← Back to AI Factory Chat

AI Factory Glossary

395 technical terms and definitions

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Showing page 4 of 8 (395 entries)

few-shot learning for rare defects, data analysis

Learn from few examples of rare defects.

few-shot prompting, prompting

Provide examples in the prompt.

few-shot prompting, prompting techniques

Few-shot prompting provides multiple examples teaching task through in-context learning.

few-step diffusion, generative models

Generate with minimal steps.

ffe, ffe, signal & power integrity

Feed-Forward Equalization uses FIR filter to pre-emphasize or de-emphasize signal frequencies.

ffm, ffm, recommendation systems

Field-aware Factorization Machines learn separate latent factors for each feature field improving expressiveness.

fft convolution, fft, llm architecture

FFT convolutions compute long kernels efficiently in frequency domain.

fft convolution, fft, model optimization

FFT convolution performs spatial convolution through frequency domain multiplication for large kernels.

ffu (fan filter unit),ffu,fan filter unit,facility

Ceiling units that provide filtered laminar air flow in cleanroom.

fgsm, fgsm, ai safety

Single-step gradient-based attack.

fgsm, fgsm, interpretability

Fast Gradient Sign Method generates adversarial examples using gradient sign to maximize loss.

fib (focused ion beam),fib,focused ion beam,metrology

Use ion beam to cut cross-sections or edit circuits for FA.

fid, fid, evaluation

Measure distribution similarity.

fiducial marks, manufacturing

Alignment references on board.

field failures, reliability

Failures occurring at customer.

field oxide,diffusion

Thick oxide for isolation (older technology).

field return data analysis, reliability

Learn from actual failures.

fifo crossing, fifo, design & verification

FIFOs buffer data transfers between asynchronous clock domains preventing data loss.

fifo dispatch, fifo, manufacturing operations

First-in-first-out dispatching processes lots in arrival order.

fifo lane, fifo, manufacturing operations

First-in-first-out lanes control WIP between processes without pull signals maintaining sequence.

figurative language understanding, nlp

Understand metaphors idioms.

fill in middle,fim,infill

Fill-in-the-middle models complete code in context. Better than left-to-right.

fill insertion,design

Add dummy features for CMP uniformity.

fill rate, supply chain & logistics

Fill rate measures order fulfillment completeness as percentage of requested items delivered.

fill-in-the-middle,code ai

Generate code for middle section given surrounding context.

filler in molding compound, packaging

Silica particles in EMC.

filler loading, packaging

Percentage of filler.

film stress,cvd

Internal tensile or compressive stress in deposited film.

filter bubble,recommender systems

Users only see similar content.

filter response normalization, frn, neural architecture

Normalization without batch statistics.

filtering,heuristic,classifier

Data filtering removes low-quality text. Heuristics (length, language) or trained classifiers. Clean data = better models.

fin efficiency, thermal management

Fin efficiency measures the effectiveness of heat sink fins in transferring heat accounting for temperature gradients along fin length.

fin optimization, thermal management

Fin optimization designs heat sink geometry balancing surface area material and pressure drop.

final inspection,metrology

Defect check before shipment.

final test yield, production

Yield at final test.

final test yield,production

Percentage passing final test.

final test,testing

Test packaged chips for functionality performance.

final yield, yield enhancement

Final yield represents the percentage of die passing all tests after complete fabrication reflecting cumulative process quality.

financial report generation,content creation

Create financial summaries.

finbert,finance,sentiment

FinBERT is financial sentiment model. Trained on financial news.

fine tune service,training api

Fine-tuning APIs (OpenAI, Anthropic) let you customize models without infrastructure. Easy but less control.

fine-grained entity typing,nlp

Classify entities into detailed types.

fine-grained sentiment, nlp

Detailed emotional states.

fine-grained sentiment,nlp

Classify on scale (very negative to very positive).

fine-pitch bga, packaging

Small ball pitch.

fine-pitch interconnects, advanced packaging

Very small spacing between connections.

fine-tuning vs linear probing, transfer learning

Compare full fine-tuning to linear evaluation.

fine,tune,fine-tune,finetune,sft,rlhf,llm training,supervised fine tuning,reinforcement learning human feedback,ai training

# Comprehensive Guide: LLM Training, AI Architecture & the Modern AI Stack ## 1. Foundational Hierarchy from Math to Intelligence ### The Conceptual Stack The AI field builds upon layers of abstraction, each enabling the next: - **Mathematics & Statistics** - Linear algebra (vectors, matrices, tensors) - Calculus (gradients, optimization) - Probability theory (distributions, Bayesian inference) - Information theory (entropy, mutual information) - **Machine Learning** - Statistical learning from data - Pattern recognition without explicit programming - Core paradigm: learn from examples, not rules - **Deep Learning** - Neural networks with multiple layers - Hierarchical feature learning - End-to-end differentiable systems - **Artificial Intelligence** - The overarching goal - Systems exhibiting intelligent behavior - ML/DL are currently the most successful approaches ### Mathematical Foundation The fundamental learning objective in supervised learning: $$\min_{\theta} \mathcal{L}(\theta) = \min_{\theta} \frac{1}{N} \sum_{i=1}^{N} \ell(f_\theta(x_i), y_i)$$ Where: - $\theta$ = model parameters - $f_\theta$ = model function - $\ell$ = loss function - $(x_i, y_i)$ = training examples ## 2. The Transformer Revolution ### Why Transformers Changed Everything Before 2017, sequence modeling relied on recurrent architectures: - **RNNs (Recurrent Neural Networks)** - Sequential processing (cannot parallelize) - Vanishing gradient problem - Limited long-range dependencies - **LSTMs (Long Short-Term Memory)** - Gating mechanisms for memory - Better long-range, but still sequential - Computationally expensive for long sequences ### The Attention Mechanism The breakthrough paper "Attention Is All You Need" (Vaswani et al., 2017) introduced: **Self-Attention Formula:** $$\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$ Where: - $Q$ = Query matrix $\in \mathbb{R}^{n \times d_k}$ - $K$ = Key matrix $\in \mathbb{R}^{n \times d_k}$ - $V$ = Value matrix $\in \mathbb{R}^{n \times d_v}$ - $d_k$ = dimension of keys (scaling factor) - $n$ = sequence length **Multi-Head Attention:** $$\text{MultiHead}(Q, K, V) = \text{Concat}(\text{head}_1, ..., \text{head}_h)W^O$$ $$\text{head}_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)$$ ### Key Architectural Components | Component | Function | Mathematical Operation | |-----------|----------|----------------------| | Multi-Head Attention | Multiple parallel attention patterns | $h$ parallel attention functions | | Positional Encoding | Injects sequence order | $PE_{(pos,2i)} = \sin(pos/10000^{2i/d})$ | | Feed-Forward Networks | Non-linear transformations | $\text{FFN}(x) = \max(0, xW_1 + b_1)W_2 + b_2$ | | Layer Normalization | Training stability | $\text{LN}(x) = \gamma \odot \frac{x - \mu}{\sigma} + \beta$ | | Residual Connections | Gradient flow | $\text{output} = x + \text{SubLayer}(x)$ | ### BERT vs GPT: Two Paradigms **BERT (Bidirectional Encoder Representations from Transformers)** - Architecture: Encoder-only - Context: Bidirectional (sees left and right) - Pre-training objectives: - **MLM (Masked Language Modeling):** $$\mathcal{L}_{\text{MLM}} = -\mathbb{E}\left[\log P(x_{\text{mask}} | x_{\text{context}})\right]$$ - **NSP (Next Sentence Prediction):** $$\mathcal{L}_{\text{NSP}} = -\mathbb{E}\left[\log P(\text{IsNext} | A, B)\right]$$ - Best for: Classification, NER, extractive QA **GPT (Generative Pre-trained Transformer)** - Architecture: Decoder-only - Context: Autoregressive (left-to-right only) - Pre-training objective: $$\mathcal{L}_{\text{GPT}} = -\sum_{t=1}^{T} \log P(x_t | x_{ B[Pre-training] B --> C[Annealing Phase] C --> D[Supervised Fine-Tuning] D --> E[RLHF/DPO] E --> F[Capability Elicitation] F --> G[Safety Training] G --> H[Evaluation] H --> I[Deployment] ``` ### Step-by-Step Process **1. Architecture Design** - Transformer variant selection - Attention mechanism choices - Positional encoding strategy - Normalization placement **2. Pre-training** - Data curation and filtering - Tokenizer training - Distributed training setup - Learning rate scheduling $$\eta(t) = \eta_{\max} \cdot \min\left(\frac{t}{t_{\text{warmup}}}, \sqrt{\frac{t_{\text{warmup}}}{t}}\right)$$ **3. Annealing** - Data mixture optimization - Learning rate decay - Quality filter increase **4. Supervised Fine-Tuning** - High-quality demonstrations - Instruction-response pairs - Format and style learning **5. RLHF/DPO** - Preference data collection - Reward model training (if RLHF) - Policy optimization **6. Capability Elicitation** - Reasoning training - Tool use integration - Multi-modal alignment **7. Safety Training** - Red-teaming - Constitutional methods - Harmlessness optimization **8. Evaluation** - Benchmark suites (MMLU, HumanEval, etc.) - Human evaluation - Safety testing **9. Deployment** - Inference optimization - Monitoring setup - Feedback collection ### Current Research Frontiers | Frontier | Description | Key Challenge | |----------|-------------|---------------| | Test-time compute | More thinking at inference | Efficiency | | Native multimodal | Mixed modality from start | Architecture design | | Longer context | Million+ token windows | Memory/attention | | Agentic training | Learning tool/environment use | Reward design | | Efficiency | Smaller models, same capability | Knowledge distillation | | Reasoning | Explicit deliberation | Verification | ## Reference Tables ### Training Methods Comparison | Method | Input Data | Optimization | Pros | Cons | |--------|------------|--------------|------|------| | Pre-training | Raw text | Next-token prediction | General capabilities | Expensive | | SFT | (prompt, response) | MLE on responses | Format learning | Bounded by demos | | RLHF | (prompt, preference) | PPO + reward | Learns preferences | Complex, unstable | | DPO | (prompt, preference) | Direct optimization | Simpler, stable | Less expressive | | CAI | Principles + responses | Self-critique + RLHF | Scalable | Quality of principles | ### Model Architecture Comparison | Model | Architecture | Context | Parameters | Training | |-------|--------------|---------|------------|----------| | BERT | Encoder | Bidirectional | 110M-340M | MLM + NSP | | GPT-3 | Decoder | Autoregressive | 175B | Next-token | | T5 | Encoder-Decoder | Full | 11B | Span corruption | | LLaMA | Decoder | Autoregressive | 7B-405B | Next-token | | Claude | Decoder | Autoregressive | Undisclosed | Pre-train + RLHF | ### Key Mathematical Formulas **Cross-Entropy Loss:** $$\mathcal{L}_{\text{CE}} = -\sum_{t=1}^{T} \log P_\theta(x_t | x_{

finfet generation,technology

Modern transistor architecture with vertical fin channel.

finfet,fin fet,finfet transistor,3d transistor,multi-gate,gate-all-around,gaa,nanosheet,device scaling,channel control

# FinFET: The Three-Dimensional Transistor Revolution Fin Field-Effect Transistor (FinFET) ## 1. Definition and Overview A **FinFET** (Fin Field-Effect Transistor) is a non-planar, multi-gate transistor architecture where: - The conducting channel is formed by a thin silicon "fin" rising vertically from the substrate - The gate electrode wraps around the fin on **three sides** (top + two sidewalls) - Superior electrostatic control is achieved compared to planar MOSFETs The name derives from the **fin-like silicon structure** that protrudes from the substrate, resembling a fish's dorsal fin. ## 2. The Scaling Problem: Why FinFETs Were Needed ### 2.1 Short-Channel Effects in Planar MOSFETs As transistor gate length $L_g$ scaled below $\sim 25 \text{ nm}$, planar architectures encountered severe degradation: #### Drain-Induced Barrier Lowering (DIBL) $$ \text{DIBL} = \frac{V_{th,lin} - V_{th,sat}}{V_{DS,sat} - V_{DS,lin}} \quad \left[\frac{\text{mV}}{\text{V}}\right] $$ Where: - $V_{th,lin}$ = Threshold voltage at low $V_{DS}$ (linear region) - $V_{th,sat}$ = Threshold voltage at high $V_{DS}$ (saturation region) - Ideal DIBL $\approx 0$; problematic when $> 100 \text{ mV/V}$ #### Subthreshold Swing Degradation The subthreshold swing $SS$ determines how sharply a transistor turns off: $$ SS = \frac{\partial V_{GS}}{\partial (\log_{10} I_D)} = \ln(10) \cdot \frac{kT}{q} \cdot \left(1 + \frac{C_D}{C_{ox}}\right) $$ Where: - $k$ = Boltzmann constant ($1.38 \times 10^{-23} \text{ J/K}$) - $T$ = Temperature (K) - $q$ = Electron charge ($1.6 \times 10^{-19} \text{ C}$) - $C_D$ = Depletion capacitance - $C_{ox}$ = Gate oxide capacitance **Theoretical minimum at room temperature:** $$ SS_{min} = \ln(10) \cdot \frac{kT}{q} \approx 60 \text{ mV/decade} \quad \text{(at } T = 300K \text{)} $$ #### Threshold Voltage Roll-Off $$ \Delta V_{th} = V_{th}(L) - V_{th}(L \to \infty) $$ As $L_g \to 0$, $\Delta V_{th}$ becomes increasingly negative (threshold voltage drops unpredictably). ### 2.2 The Electrostatic Control Problem In planar MOSFETs, the **natural length** $\lambda$ characterizes gate control: $$ \lambda = \sqrt{\frac{\epsilon_{Si}}{\epsilon_{ox}} \cdot t_{ox} \cdot t_{Si}} $$ Where: - $\epsilon_{Si}$ = Silicon permittivity ($11.7 \cdot \epsilon_0$) - $\epsilon_{ox}$ = Oxide permittivity ($3.9 \cdot \epsilon_0$) - $t_{ox}$ = Gate oxide thickness - $t_{Si}$ = Silicon body thickness **Rule of thumb:** Good short-channel control requires: $$ L_g \geq 5\lambda \text{ to } 10\lambda $$ ## 3. FinFET Architecture ### 3.1 Physical Structure ``` - ┌─────────────────┐ │ GATE │ │ (Metal/Poly) │ └────────┬────────┘ │ ┌──────────────┼──────────────┐ │ │ │ ▼ ▼ ▼ ┌────────┐ ┌────────┐ ┌────────┐ │ GATE │ │ FIN │ │ GATE │ │(side) │◄───│(Si) │───►│(side) │ └────────┘ │ │ └────────┘ │ W_fin │ │◄──────►│ │ │ │ H_fin │ │ ▲ │ │ │ │ └───┴────┘ │ ───────┴─────── SUBSTRATE ``` ### 3.2 Key Dimensions | Parameter | Symbol | Typical Value (Advanced Nodes) | |-----------|--------|-------------------------------| | Fin Width | $W_{fin}$ | 5–10 nm | | Fin Height | $H_{fin}$ | 40–50 nm | | Fin Pitch | $P_{fin}$ | 20–30 nm | | Gate Length | $L_g$ | 7–20 nm | | Equivalent Oxide Thickness | $EOT$ | 0.5–1.0 nm | ### 3.3 Effective Channel Width The effective width in a FinFET is given by: $$ W_{eff} = N_{fin} \cdot (2 \cdot H_{fin} + W_{fin}) $$ Where: - $N_{fin}$ = Number of parallel fins - $H_{fin}$ = Fin height - $W_{fin}$ = Fin width (top surface contribution) **Note:** Often $W_{fin} \ll H_{fin}$, so: $$ W_{eff} \approx 2 \cdot N_{fin} \cdot H_{fin} $$ ### 3.4 Drive Current The saturation drain current for a FinFET: $$ I_{D,sat} = \frac{W_{eff}}{L_g} \cdot \mu_{eff} \cdot C_{ox} \cdot \frac{(V_{GS} - V_{th})^2}{2} \cdot (1 + \lambda V_{DS}) $$ Where: - $\mu_{eff}$ = Effective carrier mobility - $C_{ox}$ = Gate oxide capacitance per unit area - $\lambda$ = Channel length modulation parameter For **velocity-saturated** short-channel devices: $$ I_{D,sat} \approx W_{eff} \cdot C_{ox} \cdot v_{sat} \cdot (V_{GS} - V_{th}) $$ Where $v_{sat} \approx 10^7 \text{ cm/s}$ for electrons in silicon. ## 4. Electrostatic Advantage of FinFETs ### 4.1 Multi-Gate Scaling Length For a **tri-gate** FinFET, the natural length becomes: $$ \lambda_{FinFET} = \sqrt{\frac{\epsilon_{Si}}{\epsilon_{ox}} \cdot t_{ox} \cdot \frac{W_{fin}}{2}} $$ **Comparison:** | Architecture | Natural Length $\lambda$ | |--------------|-------------------------| | Single-gate (planar) | $\sqrt{\frac{\epsilon_{Si}}{\epsilon_{ox}} \cdot t_{ox} \cdot t_{Si}}$ | | Double-gate | $\sqrt{\frac{\epsilon_{Si}}{2\epsilon_{ox}} \cdot t_{ox} \cdot t_{Si}}$ | | Tri-gate (FinFET) | $\sqrt{\frac{\epsilon_{Si}}{3\epsilon_{ox}} \cdot t_{ox} \cdot \frac{W_{fin}}{2}}$ | | Gate-All-Around | $\sqrt{\frac{\epsilon_{Si}}{4\epsilon_{ox}} \cdot t_{ox} \cdot \frac{d}{4}}$ | ### 4.2 DIBL Improvement Empirically, FinFETs achieve: $$ \text{DIBL}_{FinFET} \approx \frac{\text{DIBL}_{planar}}{3 \text{ to } 5} $$ Typical values: - Planar at 22nm: $\text{DIBL} \approx 150-200 \text{ mV/V}$ - FinFET at 22nm: $\text{DIBL} \approx 30-50 \text{ mV/V}$ ### 4.3 Subthreshold Swing FinFETs approach the theoretical limit more closely: $$ SS_{FinFET} \approx 65-75 \text{ mV/decade} $$ Compared to planar devices at equivalent nodes: $$ SS_{planar} \approx 90-120 \text{ mV/decade} $$ ## 5. FinFET Capacitance Model ### 5.1 Total Gate Capacitance $$ C_{gate} = C_{ox} + C_{fringe} + C_{overlap} $$ Where: **Oxide capacitance per fin:** $$ C_{ox} = \epsilon_{ox} \cdot \frac{(2H_{fin} + W_{fin}) \cdot L_g}{t_{ox}} $$ **Fringe capacitance** (fin-to-fin coupling): $$ C_{fringe} \approx \epsilon_0 \cdot \kappa_{eff} \cdot \frac{H_{fin}}{P_{fin} - W_{fin}} $$ ### 5.2 Parasitic Capacitance Components ``` - ┌─────────────────────────────────────────────────┐ │ │ │ C_gd (gate-drain overlap) │ │ ┌───┐ │ │ ┌────┤ ├────┐ │ │ │ └───┘ │ │ │ ─┴─ GATE ─┴─ │ │ SOURCE DRAIN │ │ │ │ │ │ └──── C_ds ───┘ (source-drain fringe) │ │ │ └─────────────────────────────────────────────────┘ ``` ## 6. Power and Performance Metrics ### 6.1 Dynamic Power $$ P_{dynamic} = \alpha \cdot C_{load} \cdot V_{DD}^2 \cdot f $$ Where: - $\alpha$ = Activity factor - $C_{load}$ = Load capacitance - $V_{DD}$ = Supply voltage - $f$ = Operating frequency **FinFET advantage:** Lower $V_{DD}$ possible due to better electrostatics $$ V_{DD,FinFET} \approx 0.7 - 0.9 \cdot V_{DD,planar} $$ ### 6.2 Static (Leakage) Power $$ P_{static} = I_{leak} \cdot V_{DD} $$ **Subthreshold leakage current:** $$ I_{sub} = I_0 \cdot e^{\frac{V_{GS} - V_{th}}{n \cdot V_T}} \cdot \left(1 - e^{-\frac{V_{DS}}{V_T}}\right) $$ Where: - $V_T = \frac{kT}{q} \approx 26 \text{ mV}$ at room temperature - $n$ = Subthreshold slope factor ($\approx 1.0-1.1$ for FinFET vs $1.3-1.5$ for planar) **FinFET leakage reduction:** $$ \frac{I_{leak,FinFET}}{I_{leak,planar}} \approx \frac{1}{5} \text{ to } \frac{1}{10} $$ ### 6.3 Energy-Delay Product $$ EDP = E \cdot t_d = C_{load} \cdot V_{DD}^2 \cdot \frac{C_{load} \cdot V_{DD}}{I_{on}} $$ $$ EDP \propto \frac{V_{DD}^3}{I_{on}/C_{load}} $$ ## 7. Manufacturing Considerations ### 7.1 Critical Process Steps 1. **Fin Patterning** - Self-Aligned Double Patterning (SADP) - Self-Aligned Quadruple Patterning (SAQP) - EUV Lithography (at 7nm and below) 2. **Fin Etch** - High aspect ratio etching - Target: $AR = \frac{H_{fin}}{W_{fin}} \approx 5:1$ to $10:1$ 3. **Gate Stack Formation** - High-κ dielectric ($\kappa \approx 20-25$ for HfO₂) - Metal gate (TiN, TaN, work function metals) 4. **Source/Drain Engineering** - Epitaxial raised S/D - Stress engineering (SiGe for PMOS, SiC/SiP for NMOS) ### 7.2 Variability Sources **Line Edge Roughness (LER):** $$ \sigma_{V_{th}} \propto \frac{\sigma_{LER}}{W_{fin}} $$ **Fin Height Variation:** $$ \frac{\Delta I_{on}}{I_{on}} \approx \frac{\Delta H_{fin}}{H_{fin}} $$ **Random Dopant Fluctuation (reduced in FinFETs):** $$ \sigma_{V_{th,RDF}} = \frac{A_{VT}}{\sqrt{W_{eff} \cdot L_g}} $$ Where $A_{VT}$ is the Pelgrom coefficient (lower for FinFETs due to undoped channels). ## 8. FinFET Variants ### 8.1 Bulk FinFET vs. SOI FinFET | Feature | Bulk FinFET | SOI FinFET | |---------|-------------|------------| | Substrate | Standard Si wafer | Silicon-on-Insulator | | Isolation | STI + punch-through stopper | Buried oxide (BOX) | | Cost | Lower | Higher (~2× wafer cost) | | Body bias | Possible | Limited | | Thermal | Better heat dissipation | Worse (floating body) | | Latch-up | Possible | Immune | ### 8.2 Fin Profile Variations **Rectangular fin:** $$ W_{eff} = 2H_{fin} + W_{fin} $$ **Tapered/Trapezoidal fin:** $$ W_{eff} = 2\sqrt{H_{fin}^2 + \left(\frac{W_{top} - W_{bottom}}{2}\right)^2} + W_{top} $$ ## 9. Historical Timeline | Year | Milestone | |------|-----------| | 1989 | Hisamoto (Hitachi) invents DELTA device | | 1999 | UC Berkeley demonstrates practical FinFET | | 2002 | TSMC demonstrates 25nm FinFET | | 2011 | **Intel 22nm Tri-Gate** (Ivy Bridge) — First commercial FinFET | | 2014 | Intel 14nm, Samsung/TSMC 16nm/14nm | | 2017 | 10nm production (Intel, Samsung, TSMC) | | 2018 | 7nm production (TSMC, Samsung) | | 2020 | 5nm production (TSMC, Samsung) | | 2022 | 3nm production begins; Samsung transitions to GAA | | 2024 | Intel 20A/18A (RibbonFET), TSMC N2 (GAA) | ## 10. Beyond FinFETs: Gate-All-Around (GAA) ### 10.1 Nanosheet/Nanoribbon Architecture At 2nm and below, the industry transitions to **Gate-All-Around** structures: ``` - ┌─────────────────────────┐ │ GATE │ │ ┌───────────────────┐ │ │ │ Nanosheet 3 │ │ │ └───────────────────┘ │ │ ┌───────────────────┐ │ │ │ Nanosheet 2 │ │ │ └───────────────────┘ │ │ ┌───────────────────┐ │ │ │ Nanosheet 1 │ │ │ └───────────────────┘ │ │ GATE │ └─────────────────────────┘ ``` ### 10.2 GAA Electrostatics For a cylindrical nanowire of diameter $d$: $$ \lambda_{GAA} = \sqrt{\frac{\epsilon_{Si}}{4\epsilon_{ox}} \cdot t_{ox} \cdot \frac{d}{4}} = \sqrt{\frac{\epsilon_{Si} \cdot t_{ox} \cdot d}{16\epsilon_{ox}}} $$ **Scaling comparison:** $$ \lambda_{GAA} < \lambda_{FinFET} < \lambda_{double-gate} < \lambda_{planar} $$ ### 10.3 Nanosheet Width Flexibility Unlike FinFETs (quantized width), GAA nanosheets offer: $$ W_{eff,GAA} = N_{sheets} \cdot 2 \cdot (W_{sheet} + t_{sheet}) $$ Where $W_{sheet}$ can be varied during design, restoring some analog design flexibility. ## 11. Equations ### Fundamental FinFET Equations | Parameter | Equation | |-----------|----------| | Effective Width | $W_{eff} = N_{fin}(2H_{fin} + W_{fin})$ | | Subthreshold Swing | $SS = \ln(10)\frac{kT}{q}(1 + \frac{C_D}{C_{ox}})$ | | DIBL | $\text{DIBL} = \frac{V_{th,lin} - V_{th,sat}}{V_{DS,sat} - V_{DS,lin}}$ | | Natural Length | $\lambda = \sqrt{\frac{\epsilon_{Si}}{n\epsilon_{ox}} t_{ox} \frac{W_{fin}}{2}}$ | | Drive Current | $I_{D,sat} = \frac{W_{eff}}{L_g}\mu_{eff}C_{ox}\frac{(V_{GS}-V_{th})^2}{2}$ | | Leakage Current | $I_{sub} = I_0 e^{(V_{GS}-V_{th})/(nV_T)}$ | | Thermal Voltage | $V_T = \frac{kT}{q} \approx 26\text{ mV}$ | ## Physical Constants | Constant | Symbol | Value | |----------|--------|-------| | Boltzmann constant | $k$ | $1.38 \times 10^{-23}$ J/K | | Elementary charge | $q$ | $1.60 \times 10^{-19}$ C | | Permittivity of free space | $\epsilon_0$ | $8.85 \times 10^{-12}$ F/m | | Silicon permittivity | $\epsilon_{Si}$ | $11.7 \cdot \epsilon_0$ | | SiO₂ permittivity | $\epsilon_{ox}$ | $3.9 \cdot \epsilon_0$ | | Thermal voltage (300K) | $V_T$ | $\approx 26$ mV | | Electron saturation velocity (Si) | $v_{sat}$ | $\approx 10^7$ cm/s |