← Back to AI Factory Chat

AI Factory Glossary

751 technical terms and definitions

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Showing page 6 of 16 (751 entries)

mes integration, mes, manufacturing operations

Manufacturing Execution Systems integrate automation data and business systems.

mesh clock, design & verification

Mesh clocking uses interconnected grid distributing clock with inherent deskewing.

mesh extraction from nerf, 3d vision

Convert to explicit mesh.

mesh generation from images,computer vision

Create 3D meshes from 2D images.

mesh generation, multimodal ai

Mesh generation creates explicit polygonal surface representations of 3D objects.

mesh refinement thermal, thermal management

Mesh refinement increases element density in critical regions improving thermal simulation accuracy.

message chain, code ai

Long chain of method calls.

message passing agents, ai agents

Message passing allows agents to send structured information to collaborators.

message passing neural networks,graph neural networks

GNN framework using message passing.

message passing, graph neural networks

Message passing in graph neural networks aggregates neighborhood information through iterative local message computation and node state updates.

messagepassing base, graph neural networks

Base message passing aggregates neighbor features through summation mean or max pooling in graph neural networks.

meta-dataset,few-shot learning

Dataset of datasets for meta-learning.

meta-learning (learning to learn),meta-learning,learning to learn,few-shot learning

Train models to quickly adapt to new tasks with few examples.

meta-learning cold start, recommendation systems

Meta-learning for cold start trains models on auxiliary tasks to quickly adapt to new users or items with minimal interactions.

meta-learning for domain generalization, domain generalization

Meta-learn domain-invariant features.

meta-learning view of icl, theory

ICL as learned meta-learning.

meta-path rec, recommendation systems

Meta-path based recommendation exploits semantic paths through knowledge graphs connecting users and items.

meta-prompting, prompting

Prompts about prompting.

meta-prompting, prompting techniques

Meta-prompting uses language models to generate and refine prompts for tasks.

meta-reasoning, ai agents

Meta-reasoning deliberates about reasoning itself deciding how to allocate cognitive resources.

meta-reasoning,reasoning

Reason about reasoning processes themselves.

meta-rl, meta-learning

Learn to learn new tasks quickly.

meta-rl, reinforcement learning advanced

Meta-reinforcement learning trains agents to quickly adapt to new tasks leveraging prior experience across task distributions.

meta-world, reinforcement learning advanced

Meta-World benchmark provides diverse robotic manipulation tasks for evaluating meta-RL algorithms.

metadata filtering, rag

Filter by document attributes.

metadata filtering, rag

Metadata filtering restricts retrieval to documents matching specified criteria.

metadata filtering,rag

Pre-filter documents by metadata (date source type) before semantic search.

metadynamics, chemistry ai

Enhanced sampling using bias potential.

metaemb, recommendation systems

Meta-Embedding learns to combine multiple embeddings for cold-start recommendations.

metaformer for vision, computer vision

Abstract framework studying token mixers.

metaformer,llm architecture

Abstract framework for transformer-like architectures.

metainit, meta-learning

Learn good initialization via meta-learning.

metal cmp,cmp

Polish excess metal (W Cu) after damascene process.

metal cut,lithography

Selective removal of metal lines in advanced nodes.

metal deposition, CVD, PVD, ALD, sputtering, electroplating, copper

# Mathematical Modeling of Metal Deposition in Semiconductor Manufacturing ## 1. Overview: Metal Deposition Processes Metal deposition is a critical step in semiconductor fabrication, creating interconnects, contacts, barrier layers, and various metallic structures. The primary deposition methods require distinct mathematical treatments: | Process | Physics Domain | Key Mathematics | |---------|----------------|-----------------| | **PVD (Sputtering)** | Ballistic transport, plasma physics | Boltzmann transport, Monte Carlo | | **CVD/PECVD** | Gas-phase transport, surface reactions | Navier-Stokes, reaction-diffusion | | **ALD** | Self-limiting surface chemistry | Site-balance kinetics | | **Electroplating (ECD)** | Electrochemistry, mass transport | Butler-Volmer, Nernst-Planck | ## 2. Transport Phenomena Models ### 2.1 Gas-Phase Transport (CVD/PECVD) The precursor concentration field follows the **convection-diffusion-reaction equation**: $$ \frac{\partial C}{\partial t} + \mathbf{v} \cdot \nabla C = D \nabla^2 C + R_{gas} $$ Where: - $C$ — precursor concentration (mol/m³) - $\mathbf{v}$ — velocity field vector (m/s) - $D$ — diffusion coefficient (m²/s) - $R_{gas}$ — gas-phase reaction source term (mol/m³$\cdot$s) ### 2.2 Flow Field Equations The **incompressible Navier-Stokes equations** govern the velocity field: $$ \rho \left( \frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = -\nabla p + \mu \nabla^2 \mathbf{v} $$ With continuity equation: $$ \nabla \cdot \mathbf{v} = 0 $$ Where: - $\rho$ — gas density (kg/m³) - $p$ — pressure (Pa) - $\mu$ — dynamic viscosity (Pa$\cdot$s) ### 2.3 Knudsen Number and Transport Regimes At low pressures, the **Knudsen number** determines the transport regime: $$ Kn = \frac{\lambda}{L} = \frac{k_B T}{\sqrt{2} \pi d^2 p L} $$ Where: - $\lambda$ — mean free path (m) - $L$ — characteristic length (m) - $k_B$ — Boltzmann constant ($1.38 \times 10^{-23}$ J/K) - $T$ — temperature (K) - $d$ — molecular diameter (m) - $p$ — pressure (Pa) **Transport regime classification:** - $Kn < 0.01$ — **Continuum regime** → Navier-Stokes CFD - $0.01 < Kn < 0.1$ — **Slip flow regime** → Modified NS with slip boundary conditions - $0.1 < Kn < 10$ — **Transitional regime** → DSMC, Boltzmann equation - $Kn > 10$ — **Free molecular regime** → Ballistic/Monte Carlo methods ## 3. Surface Reaction Kinetics ### 3.1 Langmuir-Hinshelwood Mechanism For bimolecular surface reactions (common in CVD): $$ r = \frac{k \cdot K_A K_B \cdot p_A p_B}{(1 + K_A p_A + K_B p_B)^2} $$ Where: - $r$ — reaction rate (mol/m²$\cdot$s) - $k$ — surface reaction rate constant (mol/m²$\cdot$s) - $K_A, K_B$ — adsorption equilibrium constants (Pa⁻¹) - $p_A, p_B$ — partial pressures of reactants A and B (Pa) ### 3.2 Sticking Coefficient Model The probability that an impinging molecule adsorbs on the surface: $$ S = S_0 \exp\left( -\frac{E_a}{k_B T} \right) \cdot f(\theta) $$ Where: - $S$ — sticking coefficient (dimensionless) - $S_0$ — pre-exponential sticking factor - $E_a$ — activation energy (J) - $f(\theta) = (1 - \theta)^n$ — site blocking function - $\theta$ — surface coverage (dimensionless, 0 to 1) - $n$ — order of site blocking ### 3.3 Arrhenius Temperature Dependence $$ k(T) = A \exp\left( -\frac{E_a}{RT} \right) $$ Where: - $A$ — pre-exponential factor (frequency factor) - $E_a$ — activation energy (J/mol) - $R$ — universal gas constant (8.314 J/mol$\cdot$K) - $T$ — absolute temperature (K) ## 4. Film Growth Models ### 4.1 Continuum Surface Evolution #### Edwards-Wilkinson Equation (Linear Growth) $$ \frac{\partial h}{\partial t} = \nu \nabla^2 h + F + \eta(\mathbf{x}, t) $$ #### Kardar-Parisi-Zhang (KPZ) Equation (Nonlinear Growth) $$ \frac{\partial h}{\partial t} = \nu \nabla^2 h + \frac{\lambda}{2} |\nabla h|^2 + F + \eta $$ Where: - $h(\mathbf{x}, t)$ — surface height at position $\mathbf{x}$ and time $t$ - $\nu$ — surface diffusion coefficient (m²/s) - $\lambda$ — nonlinear growth parameter - $F$ — mean deposition flux (m/s) - $\eta$ — stochastic noise term (Gaussian white noise) ### 4.2 Scaling Relations Surface roughness evolves according to: $$ W(L, t) = L^\alpha f\left( \frac{t}{L^z} \right) $$ Where: - $W$ — interface width (roughness) - $L$ — system size - $\alpha$ — roughness exponent - $z$ — dynamic exponent - $f$ — scaling function ## 5. Step Coverage and Conformality ### 5.1 Thiele Modulus For high-aspect-ratio features, the **Thiele modulus** determines conformality: $$ \phi = L \sqrt{\frac{k_s}{D_{eff}}} $$ Where: - $\phi$ — Thiele modulus (dimensionless) - $L$ — feature depth (m) - $k_s$ — surface reaction rate constant (m/s) - $D_{eff}$ — effective diffusivity (m²/s) **Step coverage regimes:** - $\phi \ll 1$ — **Reaction-limited** → Excellent conformality - $\phi \gg 1$ — **Transport-limited** → Poor step coverage (bread-loafing) ### 5.2 Knudsen Diffusion in Trenches $$ D_K = \frac{w}{3} \sqrt{\frac{8 R T}{\pi M}} $$ Where: - $D_K$ — Knudsen diffusion coefficient (m²/s) - $w$ — trench width (m) - $R$ — universal gas constant (J/mol$\cdot$K) - $T$ — temperature (K) - $M$ — molecular weight (kg/mol) ### 5.3 Feature-Scale Concentration Profile Solving for concentration in a trench with reactive walls: $$ D_{eff} \frac{d^2 C}{dy^2} = \frac{2 k_s C}{w} $$ General solution: $$ C(y) = C_0 \frac{\cosh\left( \phi \frac{L - y}{L} \right)}{\cosh(\phi)} $$ ## 6. Atomic Layer Deposition (ALD) Models ### 6.1 Self-Limiting Surface Kinetics Surface site balance equation: $$ \frac{d\theta}{dt} = k_a C (1 - \theta) - k_d \theta $$ Where: - $\theta$ — fractional surface coverage - $k_a$ — adsorption rate constant (m³/mol$\cdot$s) - $k_d$ — desorption rate constant (s⁻¹) - $C$ — gas-phase precursor concentration (mol/m³) At equilibrium saturation: $$ \theta_{eq} = \frac{k_a C}{k_a C + k_d} \approx 1 \quad \text{(for strong chemisorption)} $$ ### 6.2 Growth Per Cycle (GPC) $$ \text{GPC} = \Gamma_0 \cdot \Omega \cdot \eta $$ Where: - $\Gamma_0$ — surface site density (sites/m²) - $\Omega$ — volume per deposited atom (m³) - $\eta$ — reaction efficiency (dimensionless) ### 6.3 Saturation Dose-Time Relationship $$ \theta(t) = 1 - \exp\left( -\frac{S \cdot \Phi \cdot t}{\Gamma_0} \right) $$ **Impingement flux** from kinetic theory: $$ \Phi = \frac{p}{\sqrt{2 \pi m k_B T}} $$ Where: - $\Phi$ — molecular impingement flux (molecules/m²$\cdot$s) - $p$ — precursor partial pressure (Pa) - $m$ — molecular mass (kg) ## 7. Plasma Modeling (PVD/PECVD) ### 7.1 Plasma Sheath Physics **Child-Langmuir law** for ion current density: $$ J_{ion} = \frac{4 \varepsilon_0}{9} \sqrt{\frac{2e}{M_i}} \frac{V_s^{3/2}}{d_s^2} $$ Where: - $J_{ion}$ — ion current density (A/m²) - $\varepsilon_0$ — vacuum permittivity ($8.85 \times 10^{-12}$ F/m) - $e$ — elementary charge ($1.6 \times 10^{-19}$ C) - $M_i$ — ion mass (kg) - $V_s$ — sheath voltage (V) - $d_s$ — sheath thickness (m) ### 7.2 Ion Energy at Substrate $$ \varepsilon_{ion} \approx e V_s + \frac{1}{2} M_i v_{Bohm}^2 $$ **Bohm velocity:** $$ v_{Bohm} = \sqrt{\frac{k_B T_e}{M_i}} $$ Where: - $T_e$ — electron temperature (K or eV) ### 7.3 Sputtering Yield (Sigmund Formula) $$ Y(E) = \frac{3 \alpha}{4 \pi^2} \cdot \frac{4 M_1 M_2}{(M_1 + M_2)^2} \cdot \frac{E}{U_0} $$ Where: - $Y$ — sputtering yield (atoms/ion) - $\alpha$ — dimensionless factor (~0.2–0.4) - $M_1$ — incident ion mass - $M_2$ — target atom mass - $E$ — incident ion energy (eV) - $U_0$ — surface binding energy (eV) ### 7.4 Electron Energy Distribution Function (EEDF) The Boltzmann equation in energy space: $$ \frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla f + \frac{e \mathbf{E}}{m_e} \cdot \nabla_v f = C[f] $$ Where: - $f$ — electron energy distribution function - $\mathbf{E}$ — electric field - $m_e$ — electron mass - $C[f]$ — collision integral ## 8. MDP: Markov Decision Process for Process Control ### 8.1 MDP Formulation A Markov Decision Process is defined by the tuple: $$ \mathcal{M} = (S, A, P, R, \gamma) $$ **Components in semiconductor context:** - **State space $S$**: Film thickness, resistivity, uniformity, equipment state, wafer position - **Action space $A$**: Temperature, pressure, flow rates, RF power, deposition time - **Transition probability $P(s' | s, a)$**: Stochastic process model - **Reward function $R(s, a)$**: Yield, uniformity, throughput, quality metrics - **Discount factor $\gamma$**: Time preference (typically 0.9–0.99) ### 8.2 Bellman Optimality Equation $$ V^*(s) = \max_{a \in A} \left[ R(s, a) + \gamma \sum_{s'} P(s' | s, a) V^*(s') \right] $$ **Q-function formulation:** $$ Q^*(s, a) = R(s, a) + \gamma \sum_{s'} P(s' | s, a) \max_{a'} Q^*(s', a') $$ ### 8.3 Run-to-Run (R2R) Control Optimal recipe adjustment after each wafer: $$ \mathbf{u}_{k+1} = \mathbf{u}_k + \mathbf{K} (\mathbf{y}_{target} - \mathbf{y}_k) $$ Where: - $\mathbf{u}_k$ — process recipe parameters at run $k$ - $\mathbf{y}_k$ — measured output at run $k$ - $\mathbf{K}$ — controller gain matrix (from MDP policy optimization) ### 8.4 Reinforcement Learning Approaches | Method | Application | Characteristics | |--------|-------------|-----------------| | **Q-Learning** | Discrete parameter optimization | Model-free, tabular | | **Deep Q-Network (DQN)** | High-dimensional state spaces | Neural network approximation | | **Policy Gradient** | Continuous process control | Direct policy optimization | | **Actor-Critic (A2C/PPO)** | Complex control tasks | Combined value and policy | | **Model-Based RL** | Physics-informed control | Sample efficient | ## 9. Electrochemical Deposition (Copper Damascene) ### 9.1 Butler-Volmer Equation $$ i = i_0 \left[ \exp\left( \frac{\alpha_a F \eta}{RT} \right) - \exp\left( -\frac{\alpha_c F \eta}{RT} \right) \right] $$ Where: - $i$ — current density (A/m²) - $i_0$ — exchange current density (A/m²) - $\alpha_a, \alpha_c$ — anodic and cathodic transfer coefficients - $F$ — Faraday constant (96,485 C/mol) - $\eta = E - E_{eq}$ — overpotential (V) - $R$ — gas constant (J/mol$\cdot$K) - $T$ — temperature (K) ### 9.2 Mass Transport Limited Current $$ i_L = \frac{n F D C_b}{\delta} $$ Where: - $i_L$ — limiting current density (A/m²) - $n$ — number of electrons transferred - $D$ — diffusion coefficient of Cu²⁺ (m²/s) - $C_b$ — bulk concentration (mol/m³) - $\delta$ — diffusion layer thickness (m) ### 9.3 Nernst-Planck Equation $$ \mathbf{J}_i = -D_i \nabla C_i - \frac{z_i F D_i}{RT} C_i \nabla \phi + C_i \mathbf{v} $$ Where: - $\mathbf{J}_i$ — flux of species $i$ - $z_i$ — charge number - $\phi$ — electric potential ### 9.4 Superfilling (Bottom-Up Fill) The curvature-enhanced accelerator mechanism: $$ v_n = v_0 (1 + \kappa \cdot \Gamma_{acc}) $$ Where: - $v_n$ — local growth velocity normal to surface - $v_0$ — baseline growth velocity - $\kappa$ — local surface curvature (1/m) - $\Gamma_{acc}$ — accelerator surface concentration ## 10. Multiscale Modeling Framework ### 10.1 Hierarchical Scale Integration ``` - ┌──────────────────────────────────────────────────────────────┐ │ REACTOR SCALE │ │ CFD: Flow, temperature, concentration │ │ Time: seconds | Length: cm │ └─────────────────────────┬────────────────────────────────────┘ │ Boundary fluxes ▼ ┌──────────────────────────────────────────────────────────────┐ │ FEATURE SCALE │ │ Level-set / String method for surface evolution │ │ Time: seconds | Length: $\mu$m │ └─────────────────────────┬────────────────────────────────────┘ │ Local rates ▼ ┌──────────────────────────────────────────────────────────────┐ │ MESOSCALE (kMC) │ │ Kinetic Monte Carlo: nucleation, island growth │ │ Time: ms | Length: nm │ └─────────────────────────┬────────────────────────────────────┘ │ Rate parameters ▼ ┌──────────────────────────────────────────────────────────────┐ │ ATOMISTIC (MD/DFT) │ │ Molecular dynamics, ab initio: binding energies, │ │ diffusion barriers, reaction paths │ │ Time: ps | Length: Å │ └──────────────────────────────────────────────────────────────┘ ``` ### 10.2 Kinetic Monte Carlo (kMC) Event rate from transition state theory: $$ k_i = \nu_0 \exp\left( -\frac{E_{a,i}}{k_B T} \right) $$ Total rate and time step: $$ k_{total} = \sum_i k_i, \quad \Delta t = -\frac{\ln(r)}{k_{total}} $$ Where $r \in (0, 1]$ is a uniform random number. ### 10.3 Molecular Dynamics Newton's equations of motion: $$ m_i \frac{d^2 \mathbf{r}_i}{dt^2} = -\nabla_i U(\mathbf{r}_1, \mathbf{r}_2, \ldots, \mathbf{r}_N) $$ **Lennard-Jones potential:** $$ U_{LJ}(r) = 4\varepsilon \left[ \left( \frac{\sigma}{r} \right)^{12} - \left( \frac{\sigma}{r} \right)^6 \right] $$ **Embedded Atom Method (EAM) for metals:** $$ U = \sum_i F_i(\rho_i) + \frac{1}{2} \sum_{i \neq j} \phi_{ij}(r_{ij}) $$ Where $\rho_i = \sum_{j \neq i} f_j(r_{ij})$ is the electron density at atom $i$. ## 11. Uniformity Modeling ### 11.1 Wafer-Scale Thickness Distribution (Sputtering) For a circular magnetron target: $$ t(r) = \int_{target} \frac{Y \cdot J_{ion} \cdot \cos\theta_t \cdot \cos\theta_w}{\pi R^2} \, dA $$ Where: - $t(r)$ — thickness at radial position $r$ - $\theta_t$ — emission angle from target - $\theta_w$ — incidence angle at wafer ### 11.2 Uniformity Metrics **Within-Wafer Uniformity (WIW):** $$ \sigma_{WIW} = \frac{1}{\bar{t}} \sqrt{\frac{1}{N} \sum_{i=1}^{N} (t_i - \bar{t})^2} \times 100\% $$ **Wafer-to-Wafer Uniformity (WTW):** $$ \sigma_{WTW} = \frac{1}{\bar{t}_{avg}} \sqrt{\frac{1}{M} \sum_{j=1}^{M} (\bar{t}_j - \bar{t}_{avg})^2} \times 100\% $$ **Target specifications:** - $\sigma_{WIW} < 1\%$ for advanced nodes (≤7 nm) - $\sigma_{WTW} < 0.5\%$ for high-volume manufacturing ## 12. Virtual Metrology and Statistical Models ### 12.1 Gaussian Process Regression (GPR) $$ f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}')) $$ **Squared exponential (RBF) kernel:** $$ k(\mathbf{x}, \mathbf{x}') = \sigma_f^2 \exp\left( -\frac{|\mathbf{x} - \mathbf{x}'|^2}{2\ell^2} \right) $$ **Predictive distribution:** $$ f_* | \mathbf{X}, \mathbf{y}, \mathbf{x}_* \sim \mathcal{N}(\bar{f}_*, \text{var}(f_*)) $$ ### 12.2 Partial Least Squares (PLS) $$ \mathbf{Y} = \mathbf{X} \mathbf{B} + \mathbf{E} $$ Where: - $\mathbf{X}$ — process parameter matrix - $\mathbf{Y}$ — quality outcome matrix - $\mathbf{B}$ — regression coefficient matrix - $\mathbf{E}$ — residual matrix ### 12.3 Principal Component Analysis (PCA) $$ \mathbf{X} = \mathbf{T} \mathbf{P}^T + \mathbf{E} $$ **Hotelling's $T^2$ statistic for fault detection:** $$ T^2 = \sum_{i=1}^{k} \frac{t_i^2}{\lambda_i} $$ ## 13. Process Optimization ### 13.1 Response Surface Methodology (RSM) **Second-order polynomial model:** $$ y = \beta_0 + \sum_{i=1}^{k} \beta_i x_i + \sum_{i=1}^{k} \beta_{ii} x_i^2 + \sum_{i < j} \beta_{ij} x_i x_j + \varepsilon $$ ### 13.2 Constrained Optimization $$ \min_{\mathbf{x}} f(\mathbf{x}) \quad \text{subject to} \quad g_i(\mathbf{x}) \leq 0, \quad h_j(\mathbf{x}) = 0 $$ **Example constraints:** - $g_1$: Non-uniformity ≤ 3% - $g_2$: Resistivity within spec - $g_3$: Throughput ≥ target - $h_1$: Total film thickness = target ### 13.3 Pareto Multi-Objective Optimization $$ \min_{\mathbf{x}} \left[ f_1(\mathbf{x}), f_2(\mathbf{x}), \ldots, f_m(\mathbf{x}) \right] $$ Common trade-offs: - Uniformity vs. throughput - Film quality vs. cost - Conformality vs. deposition rate ## 14. Mathematical Toolkit | Domain | Key Equations | Application | |--------|---------------|-------------| | **Transport** | Navier-Stokes, Convection-Diffusion | Gas flow, precursor delivery | | **Kinetics** | Arrhenius, Langmuir-Hinshelwood | Reaction rates | | **Surface Evolution** | KPZ, Level-set, Edwards-Wilkinson | Film morphology | | **Plasma** | Boltzmann, Child-Langmuir | Ion/electron dynamics | | **Electrochemistry** | Butler-Volmer, Nernst-Planck | Copper plating | | **Control** | Bellman, MDP, RL algorithms | Recipe optimization | | **Statistics** | GPR, PLS, PCA | Virtual metrology | | **Multiscale** | MD, kMC, Continuum | Integrated simulation | ## 15. Physical Constants | Constant | Symbol | Value | Units | |----------|--------|-------|-------| | Boltzmann constant | $k_B$ | $1.38 \times 10^{-23}$ | J/K | | Gas constant | $R$ | $8.314$ | J/(mol$\cdot$K) | | Faraday constant | $F$ | $96,485$ | C/mol | | Elementary charge | $e$ | $1.60 \times 10^{-19}$ | C | | Vacuum permittivity | $\varepsilon_0$ | $8.85 \times 10^{-12}$ | F/m | | Avogadro's number | $N_A$ | $6.02 \times 10^{23}$ | mol⁻¹ | | Electron mass | $m_e$ | $9.11 \times 10^{-31}$ | kg |

metal deposition,pvd,cvd,ald,sputtering,electroplating,film growth,copper plating,butler-volmer,nernst-planck,monte carlo,deposition modeling

# Mathematical Modeling of Metal Deposition in Semiconductor Manufacturing ## 1. Overview: Metal Deposition Processes Metal deposition is a critical step in semiconductor fabrication, creating interconnects, contacts, barrier layers, and various metallic structures. The primary deposition methods require distinct mathematical treatments: | Process | Physics Domain | Key Mathematics | |---------|----------------|-----------------| | **PVD (Sputtering)** | Ballistic transport, plasma physics | Boltzmann transport, Monte Carlo | | **CVD/PECVD** | Gas-phase transport, surface reactions | Navier-Stokes, reaction-diffusion | | **ALD** | Self-limiting surface chemistry | Site-balance kinetics | | **Electroplating (ECD)** | Electrochemistry, mass transport | Butler-Volmer, Nernst-Planck | ## 2. Transport Phenomena Models ### 2.1 Gas-Phase Transport (CVD/PECVD) The precursor concentration field follows the **convection-diffusion-reaction equation**: $$ \frac{\partial C}{\partial t} + \mathbf{v} \cdot \nabla C = D \nabla^2 C + R_{gas} $$ Where: - $C$ — precursor concentration (mol/m³) - $\mathbf{v}$ — velocity field vector (m/s) - $D$ — diffusion coefficient (m²/s) - $R_{gas}$ — gas-phase reaction source term (mol/m³·s) ### 2.2 Flow Field Equations The **incompressible Navier-Stokes equations** govern the velocity field: $$ \rho \left( \frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = -\nabla p + \mu \nabla^2 \mathbf{v} $$ With continuity equation: $$ \nabla \cdot \mathbf{v} = 0 $$ Where: - $\rho$ — gas density (kg/m³) - $p$ — pressure (Pa) - $\mu$ — dynamic viscosity (Pa·s) ### 2.3 Knudsen Number and Transport Regimes At low pressures, the **Knudsen number** determines the transport regime: $$ Kn = \frac{\lambda}{L} = \frac{k_B T}{\sqrt{2} \pi d^2 p L} $$ Where: - $\lambda$ — mean free path (m) - $L$ — characteristic length (m) - $k_B$ — Boltzmann constant ($1.38 \times 10^{-23}$ J/K) - $T$ — temperature (K) - $d$ — molecular diameter (m) - $p$ — pressure (Pa) **Transport regime classification:** - $Kn < 0.01$ — **Continuum regime** → Navier-Stokes CFD - $0.01 < Kn < 0.1$ — **Slip flow regime** → Modified NS with slip boundary conditions - $0.1 < Kn < 10$ — **Transitional regime** → DSMC, Boltzmann equation - $Kn > 10$ — **Free molecular regime** → Ballistic/Monte Carlo methods ## 3. Surface Reaction Kinetics ### 3.1 Langmuir-Hinshelwood Mechanism For bimolecular surface reactions (common in CVD): $$ r = \frac{k \cdot K_A K_B \cdot p_A p_B}{(1 + K_A p_A + K_B p_B)^2} $$ Where: - $r$ — reaction rate (mol/m²·s) - $k$ — surface reaction rate constant (mol/m²·s) - $K_A, K_B$ — adsorption equilibrium constants (Pa⁻¹) - $p_A, p_B$ — partial pressures of reactants A and B (Pa) ### 3.2 Sticking Coefficient Model The probability that an impinging molecule adsorbs on the surface: $$ S = S_0 \exp\left( -\frac{E_a}{k_B T} \right) \cdot f(\theta) $$ Where: - $S$ — sticking coefficient (dimensionless) - $S_0$ — pre-exponential sticking factor - $E_a$ — activation energy (J) - $f(\theta) = (1 - \theta)^n$ — site blocking function - $\theta$ — surface coverage (dimensionless, 0 to 1) - $n$ — order of site blocking ### 3.3 Arrhenius Temperature Dependence $$ k(T) = A \exp\left( -\frac{E_a}{RT} \right) $$ Where: - $A$ — pre-exponential factor (frequency factor) - $E_a$ — activation energy (J/mol) - $R$ — universal gas constant (8.314 J/mol·K) - $T$ — absolute temperature (K) ## 4. Film Growth Models ### 4.1 Continuum Surface Evolution #### Edwards-Wilkinson Equation (Linear Growth) $$ \frac{\partial h}{\partial t} = \nu \nabla^2 h + F + \eta(\mathbf{x}, t) $$ #### Kardar-Parisi-Zhang (KPZ) Equation (Nonlinear Growth) $$ \frac{\partial h}{\partial t} = \nu \nabla^2 h + \frac{\lambda}{2} |\nabla h|^2 + F + \eta $$ Where: - $h(\mathbf{x}, t)$ — surface height at position $\mathbf{x}$ and time $t$ - $\nu$ — surface diffusion coefficient (m²/s) - $\lambda$ — nonlinear growth parameter - $F$ — mean deposition flux (m/s) - $\eta$ — stochastic noise term (Gaussian white noise) ### 4.2 Scaling Relations Surface roughness evolves according to: $$ W(L, t) = L^\alpha f\left( \frac{t}{L^z} \right) $$ Where: - $W$ — interface width (roughness) - $L$ — system size - $\alpha$ — roughness exponent - $z$ — dynamic exponent - $f$ — scaling function ## 5. Step Coverage and Conformality ### 5.1 Thiele Modulus For high-aspect-ratio features, the **Thiele modulus** determines conformality: $$ \phi = L \sqrt{\frac{k_s}{D_{eff}}} $$ Where: - $\phi$ — Thiele modulus (dimensionless) - $L$ — feature depth (m) - $k_s$ — surface reaction rate constant (m/s) - $D_{eff}$ — effective diffusivity (m²/s) **Step coverage regimes:** - $\phi \ll 1$ — **Reaction-limited** → Excellent conformality - $\phi \gg 1$ — **Transport-limited** → Poor step coverage (bread-loafing) ### 5.2 Knudsen Diffusion in Trenches $$ D_K = \frac{w}{3} \sqrt{\frac{8 R T}{\pi M}} $$ Where: - $D_K$ — Knudsen diffusion coefficient (m²/s) - $w$ — trench width (m) - $R$ — universal gas constant (J/mol·K) - $T$ — temperature (K) - $M$ — molecular weight (kg/mol) ### 5.3 Feature-Scale Concentration Profile Solving for concentration in a trench with reactive walls: $$ D_{eff} \frac{d^2 C}{dy^2} = \frac{2 k_s C}{w} $$ General solution: $$ C(y) = C_0 \frac{\cosh\left( \phi \frac{L - y}{L} \right)}{\cosh(\phi)} $$ ## 6. Atomic Layer Deposition (ALD) Models ### 6.1 Self-Limiting Surface Kinetics Surface site balance equation: $$ \frac{d\theta}{dt} = k_a C (1 - \theta) - k_d \theta $$ Where: - $\theta$ — fractional surface coverage - $k_a$ — adsorption rate constant (m³/mol·s) - $k_d$ — desorption rate constant (s⁻¹) - $C$ — gas-phase precursor concentration (mol/m³) At equilibrium saturation: $$ \theta_{eq} = \frac{k_a C}{k_a C + k_d} \approx 1 \quad \text{(for strong chemisorption)} $$ ### 6.2 Growth Per Cycle (GPC) $$ \text{GPC} = \Gamma_0 \cdot \Omega \cdot \eta $$ Where: - $\Gamma_0$ — surface site density (sites/m²) - $\Omega$ — volume per deposited atom (m³) - $\eta$ — reaction efficiency (dimensionless) ### 6.3 Saturation Dose-Time Relationship $$ \theta(t) = 1 - \exp\left( -\frac{S \cdot \Phi \cdot t}{\Gamma_0} \right) $$ **Impingement flux** from kinetic theory: $$ \Phi = \frac{p}{\sqrt{2 \pi m k_B T}} $$ Where: - $\Phi$ — molecular impingement flux (molecules/m²·s) - $p$ — precursor partial pressure (Pa) - $m$ — molecular mass (kg) ## 7. Plasma Modeling (PVD/PECVD) ### 7.1 Plasma Sheath Physics **Child-Langmuir law** for ion current density: $$ J_{ion} = \frac{4 \varepsilon_0}{9} \sqrt{\frac{2e}{M_i}} \frac{V_s^{3/2}}{d_s^2} $$ Where: - $J_{ion}$ — ion current density (A/m²) - $\varepsilon_0$ — vacuum permittivity ($8.85 \times 10^{-12}$ F/m) - $e$ — elementary charge ($1.6 \times 10^{-19}$ C) - $M_i$ — ion mass (kg) - $V_s$ — sheath voltage (V) - $d_s$ — sheath thickness (m) ### 7.2 Ion Energy at Substrate $$ \varepsilon_{ion} \approx e V_s + \frac{1}{2} M_i v_{Bohm}^2 $$ **Bohm velocity:** $$ v_{Bohm} = \sqrt{\frac{k_B T_e}{M_i}} $$ Where: - $T_e$ — electron temperature (K or eV) ### 7.3 Sputtering Yield (Sigmund Formula) $$ Y(E) = \frac{3 \alpha}{4 \pi^2} \cdot \frac{4 M_1 M_2}{(M_1 + M_2)^2} \cdot \frac{E}{U_0} $$ Where: - $Y$ — sputtering yield (atoms/ion) - $\alpha$ — dimensionless factor (~0.2–0.4) - $M_1$ — incident ion mass - $M_2$ — target atom mass - $E$ — incident ion energy (eV) - $U_0$ — surface binding energy (eV) ### 7.4 Electron Energy Distribution Function (EEDF) The Boltzmann equation in energy space: $$ \frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla f + \frac{e \mathbf{E}}{m_e} \cdot \nabla_v f = C[f] $$ Where: - $f$ — electron energy distribution function - $\mathbf{E}$ — electric field - $m_e$ — electron mass - $C[f]$ — collision integral ## 8. MDP: Markov Decision Process for Process Control ### 8.1 MDP Formulation A Markov Decision Process is defined by the tuple: $$ \mathcal{M} = (S, A, P, R, \gamma) $$ **Components in semiconductor context:** - **State space $S$**: Film thickness, resistivity, uniformity, equipment state, wafer position - **Action space $A$**: Temperature, pressure, flow rates, RF power, deposition time - **Transition probability $P(s' | s, a)$**: Stochastic process model - **Reward function $R(s, a)$**: Yield, uniformity, throughput, quality metrics - **Discount factor $\gamma$**: Time preference (typically 0.9–0.99) ### 8.2 Bellman Optimality Equation $$ V^*(s) = \max_{a \in A} \left[ R(s, a) + \gamma \sum_{s'} P(s' | s, a) V^*(s') \right] $$ **Q-function formulation:** $$ Q^*(s, a) = R(s, a) + \gamma \sum_{s'} P(s' | s, a) \max_{a'} Q^*(s', a') $$ ### 8.3 Run-to-Run (R2R) Control Optimal recipe adjustment after each wafer: $$ \mathbf{u}_{k+1} = \mathbf{u}_k + \mathbf{K} (\mathbf{y}_{target} - \mathbf{y}_k) $$ Where: - $\mathbf{u}_k$ — process recipe parameters at run $k$ - $\mathbf{y}_k$ — measured output at run $k$ - $\mathbf{K}$ — controller gain matrix (from MDP policy optimization) ### 8.4 Reinforcement Learning Approaches | Method | Application | Characteristics | |--------|-------------|-----------------| | **Q-Learning** | Discrete parameter optimization | Model-free, tabular | | **Deep Q-Network (DQN)** | High-dimensional state spaces | Neural network approximation | | **Policy Gradient** | Continuous process control | Direct policy optimization | | **Actor-Critic (A2C/PPO)** | Complex control tasks | Combined value and policy | | **Model-Based RL** | Physics-informed control | Sample efficient | ## 9. Electrochemical Deposition (Copper Damascene) ### 9.1 Butler-Volmer Equation $$ i = i_0 \left[ \exp\left( \frac{\alpha_a F \eta}{RT} \right) - \exp\left( -\frac{\alpha_c F \eta}{RT} \right) \right] $$ Where: - $i$ — current density (A/m²) - $i_0$ — exchange current density (A/m²) - $\alpha_a, \alpha_c$ — anodic and cathodic transfer coefficients - $F$ — Faraday constant (96,485 C/mol) - $\eta = E - E_{eq}$ — overpotential (V) - $R$ — gas constant (J/mol·K) - $T$ — temperature (K) ### 9.2 Mass Transport Limited Current $$ i_L = \frac{n F D C_b}{\delta} $$ Where: - $i_L$ — limiting current density (A/m²) - $n$ — number of electrons transferred - $D$ — diffusion coefficient of Cu²⁺ (m²/s) - $C_b$ — bulk concentration (mol/m³) - $\delta$ — diffusion layer thickness (m) ### 9.3 Nernst-Planck Equation $$ \mathbf{J}_i = -D_i \nabla C_i - \frac{z_i F D_i}{RT} C_i \nabla \phi + C_i \mathbf{v} $$ Where: - $\mathbf{J}_i$ — flux of species $i$ - $z_i$ — charge number - $\phi$ — electric potential ### 9.4 Superfilling (Bottom-Up Fill) The curvature-enhanced accelerator mechanism: $$ v_n = v_0 (1 + \kappa \cdot \Gamma_{acc}) $$ Where: - $v_n$ — local growth velocity normal to surface - $v_0$ — baseline growth velocity - $\kappa$ — local surface curvature (1/m) - $\Gamma_{acc}$ — accelerator surface concentration ## 10. Multiscale Modeling Framework ### 10.1 Hierarchical Scale Integration ``` ┌──────────────────────────────────────────────────────────────┐ │ REACTOR SCALE │ │ CFD: Flow, temperature, concentration │ │ Time: seconds | Length: cm │ └─────────────────────────┬────────────────────────────────────┘ │ Boundary fluxes ▼ ┌──────────────────────────────────────────────────────────────┐ │ FEATURE SCALE │ │ Level-set / String method for surface evolution │ │ Time: seconds | Length: μm │ └─────────────────────────┬────────────────────────────────────┘ │ Local rates ▼ ┌──────────────────────────────────────────────────────────────┐ │ MESOSCALE (kMC) │ │ Kinetic Monte Carlo: nucleation, island growth │ │ Time: ms | Length: nm │ └─────────────────────────┬────────────────────────────────────┘ │ Rate parameters ▼ ┌──────────────────────────────────────────────────────────────┐ │ ATOMISTIC (MD/DFT) │ │ Molecular dynamics, ab initio: binding energies, │ │ diffusion barriers, reaction paths │ │ Time: ps | Length: Å │ └──────────────────────────────────────────────────────────────┘ ``` ### 10.2 Kinetic Monte Carlo (kMC) Event rate from transition state theory: $$ k_i = \nu_0 \exp\left( -\frac{E_{a,i}}{k_B T} \right) $$ Total rate and time step: $$ k_{total} = \sum_i k_i, \quad \Delta t = -\frac{\ln(r)}{k_{total}} $$ Where $r \in (0, 1]$ is a uniform random number. ### 10.3 Molecular Dynamics Newton's equations of motion: $$ m_i \frac{d^2 \mathbf{r}_i}{dt^2} = -\nabla_i U(\mathbf{r}_1, \mathbf{r}_2, \ldots, \mathbf{r}_N) $$ **Lennard-Jones potential:** $$ U_{LJ}(r) = 4\varepsilon \left[ \left( \frac{\sigma}{r} \right)^{12} - \left( \frac{\sigma}{r} \right)^6 \right] $$ **Embedded Atom Method (EAM) for metals:** $$ U = \sum_i F_i(\rho_i) + \frac{1}{2} \sum_{i \neq j} \phi_{ij}(r_{ij}) $$ Where $\rho_i = \sum_{j \neq i} f_j(r_{ij})$ is the electron density at atom $i$. ## 11. Uniformity Modeling ### 11.1 Wafer-Scale Thickness Distribution (Sputtering) For a circular magnetron target: $$ t(r) = \int_{target} \frac{Y \cdot J_{ion} \cdot \cos\theta_t \cdot \cos\theta_w}{\pi R^2} \, dA $$ Where: - $t(r)$ — thickness at radial position $r$ - $\theta_t$ — emission angle from target - $\theta_w$ — incidence angle at wafer ### 11.2 Uniformity Metrics **Within-Wafer Uniformity (WIW):** $$ \sigma_{WIW} = \frac{1}{\bar{t}} \sqrt{\frac{1}{N} \sum_{i=1}^{N} (t_i - \bar{t})^2} \times 100\% $$ **Wafer-to-Wafer Uniformity (WTW):** $$ \sigma_{WTW} = \frac{1}{\bar{t}_{avg}} \sqrt{\frac{1}{M} \sum_{j=1}^{M} (\bar{t}_j - \bar{t}_{avg})^2} \times 100\% $$ **Target specifications:** - $\sigma_{WIW} < 1\%$ for advanced nodes (≤7 nm) - $\sigma_{WTW} < 0.5\%$ for high-volume manufacturing ## 12. Virtual Metrology and Statistical Models ### 12.1 Gaussian Process Regression (GPR) $$ f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}')) $$ **Squared exponential (RBF) kernel:** $$ k(\mathbf{x}, \mathbf{x}') = \sigma_f^2 \exp\left( -\frac{|\mathbf{x} - \mathbf{x}'|^2}{2\ell^2} \right) $$ **Predictive distribution:** $$ f_* | \mathbf{X}, \mathbf{y}, \mathbf{x}_* \sim \mathcal{N}(\bar{f}_*, \text{var}(f_*)) $$ ### 12.2 Partial Least Squares (PLS) $$ \mathbf{Y} = \mathbf{X} \mathbf{B} + \mathbf{E} $$ Where: - $\mathbf{X}$ — process parameter matrix - $\mathbf{Y}$ — quality outcome matrix - $\mathbf{B}$ — regression coefficient matrix - $\mathbf{E}$ — residual matrix ### 12.3 Principal Component Analysis (PCA) $$ \mathbf{X} = \mathbf{T} \mathbf{P}^T + \mathbf{E} $$ **Hotelling's $T^2$ statistic for fault detection:** $$ T^2 = \sum_{i=1}^{k} \frac{t_i^2}{\lambda_i} $$ ## 13. Process Optimization ### 13.1 Response Surface Methodology (RSM) **Second-order polynomial model:** $$ y = \beta_0 + \sum_{i=1}^{k} \beta_i x_i + \sum_{i=1}^{k} \beta_{ii} x_i^2 + \sum_{i < j} \beta_{ij} x_i x_j + \varepsilon $$ ### 13.2 Constrained Optimization $$ \min_{\mathbf{x}} f(\mathbf{x}) \quad \text{subject to} \quad g_i(\mathbf{x}) \leq 0, \quad h_j(\mathbf{x}) = 0 $$ **Example constraints:** - $g_1$: Non-uniformity ≤ 3% - $g_2$: Resistivity within spec - $g_3$: Throughput ≥ target - $h_1$: Total film thickness = target ### 13.3 Pareto Multi-Objective Optimization $$ \min_{\mathbf{x}} \left[ f_1(\mathbf{x}), f_2(\mathbf{x}), \ldots, f_m(\mathbf{x}) \right] $$ Common trade-offs: - Uniformity vs. throughput - Film quality vs. cost - Conformality vs. deposition rate ## 14. Mathematical Toolkit Reference | Domain | Key Equations | Application | |--------|---------------|-------------| | **Transport** | Navier-Stokes, Convection-Diffusion | Gas flow, precursor delivery | | **Kinetics** | Arrhenius, Langmuir-Hinshelwood | Reaction rates | | **Surface Evolution** | KPZ, Level-set, Edwards-Wilkinson | Film morphology | | **Plasma** | Boltzmann, Child-Langmuir | Ion/electron dynamics | | **Electrochemistry** | Butler-Volmer, Nernst-Planck | Copper plating | | **Control** | Bellman, MDP, RL algorithms | Recipe optimization | | **Statistics** | GPR, PLS, PCA | Virtual metrology | | **Multiscale** | MD, kMC, Continuum | Integrated simulation | ## 15. Physical Constants | Constant | Symbol | Value | Units | |----------|--------|-------|-------| | Boltzmann constant | $k_B$ | $1.38 \times 10^{-23}$ | J/K | | Gas constant | $R$ | $8.314$ | J/(mol·K) | | Faraday constant | $F$ | $96,485$ | C/mol | | Elementary charge | $e$ | $1.60 \times 10^{-19}$ | C | | Vacuum permittivity | $\varepsilon_0$ | $8.85 \times 10^{-12}$ | F/m | | Avogadro's number | $N_A$ | $6.02 \times 10^{23}$ | mol⁻¹ | | Electron mass | $m_e$ | $9.11 \times 10^{-31}$ | kg |

metal fill,design

Dummy metal shapes to balance density.

metal gate work function,device physics

Fermi level of metal gate electrode.

metal hard mask, process integration

Metal hard masks in BEOL enable tighter pitch through improved etch selectivity versus traditional materials.

metal pitch, process integration

Metal pitch is the center-to-center distance between adjacent metal lines determining routing density and interconnect scaling.

metal recess, process integration

Metal recess controls metal height after CMP affecting resistance and subsequent via formation.

metal-only eco, business & strategy

Metal-only ECOs change interconnect layers without altering transistors reducing cost.

metal-organic framework design, mof, materials science

Design porous coordination polymers.

metal-oxide resist,lithography

Emerging resist for EUV with better performance.

metallic contamination, contamination

Metal impurities causing defects.

metamath,augmented,math

MetaMath augments math training data. Better math reasoning.

metamorphic testing, testing

Define expected relationships between inputs.

metamorphic testing,software testing

Test using input transformations.

metapath, graph neural networks

Metapaths are composite relations connecting nodes through sequences of edge types in heterogeneous graphs used for similarity and embedding.

metapath2vec, graph neural networks

Heterogeneous graph embeddings.