2: Fixed Dose (Drive-in Diffusion) Boundary Conditions: - $\displaystyle\int_0^{\infty} C \, dx = Q$ (constant total dose) - $\displaystyle\frac{\partial C}{\partial x}\bigg|_{x=0} = 0$ (no flux at surface) Solution (Gaussian Profile): $$ C(x,t) = \frac{Q}{\sqrt{\pi Dt}} \exp\left(-\frac{x^2}{4Dt}\right) $$ Peak Surface Concentration: $$ C(0,t) = \frac{Q}{\sqrt{\pi Dt}} $$ Junction Depth Calculation The metallurgical junction forms where dopant concentration equals background doping $C_B$. For erfc Profile: $$ x_j = 2\sqrt{Dt} \cdot \text{erfc}^{-1}\left(\frac{C_B}{C_s}\right) $$ For Gaussian Profile: $$ x_j = 2\sqrt{Dt \cdot \ln\left(\frac{Q}{C_B \sqrt{\pi Dt}}\right)} $$ Concentration-Dependent Diffusion At high doping concentrations (approaching or exceeding intrinsic carrier concentration $n_i$), diffusivity becomes concentration-dependent. Generalized Model: $$ D = D^0 + D^{-}\frac{n}{n_i} + D^{+}\frac{p}{n_i} + D^{=}\left(\frac{n}{n_i}\right)^2 $$ Physical Interpretation: | Term | Mechanism | |------|-----------| | $D^0$ | Neutral vacancy diffusion | | $D^{-}$ | Singly negative vacancy diffusion | | $D^{+}$ | Positive vacancy diffusion | | $D^{=}$ | Doubly negative vacancy diffusion | Resulting Nonlinear PDE: $$ \frac{\partial C}{\partial t} = \frac{\partial}{\partial x}\left(D(C) \frac{\partial C}{\partial x}\right) $$ This requires numerical solution methods. Point Defect Mediated Diffusion Modern process modeling couples dopant diffusion to point defect dynamics. Governing System of PDEs: $$ \frac{\partial C_I}{\partial t} = \nabla \cdot (D_I \nabla C_I) - k_{IV} C_I C_V + G_I - R_I $$ $$ \frac{\partial C_V}{\partial t} = \nabla \cdot (D_V \nabla C_V) - k_{IV} C_I C_V + G_V - R_V $$ $$ \frac{\partial C_A}{\partial t} = \nabla \cdot (D_{AI} C_I \nabla C_A) + \text{(clustering terms)} $$ Variable Definitions: - $C_I$ — Interstitial concentration - $C_V$ — Vacancy concentration - $C_A$ — Dopant atom concentration - $k_{IV}$ — Interstitial-vacancy recombination rate - $G$ — Generation rate - $R$ — Surface recombination rate Part II: Ion Implantation Modeling Energy Loss Mechanisms Implanted ions lose energy through two mechanisms: Total Stopping Power: $$ S(E) = -\frac{dE}{dx} = S_n(E) + S_e(E) $$ Nuclear Stopping (Elastic Collisions) Dominates at low energies : $$ S_n(E) = \frac{\pi a^2 \gamma E \cdot s_n(\varepsilon)}{1 + M_2/M_1} $$ Where: - $\gamma = \displaystyle\frac{4 M_1 M_2}{(M_1 + M_2)^2}$ — Energy transfer factor - $a$ — Screening length - $s_n(\varepsilon)$ — Reduced nuclear stopping Electronic Stopping (Inelastic Interactions) Dominates at high energies : $$ S_e(E) \propto \sqrt{E} $$ (at intermediate energies) LSS Theory Lindhard, Scharff, and Schiøtt developed universal scaling using reduced units. Reduced Energy: $$ \varepsilon = \frac{a M_2 E}{Z_1 Z_2 e^2 (M_1 + M_2)} $$ Reduced Path Length: $$ \rho = 4\pi a^2 N \frac{M_1 M_2}{(M_1 + M_2)^2} \cdot x $$ This allows tabulation of universal range curves applicable across ion-target combinations. Gaussian Profile Approximation First-Order Implant Profile: $$ C(x) = \frac{\Phi}{\sqrt{2\pi} \, \Delta R_p} \exp\left(-\frac{(x - R_p)^2}{2 \Delta R_p^2}\right) $$ Parameters: | Symbol | Name | Units | |--------|------|-------| | $\Phi$ | Dose | ions/cm² | | $R_p$ | Projected range (mean stopping depth) | cm | | $\Delta R_p$ | Range straggle (standard deviation) | cm | Peak Concentration: $$ C_{\text{peak}} = \frac{\Phi}{\sqrt{2\pi} \, \Delta R_p} \approx \frac{0.4 \, \Phi}{\Delta R_p} $$ Higher-Order Moment Distributions The Gaussian approximation fails for many practical cases. The Pearson IV distribution uses four statistical moments: | Moment | Symbol | Physical Meaning | |--------|--------|------------------| | 1st | $R_p$ | Projected range | | 2nd | $\Delta R_p$ | Range straggle | | 3rd | $\gamma$ | Skewness | | 4th | $\beta$ | Kurtosis | Pearson IV Form: $$ C(x) = \frac{K}{\left[(x-a)^2 + b^2\right]^m} \exp\left(-\nu \arctan\frac{x-a}{b}\right) $$ Parameters $(a, b, m, \nu, K)$ are derived from the four moments through algebraic relations. Skewness Behavior: - Light ions (B) in heavy substrates → Negative skewness (tail toward surface) - Heavy ions (As, Sb) in silicon → Positive skewness (tail toward bulk) Dual Pearson Model For channeling tails or complex profiles: $$ C(x) = f \cdot C_1(x) + (1-f) \cdot C_2(x) $$ Where: - $C_1(x)$, $C_2(x)$ — Two Pearson distributions with different parameters - $f$ — Weight fraction Lateral Distribution Ions scatter laterally as well: $$ C(x, r) = C(x) \cdot \frac{1}{2\pi \Delta R_{\perp}^2} \exp\left(-\frac{r^2}{2 \Delta R_{\perp}^2}\right) $$ For Amorphous Targets: $$ \Delta R_{\perp} \approx \frac{\Delta R_p}{\sqrt{3}} $$ Lateral straggle is critical for device scaling—it limits minimum feature sizes. Monte Carlo Simulation (TRIM/SRIM) For accurate profiles, especially in multilayer or crystalline structures, Monte Carlo methods track individual ion trajectories. Algorithm: 1. Initialize ion position, direction, energy 2. Select free flight path: $\lambda = 1/(N\pi a^2)$ 3. Calculate impact parameter and scattering angle via screened Coulomb potential 4. Energy transfer to recoil: $$T = T_m \sin^2\left(\frac{\theta}{2}\right)$$ where $T_m = \gamma E$ 5. Apply electronic energy loss over path segment 6. Update ion position/direction; cascade recoils if $T > E_d$ (displacement energy) 7. Repeat until $E < E_{\text{cutoff}}$ 8. Accumulate statistics over $10^4 - 10^6$ ion histories ZBL Interatomic Potential: $$ V(r) = \frac{Z_1 Z_2 e^2}{r} \, \phi(r/a) $$ Where $\phi$ is the screening function tabulated from quantum mechanical calculations. Channeling In crystalline silicon, ions aligned with crystal axes experience reduced stopping. Critical Angle for Channeling: $$ \psi_c \approx \sqrt{\frac{2 Z_1 Z_2 e^2}{E \, d}} $$ Where: - $d$ — Atomic spacing along the channel - $E$ — Ion energy Effects: - Channeled ions penetrate 2–10× deeper - Creates extended tails in profiles - Modern implants use 7° tilt or random-equivalent conditions to minimize Damage Accumulation Implant damage is quantified by: $$ D(x) = \Phi \int_0^{\infty} \nu(E) \cdot F(x, E) \, dE $$ Where: - $\nu(E)$ — Kinchin-Pease damage function (displaced atoms per ion) - $F(x, E)$ — Energy deposition profile Amorphization Threshold for Silicon: $$ \sim 10^{22} \text{ displacements/cm}^3 $$ (approximately 10–15% of atoms displaced) Part III: Post-Implant Diffusion and Transient Enhanced Diffusion Transient Enhanced Diffusion (TED) After implantation, excess interstitials dramatically enhance diffusion until they anneal: $$ D_{\text{eff}} = D^* \left(1 + \frac{C_I}{C_I^*}\right) $$ Where: - $C_I^*$ — Equilibrium interstitial concentration "+1" Model for Boron: $$ \frac{\partial C_B}{\partial t} = \frac{\partial}{\partial x}\left[D_B \left(1 + \frac{C_I}{C_I^*}\right) \frac{\partial C_B}{\partial x}\right] $$ Impact: TED can cause junction depths 2–5× deeper than equilibrium diffusion would predict—critical for modern shallow junctions. {311} Defect Dissolution Kinetics Interstitials cluster into rod-like {311} defects that slowly dissolve: $$ \frac{dN_{311}}{dt} = -\nu_0 \exp\left(-\frac{E_a}{kT}\right) N_{311} $$ The released interstitials sustain TED, explaining why TED persists for times much longer than point defect diffusion would suggest. Part IV: Numerical Methods Finite Difference Discretization For the diffusion equation on uniform grid $(x_i, t_n)$: Explicit (Forward Euler) $$ \frac{C_i^{n+1} - C_i^n}{\Delta t} = D \frac{C_{i+1}^n - 2C_i^n + C_{i-1}^n}{\Delta x^2} $$ Stability Requirement (CFL Condition): $$ \Delta t < \frac{\Delta x^2}{2D} $$ Implicit (Backward Euler) $$ \frac{C_i^{n+1} - C_i^n}{\Delta t} = D \frac{C_{i+1}^{n+1} - 2C_i^{n+1} + C_{i-1}^{n+1}}{\Delta x^2} $$ - Unconditionally stable - Requires solving tridiagonal system each timestep Crank-Nicolson Method - Average of explicit and implicit schemes - Second-order accurate in time - Results in tridiagonal system Adaptive Meshing Concentration gradients vary by orders of magnitude. Adaptive grids refine near: - Junctions - Surface - Implant peaks - Moving interfaces Grid Spacing Scaling: $$ \Delta x \propto \frac{C}{|\nabla C|} $$ Process Simulation Flow (TCAD) Modern simulators (Sentaurus Process, ATHENA, FLOOPS) integrate: 1. Implantation → Monte Carlo or analytical tables 2. Damage model → Amorphization, defect clustering 3. Annealing → Coupled dopant-defect PDEs 4. Oxidation → Deal-Grove kinetics, stress effects, OED 5. Silicidation, epitaxy, etc. → Specialized models Output feeds device simulation (drift-diffusion, Monte Carlo transport). Part V: Key Process Design Equations Thermal Budget The characteristic diffusion length after multiple thermal steps: $$ \sqrt{Dt}_{\text{total}} = \sqrt{\sum_i D_i t_i} $$ For Varying Temperature $T(t)$: $$ Dt = \int_0^{t_f} D_0 \exp\left(-\frac{E_a}{kT(t')}\right) dt' $$ Sheet Resistance $$ R_s = \frac{1}{q \displaystyle\int_0^{x_j} \mu(C) \cdot C(x) \, dx} $$ For Uniform Mobility Approximation: $$ R_s \approx \frac{1}{q \mu Q} $$ Electrical measurements to profile parameters. Implant Dose-Energy Selection Target Peak Concentration: $$ C_{\text{peak}} = \frac{0.4 \, \Phi}{\Delta R_p(E)} $$ Target Depth (Empirical): $$ R_p(E) \approx A \cdot E^n $$ Where: - $n \approx 0.6 - 0.8$ (depending on energy regime) - $A$ — Ion-target dependent constant Key Mathematical Tools: | Process | Core Equation | Solution Method | |---------|---------------|-----------------| | Thermal diffusion | $\displaystyle\frac{\partial C}{\partial t} = \nabla \cdot (D \nabla C)$ | Analytical (erfc, Gaussian) or FEM/FDM | | Implant profile | 4-moment Pearson distribution | Lookup tables or Monte Carlo | | Damage evolution | Coupled defect-dopant kinetics | Stiff ODE solvers | | TED | $D_{\text{eff}} = D^*(1 + C_I/C_I^*)$ | Coupled PDEs | | 2D/3D profiles | $\nabla \cdot (D \nabla C)$ in 2D/3D | Finite element methods | Common Dopant Properties in Silicon: | Dopant | Type | $D_0$ (cm²/s) | $E_a$ (eV) | Typical Use | |--------|------|---------------|------------|-------------| | Boron (B) | p-type | 0.76 | 3.46 | Source/drain, channel doping | | Phosphorus (P) | n-type | 3.85 | 3.66 | Source/drain, n-well | | Arsenic (As) | n-type | 0.32 | 3.56 | Shallow junctions | | Antimony (Sb) | n-type | 0.214 | 3.65 | Buried layers |
Diffusion bonding joins surfaces through atomic interdiffusion at interfaces.
Rate at which dopants diffuse depends on temp and material.
# Mathematical Modeling of Diffusion 1. Fundamental Governing Equations 1.1 Fick's Laws of Diffusion The foundation of diffusion modeling in semiconductor manufacturing rests on Fick's laws : Fick's First Law The flux is proportional to the concentration gradient: $$ J = -D \frac{\partial C}{\partial x} $$ Where: - $J$ = flux (atoms/cm²·s) - $D$ = diffusion coefficient (cm²/s) - $C$ = concentration (atoms/cm³) - $x$ = position (cm) Note: The negative sign indicates diffusion occurs from high to low concentration regions. Fick's Second Law Derived from the continuity equation combined with Fick's first law: $$ \frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2} $$ Key characteristics: - This is a parabolic partial differential equation - Mathematically identical to the heat equation - Assumes constant diffusion coefficient $D$ 1.2 Temperature Dependence (Arrhenius Relationship) The diffusion coefficient follows the Arrhenius relationship: $$ D(T) = D_0 \exp\left(-\frac{E_a}{kT}\right) $$ Where: - $D_0$ = pre-exponential factor (cm²/s) - $E_a$ = activation energy (eV) - $k$ = Boltzmann constant ($8.617 \times 10^{-5}$ eV/K) - $T$ = absolute temperature (K) 1.3 Typical Dopant Parameters in Silicon | Dopant | $D_0$ (cm²/s) | $E_a$ (eV) | $D$ at 1100°C (cm²/s) | |--------|---------------|------------|------------------------| | Boron (B) | ~10.5 | ~3.69 | ~$10^{-13}$ | | Phosphorus (P) | ~10.5 | ~3.69 | ~$10^{-13}$ | | Arsenic (As) | ~0.32 | ~3.56 | ~$10^{-14}$ | | Antimony (Sb) | ~5.6 | ~3.95 | ~$10^{-14}$ | 2. Analytical Solutions for Standard Boundary Conditions 2.1 Constant Surface Concentration (Predeposition) Boundary and Initial Conditions - $C(0,t) = C_s$ — surface held at solid solubility - $C(x,0) = 0$ — initially undoped wafer - $C(\infty,t) = 0$ — semi-infinite substrate Solution: Complementary Error Function Profile $$ C(x,t) = C_s \cdot \text{erfc}\left(\frac{x}{2\sqrt{Dt}}\right) $$ Where the complementary error function is defined as: $$ \text{erfc}(\eta) = 1 - \text{erf}(\eta) = 1 - \frac{2}{\sqrt{\pi}}\int_0^\eta e^{-u^2} \, du $$ Total Dose Introduced $$ Q = \int_0^\infty C(x,t) \, dx = \frac{2 C_s \sqrt{Dt}}{\sqrt{\pi}} \approx 1.13 \, C_s \sqrt{Dt} $$ Key Properties - Surface concentration remains constant at $C_s$ - Profile penetrates deeper with increasing $\sqrt{Dt}$ - Characteristic diffusion length: $L_D = 2\sqrt{Dt}$ 2.2 Fixed Dose / Gaussian Drive-in Boundary and Initial Conditions - Total dose $Q$ is conserved (no dopant enters or leaves) - Zero flux at surface: $\left.\frac{\partial C}{\partial x}\right|_{x=0} = 0$ - Delta-function or thin layer initial condition Solution: Gaussian Profile $$ C(x,t) = \frac{Q}{\sqrt{\pi Dt}} \exp\left(-\frac{x^2}{4Dt}\right) $$ Time-Dependent Surface Concentration $$ C_s(t) = C(0,t) = \frac{Q}{\sqrt{\pi Dt}} $$ Key characteristics: - Surface concentration decreases with time as $t^{-1/2}$ - Profile broadens while maintaining total dose - Peak always at surface ($x = 0$) 2.3 Junction Depth Calculation The junction depth $x_j$ is the position where dopant concentration equals background concentration $C_B$: For erfc Profile $$ x_j = 2\sqrt{Dt} \cdot \text{erfc}^{-1}\left(\frac{C_B}{C_s}\right) $$ For Gaussian Profile $$ x_j = 2\sqrt{Dt \cdot \ln\left(\frac{Q}{C_B \sqrt{\pi Dt}}\right)} $$ 3. Green's Function Method 3.1 General Solution for Arbitrary Initial Conditions For an arbitrary initial profile $C_0(x')$, the solution is a convolution with the Gaussian kernel (Green's function): $$ C(x,t) = \int_{-\infty}^{\infty} C_0(x') \cdot \frac{1}{2\sqrt{\pi Dt}} \exp\left(-\frac{(x-x')^2}{4Dt}\right) dx' $$ Physical interpretation: - Each point in the initial distribution spreads as a Gaussian - The final profile is the superposition of all spreading contributions 3.2 Application: Ion-Implanted Gaussian Profile Initial Implant Profile $$ C_0(x) = \frac{Q}{\sqrt{2\pi} \, \Delta R_p} \exp\left(-\frac{(x - R_p)^2}{2 \Delta R_p^2}\right) $$ Where: - $Q$ = implanted dose (atoms/cm²) - $R_p$ = projected range (mean depth) - $\Delta R_p$ = straggle (standard deviation) Profile After Diffusion $$ C(x,t) = \frac{Q}{\sqrt{2\pi \, \sigma_{eff}^2}} \exp\left(-\frac{(x - R_p)^2}{2 \sigma_{eff}^2}\right) $$ Effective Straggle $$ \sigma_{eff} = \sqrt{\Delta R_p^2 + 2Dt} $$ Key observations: - Peak remains at $R_p$ (no shift in position) - Peak concentration decreases - Profile broadens symmetrically 4. Concentration-Dependent Diffusion 4.1 Nonlinear Diffusion Equation At high dopant concentrations (above intrinsic carrier concentration $n_i$), diffusion becomes concentration-dependent : $$ \frac{\partial C}{\partial t} = \frac{\partial}{\partial x}\left(D(C) \frac{\partial C}{\partial x}\right) $$ 4.2 Concentration-Dependent Diffusivity Models Simple Power Law Model $$ D(C) = D^i \left(1 + \left(\frac{C}{n_i}\right)^r\right) $$ Charged Defect Model (Fair's Equation) $$ D = D^0 + D^- \frac{n}{n_i} + D^{=} \left(\frac{n}{n_i}\right)^2 + D^+ \frac{p}{n_i} $$ Where: - $D^0$ = neutral defect contribution - $D^-$ = singly negative defect contribution - $D^{=}$ = doubly negative defect contribution - $D^+$ = positive defect contribution - $n, p$ = electron and hole concentrations 4.3 Electric Field Enhancement High concentration gradients create internal electric fields that enhance diffusion: $$ J = -D \frac{\partial C}{\partial x} - \mu C \mathcal{E} $$ For extrinsic conditions with a single dopant species: $$ J = -hD \frac{\partial C}{\partial x} $$ Field enhancement factor: $$ h = 1 + \frac{C}{n + p} $$ - For fully ionized n-type dopant at high concentration: $h \approx 2$ - Results in approximately 2× faster effective diffusion 4.4 Resulting Profile Shapes - Phosphorus: "Kink-and-tail" profile at high concentrations - Arsenic: Box-like profiles due to clustering - Boron: Enhanced tail diffusion in oxidizing ambient 5. Point Defect-Mediated Diffusion 5.1 Diffusion Mechanisms Dopants don't diffuse as isolated atoms—they move via defect complexes : Vacancy Mechanism $$ A + V \rightleftharpoons AV \quad \text{(dopant-vacancy pair forms, diffuses, dissociates)} $$ Interstitial Mechanism $$ A + I \rightleftharpoons AI \quad \text{(dopant-interstitial pair)} $$ Kick-out Mechanism $$ A_s + I \rightleftharpoons A_i \quad \text{(substitutional ↔ interstitial)} $$ 5.2 Effective Diffusivity $$ D_{eff} = D_V \frac{C_V}{C_V^*} + D_I \frac{C_I}{C_I^*} $$ Where: - $D_V, D_I$ = diffusivity via vacancy/interstitial mechanism - $C_V, C_I$ = actual vacancy/interstitial concentrations - $C_V^*, C_I^*$ = equilibrium concentrations Fractional interstitialcy: $$ f_I = \frac{D_I}{D_V + D_I} $$ | Dopant | $f_I$ | Dominant Mechanism | |--------|-------|-------------------| | Boron | ~1.0 | Interstitial | | Phosphorus | ~0.9 | Interstitial | | Arsenic | ~0.4 | Mixed | | Antimony | ~0.02 | Vacancy | 5.3 Coupled Reaction-Diffusion System The full model requires solving coupled PDEs : Dopant Equation $$ \frac{\partial C_A}{\partial t} = \nabla \cdot \left(D_A \frac{C_I}{C_I^*} \nabla C_A\right) $$ Interstitial Balance $$ \frac{\partial C_I}{\partial t} = D_I \nabla^2 C_I + G - k_{IV}\left(C_I C_V - C_I^* C_V^*\right) $$ Vacancy Balance $$ \frac{\partial C_V}{\partial t} = D_V \nabla^2 C_V + G - k_{IV}\left(C_I C_V - C_I^* C_V^*\right) $$ Where: - $G$ = defect generation rate - $k_{IV}$ = bulk recombination rate constant 5.4 Transient Enhanced Diffusion (TED) After ion implantation, excess interstitials cause anomalously rapid diffusion : The "+1" Model: $$ \int_0^\infty (C_I - C_I^*) \, dx \approx \Phi \quad \text{(implant dose)} $$ Enhancement factor: $$ \frac{D_{eff}}{D^*} = \frac{C_I}{C_I^*} \gg 1 \quad \text{(transient)} $$ Key characteristics: - Enhancement decays as interstitials recombine - Time constant: typically 10-100 seconds at 1000°C - Critical for shallow junction formation 6. Oxidation Effects 6.1 Oxidation-Enhanced Diffusion (OED) During thermal oxidation, silicon interstitials are injected into the substrate: $$ \frac{C_I}{C_I^*} = 1 + A \left(\frac{dx_{ox}}{dt}\right)^n $$ Effective diffusivity: $$ D_{eff} = D^* \left[1 + f_I \left(\frac{C_I}{C_I^*} - 1\right)\right] $$ Dopants enhanced by oxidation: - Boron (high $f_I$) - Phosphorus (high $f_I$) 6.2 Oxidation-Retarded Diffusion (ORD) Growing oxide absorbs vacancies , reducing vacancy concentration: $$ \frac{C_V}{C_V^*} < 1 $$ Dopants retarded by oxidation: - Antimony (low $f_I$, primarily vacancy-mediated) 6.3 Segregation at SiO₂/Si Interface Dopants redistribute at the interface according to the segregation coefficient : $$ m = \frac{C_{Si}}{C_{SiO_2}}\bigg|_{\text{interface}} $$ | Dopant | Segregation Coefficient $m$ | Behavior | |--------|----------------------------|----------| | Boron | ~0.3 | Pile-down (into oxide) | | Phosphorus | ~10 | Pile-up (into silicon) | | Arsenic | ~10 | Pile-up | 7. Numerical Methods 7.1 Finite Difference Method Discretize space and time on grid $(x_i, t^n)$: Explicit Scheme (FTCS) $$ \frac{C_i^{n+1} - C_i^n}{\Delta t} = D \frac{C_{i+1}^n - 2C_i^n + C_{i-1}^n}{(\Delta x)^2} $$ Rearranged: $$ C_i^{n+1} = C_i^n + \alpha \left(C_{i+1}^n - 2C_i^n + C_{i-1}^n\right) $$ Where Fourier number: $$ \alpha = \frac{D \Delta t}{(\Delta x)^2} $$ Stability requirement (von Neumann analysis): $$ \alpha \leq \frac{1}{2} $$ Implicit Scheme (BTCS) $$ \frac{C_i^{n+1} - C_i^n}{\Delta t} = D \frac{C_{i+1}^{n+1} - 2C_i^{n+1} + C_{i-1}^{n+1}}{(\Delta x)^2} $$ - Unconditionally stable (no restriction on $\alpha$) - Requires solving tridiagonal system at each time step Crank-Nicolson Scheme (Second-Order Accurate) $$ C_i^{n+1} - C_i^n = \frac{\alpha}{2}\left[(C_{i+1}^{n+1} - 2C_i^{n+1} + C_{i-1}^{n+1}) + (C_{i+1}^n - 2C_i^n + C_{i-1}^n)\right] $$ Properties: - Unconditionally stable - Second-order accurate in both space and time - Results in tridiagonal system: solved by Thomas algorithm 7.2 Handling Concentration-Dependent Diffusion Use iterative methods: 1. Estimate $D^{(k)}$ from current concentration $C^{(k)}$ 2. Solve linear diffusion equation for $C^{(k+1)}$ 3. Update diffusivity: $D^{(k+1)} = D(C^{(k+1)})$ 4. Iterate until $\|C^{(k+1)} - C^{(k)}\| < \epsilon$ 7.3 Moving Boundary Problems For oxidation with moving Si/SiO₂ interface: Approaches: - Coordinate transformation: Map to fixed domain via $\xi = x/s(t)$ - Front-tracking methods: Explicitly track interface position - Level-set methods: Implicit interface representation - Phase-field methods: Diffuse interface approximation 8. Thermal Budget Concept 8.1 The Dt Product Diffusion profiles scale with $\sqrt{Dt}$. The thermal budget quantifies total diffusion: $$ (Dt)_{total} = \sum_i D(T_i) \cdot t_i $$ 8.2 Continuous Temperature Profile For time-varying temperature: $$ (Dt)_{eff} = \int_0^{t_{total}} D(T(\tau)) \, d\tau $$ 8.3 Equivalent Time at Reference Temperature $$ t_{eq} = \sum_i t_i \exp\left(\frac{E_a}{k}\left(\frac{1}{T_{ref}} - \frac{1}{T_i}\right)\right) $$ 8.4 Combining Multiple Diffusion Steps For sequential Gaussian redistributions: $$ \sigma_{final} = \sqrt{\sum_i 2D_i t_i} $$ For erfc profiles, use effective $(Dt)_{total}$: $$ C(x) = C_s \cdot \text{erfc}\left(\frac{x}{2\sqrt{(Dt)_{total}}}\right) $$ 9. Key Dimensionless Parameters | Parameter | Definition | Physical Meaning | |-----------|------------|------------------| | Fourier Number | $Fo = \dfrac{Dt}{L^2}$ | Diffusion time vs. characteristic length | | Damköhler Number | $Da = \dfrac{kL^2}{D}$ | Reaction rate vs. diffusion rate | | Péclet Number | $Pe = \dfrac{vL}{D}$ | Advection (drift) vs. diffusion | | Biot Number | $Bi = \dfrac{hL}{D}$ | Surface transfer vs. bulk diffusion | 10. Process Simulation Software 10.1 Commercial and Research Tools | Simulator | Developer | Key Capabilities | |-----------|-----------|------------------| | Sentaurus Process | Synopsys | Full 3D, atomistic KMC, advanced models | | Athena | Silvaco | Integrated with device simulation (Atlas) | | SUPREM-IV | Stanford | Classic 1D/2D, widely validated | | FLOOPS | U. Florida | Research-oriented, extensible | | Victory Process | Silvaco | Modern 3D process simulation | 10.2 Physical Models Incorporated - Multiple coupled dopant species - Full point-defect dynamics (I, V, clusters) - Stress-dependent diffusion - Cluster nucleation and dissolution - Atomistic kinetic Monte Carlo (KMC) options - Quantum corrections for ultra-shallow junctions Mathematical Modeling Hierarchy: Level 1: Simple Analytical Models $$ \frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2} $$ - Constant $D$ - erfc and Gaussian solutions - Junction depth calculations Level 2: Intermediate Complexity $$ \frac{\partial C}{\partial t} = \frac{\partial}{\partial x}\left(D(C) \frac{\partial C}{\partial x}\right) $$ - Concentration-dependent $D$ - Electric field effects - Nonlinear PDEs requiring numerical methods Level 3: Advanced Coupled Models $$ \begin{aligned} \frac{\partial C_A}{\partial t} &= \nabla \cdot \left(D_A \frac{C_I}{C_I^*} \nabla C_A\right) \\[6pt] \frac{\partial C_I}{\partial t} &= D_I \nabla^2 C_I + G - k_{IV}(C_I C_V - C_I^* C_V^*) \end{aligned} $$ - Coupled dopant-defect systems - TED, OED/ORD effects - Process simulators required Level 4: State-of-the-Art - Atomistic kinetic Monte Carlo - Molecular dynamics for interface phenomena - Ab initio calculations for defect properties - Essential for sub-10nm technology nodes Key Insight The fundamental scaling of semiconductor diffusion is governed by $\sqrt{Dt}$, but the effective diffusion coefficient $D$ depends on: - Temperature (Arrhenius) - Concentration (charged defects) - Point defect supersaturation (TED) - Processing ambient (oxidation) - Mechanical stress This complexity requires sophisticated physical models for modern nanometer-scale devices.
Tube furnace for thermal processing of wafers.
Apply diffusion process to discrete text generation.
How far acid or other species diffuse in resist.
Train denoising models.
# Mathematical Modeling of Diffusion in Semiconductor Manufacturing ## 1. Fundamental Governing Equations ### 1.1 Fick's Laws of Diffusion The foundation of diffusion modeling in semiconductor manufacturing rests on **Fick's laws**: #### Fick's First Law The flux is proportional to the concentration gradient: $$ J = -D \frac{\partial C}{\partial x} $$ **Where:** - $J$ = flux (atoms/cm²·s) - $D$ = diffusion coefficient (cm²/s) - $C$ = concentration (atoms/cm³) - $x$ = position (cm) > **Note:** The negative sign indicates diffusion occurs from high to low concentration regions. #### Fick's Second Law Derived from the continuity equation combined with Fick's first law: $$ \frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2} $$ **Key characteristics:** - This is a **parabolic partial differential equation** - Mathematically identical to the heat equation - Assumes constant diffusion coefficient $D$ ### 1.2 Temperature Dependence (Arrhenius Relationship) The diffusion coefficient follows the Arrhenius relationship: $$ D(T) = D_0 \exp\left(-\frac{E_a}{kT}\right) $$ **Where:** - $D_0$ = pre-exponential factor (cm²/s) - $E_a$ = activation energy (eV) - $k$ = Boltzmann constant ($8.617 \times 10^{-5}$ eV/K) - $T$ = absolute temperature (K) ### 1.3 Typical Dopant Parameters in Silicon | Dopant | $D_0$ (cm²/s) | $E_a$ (eV) | $D$ at 1100°C (cm²/s) | |--------|---------------|------------|------------------------| | Boron (B) | ~10.5 | ~3.69 | ~$10^{-13}$ | | Phosphorus (P) | ~10.5 | ~3.69 | ~$10^{-13}$ | | Arsenic (As) | ~0.32 | ~3.56 | ~$10^{-14}$ | | Antimony (Sb) | ~5.6 | ~3.95 | ~$10^{-14}$ | ## 2. Analytical Solutions for Standard Boundary Conditions ### 2.1 Constant Surface Concentration (Predeposition) #### Boundary and Initial Conditions - $C(0,t) = C_s$ — surface held at solid solubility - $C(x,0) = 0$ — initially undoped wafer - $C(\infty,t) = 0$ — semi-infinite substrate #### Solution: Complementary Error Function Profile $$ C(x,t) = C_s \cdot \text{erfc}\left(\frac{x}{2\sqrt{Dt}}\right) $$ **Where the complementary error function is defined as:** $$ \text{erfc}(\eta) = 1 - \text{erf}(\eta) = 1 - \frac{2}{\sqrt{\pi}}\int_0^\eta e^{-u^2} \, du $$ #### Total Dose Introduced $$ Q = \int_0^\infty C(x,t) \, dx = \frac{2 C_s \sqrt{Dt}}{\sqrt{\pi}} \approx 1.13 \, C_s \sqrt{Dt} $$ #### Key Properties - Surface concentration remains constant at $C_s$ - Profile penetrates deeper with increasing $\sqrt{Dt}$ - Characteristic diffusion length: $L_D = 2\sqrt{Dt}$ ### 2.2 Fixed Dose / Gaussian Drive-in #### Boundary and Initial Conditions - Total dose $Q$ is conserved (no dopant enters or leaves) - Zero flux at surface: $\left.\frac{\partial C}{\partial x}\right|_{x=0} = 0$ - Delta-function or thin layer initial condition #### Solution: Gaussian Profile $$ C(x,t) = \frac{Q}{\sqrt{\pi Dt}} \exp\left(-\frac{x^2}{4Dt}\right) $$ #### Time-Dependent Surface Concentration $$ C_s(t) = C(0,t) = \frac{Q}{\sqrt{\pi Dt}} $$ **Key characteristics:** - Surface concentration **decreases** with time as $t^{-1/2}$ - Profile broadens while maintaining total dose - Peak always at surface ($x = 0$) ### 2.3 Junction Depth Calculation The **junction depth** $x_j$ is the position where dopant concentration equals background concentration $C_B$: #### For erfc Profile $$ x_j = 2\sqrt{Dt} \cdot \text{erfc}^{-1}\left(\frac{C_B}{C_s}\right) $$ #### For Gaussian Profile $$ x_j = 2\sqrt{Dt \cdot \ln\left(\frac{Q}{C_B \sqrt{\pi Dt}}\right)} $$ ## 3. Green's Function Method ### 3.1 General Solution for Arbitrary Initial Conditions For an arbitrary initial profile $C_0(x')$, the solution is a **convolution** with the Gaussian kernel (Green's function): $$ C(x,t) = \int_{-\infty}^{\infty} C_0(x') \cdot \frac{1}{2\sqrt{\pi Dt}} \exp\left(-\frac{(x-x')^2}{4Dt}\right) dx' $$ **Physical interpretation:** - Each point in the initial distribution spreads as a Gaussian - The final profile is the superposition of all spreading contributions ### 3.2 Application: Ion-Implanted Gaussian Profile #### Initial Implant Profile $$ C_0(x) = \frac{Q}{\sqrt{2\pi} \, \Delta R_p} \exp\left(-\frac{(x - R_p)^2}{2 \Delta R_p^2}\right) $$ **Where:** - $Q$ = implanted dose (atoms/cm²) - $R_p$ = projected range (mean depth) - $\Delta R_p$ = straggle (standard deviation) #### Profile After Diffusion $$ C(x,t) = \frac{Q}{\sqrt{2\pi \, \sigma_{eff}^2}} \exp\left(-\frac{(x - R_p)^2}{2 \sigma_{eff}^2}\right) $$ #### Effective Straggle $$ \sigma_{eff} = \sqrt{\Delta R_p^2 + 2Dt} $$ **Key observations:** - Peak remains at $R_p$ (no shift in position) - Peak concentration decreases - Profile broadens symmetrically ## 4. Concentration-Dependent Diffusion ### 4.1 Nonlinear Diffusion Equation At high dopant concentrations (above intrinsic carrier concentration $n_i$), diffusion becomes **concentration-dependent**: $$ \frac{\partial C}{\partial t} = \frac{\partial}{\partial x}\left(D(C) \frac{\partial C}{\partial x}\right) $$ ### 4.2 Concentration-Dependent Diffusivity Models #### Simple Power Law Model $$ D(C) = D^i \left(1 + \left(\frac{C}{n_i}\right)^r\right) $$ #### Charged Defect Model (Fair's Equation) $$ D = D^0 + D^- \frac{n}{n_i} + D^{=} \left(\frac{n}{n_i}\right)^2 + D^+ \frac{p}{n_i} $$ **Where:** - $D^0$ = neutral defect contribution - $D^-$ = singly negative defect contribution - $D^{=}$ = doubly negative defect contribution - $D^+$ = positive defect contribution - $n, p$ = electron and hole concentrations ### 4.3 Electric Field Enhancement High concentration gradients create internal electric fields that enhance diffusion: $$ J = -D \frac{\partial C}{\partial x} - \mu C \mathcal{E} $$ For extrinsic conditions with a single dopant species: $$ J = -hD \frac{\partial C}{\partial x} $$ **Field enhancement factor:** $$ h = 1 + \frac{C}{n + p} $$ - For fully ionized n-type dopant at high concentration: $h \approx 2$ - Results in approximately 2× faster effective diffusion ### 4.4 Resulting Profile Shapes - **Phosphorus:** "Kink-and-tail" profile at high concentrations - **Arsenic:** Box-like profiles due to clustering - **Boron:** Enhanced tail diffusion in oxidizing ambient ## 5. Point Defect-Mediated Diffusion ### 5.1 Diffusion Mechanisms Dopants don't diffuse as isolated atoms—they move via **defect complexes**: #### Vacancy Mechanism $$ A + V \rightleftharpoons AV \quad \text{(dopant-vacancy pair forms, diffuses, dissociates)} $$ #### Interstitial Mechanism $$ A + I \rightleftharpoons AI \quad \text{(dopant-interstitial pair)} $$ #### Kick-out Mechanism $$ A_s + I \rightleftharpoons A_i \quad \text{(substitutional ↔ interstitial)} $$ ### 5.2 Effective Diffusivity $$ D_{eff} = D_V \frac{C_V}{C_V^*} + D_I \frac{C_I}{C_I^*} $$ **Where:** - $D_V, D_I$ = diffusivity via vacancy/interstitial mechanism - $C_V, C_I$ = actual vacancy/interstitial concentrations - $C_V^*, C_I^*$ = equilibrium concentrations **Fractional interstitialcy:** $$ f_I = \frac{D_I}{D_V + D_I} $$ | Dopant | $f_I$ | Dominant Mechanism | |--------|-------|-------------------| | Boron | ~1.0 | Interstitial | | Phosphorus | ~0.9 | Interstitial | | Arsenic | ~0.4 | Mixed | | Antimony | ~0.02 | Vacancy | ### 5.3 Coupled Reaction-Diffusion System The full model requires solving **coupled PDEs**: #### Dopant Equation $$ \frac{\partial C_A}{\partial t} = \nabla \cdot \left(D_A \frac{C_I}{C_I^*} \nabla C_A\right) $$ #### Interstitial Balance $$ \frac{\partial C_I}{\partial t} = D_I \nabla^2 C_I + G - k_{IV}\left(C_I C_V - C_I^* C_V^*\right) $$ #### Vacancy Balance $$ \frac{\partial C_V}{\partial t} = D_V \nabla^2 C_V + G - k_{IV}\left(C_I C_V - C_I^* C_V^*\right) $$ **Where:** - $G$ = defect generation rate - $k_{IV}$ = bulk recombination rate constant ### 5.4 Transient Enhanced Diffusion (TED) After ion implantation, excess interstitials cause **anomalously rapid diffusion**: **The "+1" Model:** $$ \int_0^\infty (C_I - C_I^*) \, dx \approx \Phi \quad \text{(implant dose)} $$ **Enhancement factor:** $$ \frac{D_{eff}}{D^*} = \frac{C_I}{C_I^*} \gg 1 \quad \text{(transient)} $$ **Key characteristics:** - Enhancement decays as interstitials recombine - Time constant: typically 10-100 seconds at 1000°C - Critical for shallow junction formation ## 6. Oxidation Effects ### 6.1 Oxidation-Enhanced Diffusion (OED) During thermal oxidation, silicon interstitials are **injected** into the substrate: $$ \frac{C_I}{C_I^*} = 1 + A \left(\frac{dx_{ox}}{dt}\right)^n $$ **Effective diffusivity:** $$ D_{eff} = D^* \left[1 + f_I \left(\frac{C_I}{C_I^*} - 1\right)\right] $$ **Dopants enhanced by oxidation:** - Boron (high $f_I$) - Phosphorus (high $f_I$) ### 6.2 Oxidation-Retarded Diffusion (ORD) Growing oxide **absorbs vacancies**, reducing vacancy concentration: $$ \frac{C_V}{C_V^*} < 1 $$ **Dopants retarded by oxidation:** - Antimony (low $f_I$, primarily vacancy-mediated) ### 6.3 Segregation at SiO₂/Si Interface Dopants redistribute at the interface according to the **segregation coefficient**: $$ m = \frac{C_{Si}}{C_{SiO_2}}\bigg|_{\text{interface}} $$ | Dopant | Segregation Coefficient $m$ | Behavior | |--------|----------------------------|----------| | Boron | ~0.3 | Pile-down (into oxide) | | Phosphorus | ~10 | Pile-up (into silicon) | | Arsenic | ~10 | Pile-up | ## 7. Numerical Methods ### 7.1 Finite Difference Method Discretize space and time on grid $(x_i, t^n)$: #### Explicit Scheme (FTCS) $$ \frac{C_i^{n+1} - C_i^n}{\Delta t} = D \frac{C_{i+1}^n - 2C_i^n + C_{i-1}^n}{(\Delta x)^2} $$ **Rearranged:** $$ C_i^{n+1} = C_i^n + \alpha \left(C_{i+1}^n - 2C_i^n + C_{i-1}^n\right) $$ **Where Fourier number:** $$ \alpha = \frac{D \Delta t}{(\Delta x)^2} $$ **Stability requirement (von Neumann analysis):** $$ \alpha \leq \frac{1}{2} $$ #### Implicit Scheme (BTCS) $$ \frac{C_i^{n+1} - C_i^n}{\Delta t} = D \frac{C_{i+1}^{n+1} - 2C_i^{n+1} + C_{i-1}^{n+1}}{(\Delta x)^2} $$ - **Unconditionally stable** (no restriction on $\alpha$) - Requires solving tridiagonal system at each time step #### Crank-Nicolson Scheme (Second-Order Accurate) $$ C_i^{n+1} - C_i^n = \frac{\alpha}{2}\left[(C_{i+1}^{n+1} - 2C_i^{n+1} + C_{i-1}^{n+1}) + (C_{i+1}^n - 2C_i^n + C_{i-1}^n)\right] $$ **Properties:** - Unconditionally stable - Second-order accurate in both space and time - Results in tridiagonal system: solved by **Thomas algorithm** ### 7.2 Handling Concentration-Dependent Diffusion Use iterative methods: 1. Estimate $D^{(k)}$ from current concentration $C^{(k)}$ 2. Solve linear diffusion equation for $C^{(k+1)}$ 3. Update diffusivity: $D^{(k+1)} = D(C^{(k+1)})$ 4. Iterate until $\|C^{(k+1)} - C^{(k)}\| < \epsilon$ ### 7.3 Moving Boundary Problems For oxidation with moving Si/SiO₂ interface: **Approaches:** - **Coordinate transformation:** Map to fixed domain via $\xi = x/s(t)$ - **Front-tracking methods:** Explicitly track interface position - **Level-set methods:** Implicit interface representation - **Phase-field methods:** Diffuse interface approximation ## 8. Thermal Budget Concept ### 8.1 The Dt Product Diffusion profiles scale with $\sqrt{Dt}$. The **thermal budget** quantifies total diffusion: $$ (Dt)_{total} = \sum_i D(T_i) \cdot t_i $$ ### 8.2 Continuous Temperature Profile For time-varying temperature: $$ (Dt)_{eff} = \int_0^{t_{total}} D(T(\tau)) \, d\tau $$ ### 8.3 Equivalent Time at Reference Temperature $$ t_{eq} = \sum_i t_i \exp\left(\frac{E_a}{k}\left(\frac{1}{T_{ref}} - \frac{1}{T_i}\right)\right) $$ ### 8.4 Combining Multiple Diffusion Steps For sequential Gaussian redistributions: $$ \sigma_{final} = \sqrt{\sum_i 2D_i t_i} $$ For erfc profiles, use effective $(Dt)_{total}$: $$ C(x) = C_s \cdot \text{erfc}\left(\frac{x}{2\sqrt{(Dt)_{total}}}\right) $$ ## 9. Key Dimensionless Parameters | Parameter | Definition | Physical Meaning | |-----------|------------|------------------| | **Fourier Number** | $Fo = \dfrac{Dt}{L^2}$ | Diffusion time vs. characteristic length | | **Damköhler Number** | $Da = \dfrac{kL^2}{D}$ | Reaction rate vs. diffusion rate | | **Péclet Number** | $Pe = \dfrac{vL}{D}$ | Advection (drift) vs. diffusion | | **Biot Number** | $Bi = \dfrac{hL}{D}$ | Surface transfer vs. bulk diffusion | ## 10. Process Simulation Software ### 10.1 Commercial and Research Tools | Simulator | Developer | Key Capabilities | |-----------|-----------|------------------| | **Sentaurus Process** | Synopsys | Full 3D, atomistic KMC, advanced models | | **Athena** | Silvaco | Integrated with device simulation (Atlas) | | **SUPREM-IV** | Stanford | Classic 1D/2D, widely validated | | **FLOOPS** | U. Florida | Research-oriented, extensible | | **Victory Process** | Silvaco | Modern 3D process simulation | ### 10.2 Physical Models Incorporated - Multiple coupled dopant species - Full point-defect dynamics (I, V, clusters) - Stress-dependent diffusion - Cluster nucleation and dissolution - Atomistic kinetic Monte Carlo (KMC) options - Quantum corrections for ultra-shallow junctions ## Mathematical Modeling Hierarchy ### Level 1: Simple Analytical Models $$ \frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2} $$ - Constant $D$ - erfc and Gaussian solutions - Junction depth calculations ### Level 2: Intermediate Complexity $$ \frac{\partial C}{\partial t} = \frac{\partial}{\partial x}\left(D(C) \frac{\partial C}{\partial x}\right) $$ - Concentration-dependent $D$ - Electric field effects - Nonlinear PDEs requiring numerical methods ### Level 3: Advanced Coupled Models $$ \begin{aligned} \frac{\partial C_A}{\partial t} &= \nabla \cdot \left(D_A \frac{C_I}{C_I^*} \nabla C_A\right) \\[6pt] \frac{\partial C_I}{\partial t} &= D_I \nabla^2 C_I + G - k_{IV}(C_I C_V - C_I^* C_V^*) \end{aligned} $$ - Coupled dopant-defect systems - TED, OED/ORD effects - Process simulators required ### Level 4: State-of-the-Art - Atomistic kinetic Monte Carlo - Molecular dynamics for interface phenomena - Ab initio calculations for defect properties - Essential for sub-10nm technology nodes ## Key Insight The fundamental scaling of semiconductor diffusion is governed by $\sqrt{Dt}$, but the effective diffusion coefficient $D$ depends on: - Temperature (Arrhenius) - Concentration (charged defects) - Point defect supersaturation (TED) - Processing ambient (oxidation) - Mechanical stress This complexity requires sophisticated physical models for modern nanometer-scale devices.
Apply diffusion to graph generation.
Generative models that gradually denoise random noise into realistic images.
Model information diffusion on graph structure.
Model dopant movement at high temperature.
Diffusion-based upscalers generate high-resolution details through iterative refinement.
Language model using continuous diffusion.
Diffusion models denoise to generate. Start from noise, iteratively refine. DALL-E, Stable Diffusion.
Diffusion models generate images from text by iteratively denoising. Stable Diffusion is open-source and customizable.
Dify is LLMOps platform. Prompt engineering, RAG, agents.
Virtual replica for testing and training.
Virtual replica for simulation.
Virtual model of tool or process for simulation and optimization.
Attend to patches at intervals.
Attend to tokens at regular intervals for long-range dependencies.
Directional message passing for molecular modeling.
Directional Message Passing Neural Network incorporates geometric information through directional message passing.