← Back to AI Factory Chat

AI Factory Glossary

346 technical terms and definitions

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Showing page 5 of 7 (346 entries)

instruction dataset, training techniques

Instruction datasets contain task descriptions and input-output pairs for supervised learning.

instruction datasets, data

Collections of instruction-output pairs.

instruction following accuracy, evaluation

How well model follows instructions.

instruction following for robots,robotics

Robots execute natural language commands.

instruction following, prompting

Models trained to follow instructions.

instruction following, prompting techniques

Instruction following trains models to execute explicit commands reliably.

instruction hierarchy, prompting

Different levels of instruction specificity.

instruction induction,prompt engineering

Automatically generate instructions from examples.

instruction model, llm architecture

Instruction models are fine-tuned to follow natural language commands.

instruction tuning, fine-tuning

Fine-tune on instruction-following tasks.

instruction tuning, training techniques

Instruction tuning fine-tunes models on diverse instruction-following tasks.

instructor,structured,pydantic

Instructor extracts structured data with Pydantic. Retry on validation errors.

instructpix2pix,generative models

Image editing following text instructions.

insufficient solder, quality

Not enough solder.

int4,4bit,aggressive

INT4 quantization is aggressive 4-bit. 8x memory reduction. GPTQ, AWQ methods maintain quality.

int8,quantization,integer

INT8 quantization uses 8-bit integers. 4x memory reduction. Good accuracy with calibration.

integer-only inference,deployment

Run inference using only integer arithmetic.

integrated clock gating cell (icg),integrated clock gating cell,icg,design

Standard cell for clock gating.

integrated differential phase contrast, metrology

Improved DPC for light element imaging.

integrated gradients, explainable ai

Path integral of gradients for attribution.

integrated gradients, interpretability

Integrated gradients attribute predictions to input features by integrating gradients along interpolation path.

integrated gradients,attribution,baseline

Integrated gradients accumulate gradients from baseline. Principled attribution method. Explains predictions.

integrated hessians, explainable ai

Use second-order information for attribution.

integrated metrology, metrology

Built-in metrology in process tools.

intel,what is intel,about intel,intel company

# Intel ## 1. Company Overview ### Basic Information | Attribute | Value | |-----------|-------| | **Founded** | July 18, 1968 | | **Headquarters** | Santa Clara, California, USA | | **Founders** | Robert Noyce, Gordon Moore | | **Stock Symbol** | NASDAQ: INTC | | **Industry** | Semiconductors | | **Business Model** | Integrated Device Manufacturer (IDM) | ### Founding Principles - **Noyce's Vision:** Democratize computing through affordable microprocessors - **Moore's Observation:** Transistor density doubles approximately every two years - **Grove's Management:** "Only the paranoid survive" — relentless execution focus ## 2. Historical Timeline ### Key Milestones ``` 1968 ──► Founded by Noyce & Moore │ 1971 ──► Intel 4004: First commercial microprocessor │ • 2,300 transistors │ • 740 kHz clock speed │ 1978 ──► Intel 8086: Birth of x86 architecture │ 1985 ──► 386 Processor: 32-bit computing era │ 1993 ──► Pentium: Consumer brand recognition │ 2006 ──► Core Architecture: Multi-core revolution │ 2021 ──► Pat Gelsinger returns as CEO │ 2024 ──► Leadership transition; strategic restructuring ``` ### Transistor Count Evolution The exponential growth of transistor counts follows Moore's Law: $$ N(t) = N_0 \cdot 2^{\frac{t}{T}} $$ Where: - $N(t)$ = Number of transistors at time $t$ - $N_0$ = Initial transistor count - $T$ = Doubling period (approximately 2 years) - $t$ = Time elapsed in years **Historical Data:** | Year | Processor | Transistor Count | Process Node | |------|-----------|------------------|--------------| | 1971 | 4004 | $2.3 \times 10^3$ | 10 µm | | 1978 | 8086 | $2.9 \times 10^4$ | 3 µm | | 1993 | Pentium | $3.1 \times 10^6$ | 800 nm | | 2006 | Core 2 | $2.91 \times 10^8$ | 65 nm | | 2023 | Core Ultra | $\approx 10^{10}$ | Intel 4 (7nm-class) | ## 3. Business Segments ### Revenue Breakdown by Segment ``` - ┌─────────────────────────────────────────────────────────┐ │ Intel Business Units │ ├─────────────────────────────────────────────────────────┤ │ │ │ ┌───────────────────┐ ┌──────────────────┐ │ │ │ Client Computing │ │ Data Center & │ │ │ │ Group (CCG) │ │ AI (DCAI) │ │ │ │ ~50% Rev │ │ ~30% Rev │ │ │ └───────────────────┘ └──────────────────┘ │ │ │ │ ┌──────────────────┐ ┌───────────────────┐ │ │ │ Network and │ │ Intel Foundry │ │ │ │ Edge │ │ Services (IFS) │ │ │ │ ~10% Rev │ │ ~5% Rev │ │ │ └──────────────────┘ └───────────────────┘ │ │ │ │ ┌──────────────────┐ ┌──────────────────┐ │ │ │ Mobileye │ │ Altera │ │ │ │ (Subsidiary) │ │ (Spun Out) │ │ │ │ ~3% Rev │ │ FPGAs │ │ │ └──────────────────┘ └──────────────────┘ │ │ │ └─────────────────────────────────────────────────────────┘ ``` ### Segment Details #### 3.1 Client Computing Group (CCG) - **Products:** - Intel Core (i3, i5, i7, i9) processors - Intel Core Ultra (with integrated NPU) - Pentium and Celeron (budget segment) - **Target Markets:** - Consumer laptops and desktops - Gaming PCs - Business/Enterprise PCs - Chromebooks - **Key Metrics:** - Market share: ~70% x86 PC market (declining) - ASP (Average Selling Price): ~$150-300 #### 3.2 Data Center and AI (DCAI) - **Products:** - Intel Xeon Scalable processors - Gaudi AI accelerators - Optane persistent memory (discontinued) - **Competitive Position:** - Losing share to AMD EPYC - Struggling against NVIDIA in AI workloads - ARM-based alternatives emerging (AWS Graviton, Ampere) #### 3.3 Intel Foundry Services (IFS) - **Strategy:** Open Intel fabs to external customers - **Process Nodes Offered:** - Intel 16 (legacy) - Intel 7 - Intel 4 - Intel 3 - Intel 20A (with RibbonFET & PowerVia) - Intel 18A (targeting 2025) - **Challenges:** - Limited external customer wins - TSMC's dominant market position - Trust deficit from past delays ## 4. Financial Analysis ### Key Financial Formulas #### Gross Margin Calculation $$ \text{Gross Margin} = \frac{\text{Revenue} - \text{COGS}}{\text{Revenue}} \times 100\% $$ #### Return on Invested Capital (ROIC) $$ \text{ROIC} = \frac{\text{NOPAT}}{\text{Invested Capital}} = \frac{\text{EBIT} \times (1 - \text{Tax Rate})}{\text{Total Debt} + \text{Equity} - \text{Cash}} $$ #### Capital Intensity Ratio $$ \text{Capital Intensity} = \frac{\text{CapEx}}{\text{Revenue}} $$ For semiconductor manufacturers: $$ \text{Typical Range:} \quad 0.25 \leq \frac{\text{CapEx}}{\text{Revenue}} \leq 0.40 $$ ### Historical Financial Performance | Metric | 2020 | 2021 | 2022 | 2023 | 2024E | |--------|------|------|------|------|-------| | Revenue ($B) | 77.9 | 79.0 | 63.1 | 54.2 | ~50 | | Gross Margin (%) | 56.0 | 55.4 | 42.6 | 40.0 | ~38 | | Operating Margin (%) | 30.4 | 24.6 | 3.7 | -0.5 | ~-5 | | CapEx ($B) | 14.3 | 18.7 | 25.1 | 25.8 | ~25 | | Free Cash Flow ($B) | 21.1 | 11.3 | -4.1 | -14.3 | ~-12 | ### Valuation Metrics Market capitalization calculation: $$ \text{Market Cap} = \text{Share Price} \times \text{Shares Outstanding} $$ Enterprise Value: $$ \text{EV} = \text{Market Cap} + \text{Total Debt} - \text{Cash \& Equivalents} $$ Price-to-Earnings Ratio: $$ \text{P/E} = \frac{\text{Stock Price}}{\text{Earnings Per Share}} $$ ## 5. Moore's Law & Semiconductor Physics ### Moore's Law Mathematical Expression Gordon Moore's 1965 observation can be expressed as: $$ N(t) = N_0 \cdot 2^{t/T_d} $$ Where: - $N(t)$ = transistor count at time $t$ - $N_0$ = initial transistor count - $T_d$ = doubling period $\approx 18-24$ months This implies exponential growth: $$ \log_2 N(t) = \log_2 N_0 + \frac{t}{T_d} $$ ### Dennard Scaling Dennard scaling (which broke down ~2006) states: $$ \text{Power Density} = C \cdot V^2 \cdot f $$ Where: - $C$ = capacitance (scales with area: $\propto s^2$) - $V$ = voltage (scaled as $\propto s$) - $f$ = frequency (scaled as $\propto 1/s$) Under ideal Dennard scaling: $$ P \propto s^2 \cdot s^2 \cdot \frac{1}{s} = s^3 $$ As transistors shrink by factor $s < 1$, power decreases cubically. ### Transistor Physics at Nanoscale #### Gate Delay $$ \tau = \frac{C \cdot V_{DD}}{I_{on}} $$ Where: - $\tau$ = switching delay - $C$ = load capacitance - $V_{DD}$ = supply voltage - $I_{on}$ = drive current #### Leakage Current (Subthreshold) $$ I_{sub} = I_0 \cdot e^{\frac{V_{GS} - V_{th}}{n \cdot V_T}} $$ Where: - $V_T = \frac{kT}{q} \approx 26 \text{ mV}$ at room temperature - $n$ = subthreshold slope factor - $V_{th}$ = threshold voltage ### Process Node Naming vs. Actual Dimensions | Marketing Name | Gate Pitch | Metal Pitch | Fin Pitch | |----------------|------------|-------------|-----------| | Intel 7 | 54 nm | 40 nm | 30 nm | | Intel 4 | 50 nm | 28 nm | 25 nm | | Intel 3 | 48 nm | 24 nm | 25 nm | | Intel 20A | 44 nm | 22 nm | RibbonFET | | Intel 18A | 40 nm | 20 nm | RibbonFET | ### Transistor Density Calculation $$ \text{Density (MTr/mm}^2\text{)} = \frac{10^6}{\text{Gate Pitch} \times \text{Metal Pitch} \times k} $$ Where $k$ is a design-dependent factor typically between 0.5 and 1.0. ## 6. Competitive Analysis ### Market Share Dynamics #### x86 CPU Market Share (Desktop + Mobile) ``` - Intel AMD ┌───────────────────┐ ┌───────────────────┐ │ │ │ │ │ 2019: ~82% │ │ 2019: ~18% │ │ 2021: ~75% │ │ 2021: ~25% │ │ 2023: ~68% │ │ 2023: ~32% │ │ │ │ │ └───────────────────┘ └───────────────────┘ ``` #### Data Center Market Evolution $$ \text{Intel Share}_{2019} \approx 95\% \quad \rightarrow \quad \text{Intel Share}_{2024} \approx 70\% $$ ### Porter's Five Forces Analysis | Force | Intensity | Key Factors | |-------|-----------|-------------| | **Rivalry** | High | AMD resurgence, ARM competition | | **Buyer Power** | Medium-High | Large OEMs (Dell, HP, Lenovo) | | **Supplier Power** | Medium | Equipment suppliers (ASML) | | **New Entrants** | Low | Extreme capital requirements | | **Substitutes** | High | ARM, RISC-V architectures | ### Competitor Comparison Matrix | Factor | Intel | AMD | NVIDIA | TSMC | |--------|-------|-----|--------|------| | **Manufacturing** | ★★★☆☆ | ☆☆☆☆☆ | ☆☆☆☆☆ | ★★★★★ | | **CPU Design** | ★★★☆☆ | ★★★★☆ | ★★☆☆☆ | N/A | | **GPU/AI** | ★★☆☆☆ | ★★★☆☆ | ★★★★★ | N/A | | **Profitability** | ★★☆☆☆ | ★★★☆☆ | ★★★★★ | ★★★★★ | | **R&D Investment** | ★★★★☆ | ★★★☆☆ | ★★★★☆ | ★★★★★ | ### Cost Structure Comparison For fabless companies (AMD, NVIDIA): $$ \text{Gross Margin} = \frac{\text{Revenue} - \text{Wafer Costs} - \text{Packaging}}{\text{Revenue}} $$ For IDMs (Intel): $$ \text{Gross Margin} = \frac{\text{Revenue} - \text{Fab Depreciation} - \text{Materials} - \text{Labor}}{\text{Revenue}} $$ Intel's IDM model creates higher fixed costs: $$ \text{Operating Leverage} = \frac{\Delta \text{Operating Income} / \text{Operating Income}}{\Delta \text{Revenue} / \text{Revenue}} $$ High operating leverage amplifies both gains and losses. ## 7. Strategic Assessment ### SWOT Analysis ``` - ┌────────────────────────────────────┬────────────────────────────────────┐ │ STRENGTHS │ WEAKNESSES │ ├────────────────────────────────────┼────────────────────────────────────┤ │ • Advanced fab capabilities │ • Multi-year execution failures │ │ • x86 ecosystem dominance │ • High capital intensity │ │ • Deep enterprise relationships │ • Behind in AI accelerators │ │ • Strong IP portfolio │ • Foundry credibility gap │ │ • U.S.-based manufacturing │ • Cultural transformation needed │ │ • Government subsidy support │ • Talent retention challenges │ ├────────────────────────────────────┼────────────────────────────────────┤ │ OPPORTUNITIES │ THREATS │ ├────────────────────────────────────┼────────────────────────────────────┤ │ • Supply chain diversification │ • TSMC's continued dominance │ │ • CHIPS Act funding │ • ARM architecture momentum │ │ • AI infrastructure demand │ • AMD's sustained competitiveness │ │ • Geopolitical tailwinds │ • NVIDIA's expanding footprint │ │ • Edge computing growth │ • Customer hesitancy for IFS │ │ • Potential strategic partnerships │ • Financial constraints │ └────────────────────────────────────┴────────────────────────────────────┘ ``` ### IDM 2.0 Strategy Framework ``` - ┌─────────────────────┐ │ IDM 2.0 Vision │ │ "Regain Leadership"│ └──────────┬──────────┘ │ ┌───────────────────┼───────────────────┐ │ │ │ ▼ ▼ ▼ ┌───────────────┐ ┌───────────────┐ ┌───────────────┐ │ Process │ │ Products │ │ Foundry │ │ Leadership │ │ Innovation │ │ Services │ └───────┬───────┘ └───────┬───────┘ └───────┬───────┘ │ │ │ ▼ ▼ ▼ • 5 nodes in 4 years • Core Ultra • Open fabs to • Intel 18A parity • Gaudi AI external customers • RibbonFET/PowerVia • Arc GPUs • Compete with TSMC • EUV adoption • Xeon refresh • Win major customers ``` ### Process Roadmap Timeline ``` 2021 2022 2023 2024 2025 2026 │ │ │ │ │ │ ▼ ▼ ▼ ▼ ▼ ▼ Intel 7 ──► Intel 4 ──► Intel 3 ──► Intel 20A ──► Intel 18A ──► Intel 14A │ │ │ │ │ │ │ │ │ └─► External parity │ │ │ │ with TSMC N2 │ │ │ │ │ │ │ └─► RibbonFET (GAA) │ │ │ PowerVia (backside power) │ │ │ │ │ └─► FinFET optimization │ │ │ └─► EUV layers increase │ └─► Enhanced SuperFin ``` ### Capital Expenditure Requirements Projected CapEx for turnaround: Total CapEx (2024-2030): approximately USD 150B–200B Funding sources: $$ \text{CapEx} = \text{Operating Cash Flow} + \text{Debt} + \text{Subsidies} - \text{Dividends} $$ CHIPS Act allocation: **Intel CHIPS Funding:** Approximately USD 8B (grants) + USD 11B (loans) ## 8. Future Outlook ### Scenario Analysis #### Bull Case (P = 25%) - **Assumptions:** - Intel 18A achieves performance/power parity with TSMC N2 - IFS wins 2+ major customers - AI product portfolio gains traction - **Outcome:** **2028 Projection:** Revenue ≈ USD 70B, Gross Margin ≈ 50% #### Base Case (P = 50%) - **Assumptions:** - Moderate process technology improvement - IFS remains subscale - Gradual market share stabilization - **Outcome:** **2028 Projection:** Revenue ≈ USD 55B, Gross Margin ≈ 42% #### Bear Case (P = 25%) - **Assumptions:** - Continued execution failures - Market share erosion accelerates - Potential restructuring or breakup - **Outcome:** **2028 Projection:** Revenue ≈ USD 40B, Gross Margin ≈ 35% ### Expected Value Calculation **Expected Value:** $E[\text{Revenue}_{2028}] = 0.25 \times 70 + 0.50 \times 55 + 0.25 \times 40 = $USD 55B ### Key Performance Indicators to Monitor 1. **Process Technology Progress** $$ \text{Defect Density} = \frac{\text{Defective Dies}}{\text{Total Dies}} \times \frac{1}{\text{Die Area}} $$ Target: $D_0 < 0.1 \text{ defects/cm}^2$ for mature nodes 2. **Foundry Revenue Growth** $$ \text{IFS Growth Rate} = \frac{\text{IFS Revenue}_t - \text{IFS Revenue}_{t-1}}{\text{IFS Revenue}_{t-1}} $$ Target: >30% YoY for successful ramp 3. **Market Share Retention** $$ \text{Share Retention} = \frac{\text{Current Share}}{\text{Prior Year Share}} $$ Target: >0.95 (limit share loss to <5%/year) ### Strategic Decision Tree ``` - ┌─────────────────────┐ │ Intel 18A Success? │ └──────────┬──────────┘ │ ┌───────────────┴───────────────┐ │ │ Yes No │ │ ▼ ▼ ┌─────────────────┐ ┌─────────────────┐ │ IFS Wins Major │ │ Consider │ │ Customers? │ │ Restructuring │ └────────┬────────┘ └────────┬────────┘ │ │ ┌───────┴───────┐ ┌───────┴───────┐ Yes No │ │ │ │ ▼ ▼ ▼ ▼ Spin off IFS Partner with Full IDM 2.0 Focus on or Products TSMC/Samsung Success Products ``` ## Key Formulas Reference ### Semiconductor Economics | Metric | Formula | |--------|---------| | Die Yield | $Y = Y_0 \cdot e^{-D_0 \cdot A}$ | | Cost per Die | $C_{die} = \frac{C_{wafer}}{Y \cdot \text{Dies per Wafer}}$ | | Dies per Wafer | $\text{DPW} = \frac{\pi \cdot r^2}{A_{die}} - \frac{\pi \cdot 2r}{\sqrt{2 \cdot A_{die}}}$ | ### Financial Metrics | Metric | Formula | |--------|---------| | Gross Margin | $\frac{\text{Rev} - \text{COGS}}{\text{Rev}}$ | | Operating Margin | $\frac{\text{EBIT}}{\text{Rev}}$ | | ROIC | $\frac{\text{NOPAT}}{\text{Invested Capital}}$ | | FCF | $\text{OCF} - \text{CapEx}$ | ### Moore's Law $$ \boxed{N(t) = N_0 \cdot 2^{t/T_d}} $$ Where: - $N(t)$ = transistor count - $T_d \approx 2$ years - $N_0$ = baseline count ## Glossary | Term | Definition | |------|------------| | **IDM** | Integrated Device Manufacturer — designs and manufactures chips | | **Fabless** | Company that designs but outsources manufacturing | | **Foundry** | Contract manufacturer of semiconductors | | **EUV** | Extreme Ultraviolet Lithography — advanced patterning technology | | **GAA** | Gate-All-Around — next-gen transistor architecture | | **FinFET** | Fin Field-Effect Transistor — current mainstream transistor | | **RibbonFET** | Intel's implementation of GAA transistors | | **PowerVia** | Intel's backside power delivery technology | | **Node** | Process technology generation (often marketing term) | | **ASP** | Average Selling Price | | **TAM** | Total Addressable Market |

intent recognition, dialogue

Identify user intent.

intent recognition,dialogue

Classify user's intention in dialogue.

inter-annotator agreement, evaluation

Inter-annotator agreement measures consistency between human evaluators.

inter-annotator agreement,evaluation

Measure consistency between human evaluators.

inter-pair skew, signal & power integrity

Inter-pair skew is delay variation across multiple differential pairs affecting parallel bus timing.

interaction blocks, graph neural networks

Interaction blocks in molecular GNNs update node and edge features through learned message passing.

interaction effect, quality & reliability

Interaction effects occur when factor effects depend on other factor levels.

interaction effect,doe

When effect of one factor depends on another.

interaction networks, physics simulation

Model physical interactions between objects.

intercode, ai agents

InterCode evaluates interactive coding agents on execution-based tasks.

interconnect delay,design

Signal delay from resistance and capacitance of metal wires.

interface passivation, process integration

Interface passivation reduces defect density at gate dielectric interfaces improving electrical characteristics.

interface state density, device physics

Density of traps at semiconductor-oxide interface.

interfacial layer (il),interfacial layer,il,technology

Thin layer between high-k and silicon.

interference, metrology

Species affecting target measurement.

interior design,content creation

Generate interior layouts and styles.

interlaboratory comparison, quality

Compare measurements between labs.

interleaved image-text generation,multimodal ai

Generate sequences mixing images and text.

interlock,facility

Safety mechanism preventing operation under unsafe conditions.

intermediate fusion, multimodal ai

Combine at intermediate layers.

intermetallic formation, packaging

Compounds at bond interface.

internal audit, quality & reliability

Internal audits independently verify conformance to requirements.

internal failure costs, quality

Costs from defects found before shipping.

internal setup, manufacturing operations

Internal setup activities require equipment stoppage during changeover.

international roadmap for devices and systems, irds, business

Current industry roadmap.