mes integration, mes, manufacturing operations
Manufacturing Execution Systems integrate automation data and business systems.
751 technical terms and definitions
Manufacturing Execution Systems integrate automation data and business systems.
Mesh clocking uses interconnected grid distributing clock with inherent deskewing.
Convert to explicit mesh.
Create 3D meshes from 2D images.
Mesh generation creates explicit polygonal surface representations of 3D objects.
Mesh refinement increases element density in critical regions improving thermal simulation accuracy.
Long chain of method calls.
Message passing allows agents to send structured information to collaborators.
GNN framework using message passing.
Message passing in graph neural networks aggregates neighborhood information through iterative local message computation and node state updates.
Base message passing aggregates neighbor features through summation mean or max pooling in graph neural networks.
Dataset of datasets for meta-learning.
Train models to quickly adapt to new tasks with few examples.
Meta-learning for cold start trains models on auxiliary tasks to quickly adapt to new users or items with minimal interactions.
Meta-learn domain-invariant features.
ICL as learned meta-learning.
Meta-path based recommendation exploits semantic paths through knowledge graphs connecting users and items.
Prompts about prompting.
Meta-prompting uses language models to generate and refine prompts for tasks.
Meta-reasoning deliberates about reasoning itself deciding how to allocate cognitive resources.
Reason about reasoning processes themselves.
Learn to learn new tasks quickly.
Meta-reinforcement learning trains agents to quickly adapt to new tasks leveraging prior experience across task distributions.
Meta-World benchmark provides diverse robotic manipulation tasks for evaluating meta-RL algorithms.
Filter by document attributes.
Metadata filtering restricts retrieval to documents matching specified criteria.
Pre-filter documents by metadata (date source type) before semantic search.
Enhanced sampling using bias potential.
Meta-Embedding learns to combine multiple embeddings for cold-start recommendations.
Abstract framework studying token mixers.
Abstract framework for transformer-like architectures.
Learn good initialization via meta-learning.
Polish excess metal (W Cu) after damascene process.
Selective removal of metal lines in advanced nodes.
# Mathematical Modeling of Metal Deposition in Semiconductor Manufacturing ## 1. Overview: Metal Deposition Processes Metal deposition is a critical step in semiconductor fabrication, creating interconnects, contacts, barrier layers, and various metallic structures. The primary deposition methods require distinct mathematical treatments: | Process | Physics Domain | Key Mathematics | |---------|----------------|-----------------| | **PVD (Sputtering)** | Ballistic transport, plasma physics | Boltzmann transport, Monte Carlo | | **CVD/PECVD** | Gas-phase transport, surface reactions | Navier-Stokes, reaction-diffusion | | **ALD** | Self-limiting surface chemistry | Site-balance kinetics | | **Electroplating (ECD)** | Electrochemistry, mass transport | Butler-Volmer, Nernst-Planck | ## 2. Transport Phenomena Models ### 2.1 Gas-Phase Transport (CVD/PECVD) The precursor concentration field follows the **convection-diffusion-reaction equation**: $$ \frac{\partial C}{\partial t} + \mathbf{v} \cdot \nabla C = D \nabla^2 C + R_{gas} $$ Where: - $C$ — precursor concentration (mol/m³) - $\mathbf{v}$ — velocity field vector (m/s) - $D$ — diffusion coefficient (m²/s) - $R_{gas}$ — gas-phase reaction source term (mol/m³$\cdot$s) ### 2.2 Flow Field Equations The **incompressible Navier-Stokes equations** govern the velocity field: $$ \rho \left( \frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = -\nabla p + \mu \nabla^2 \mathbf{v} $$ With continuity equation: $$ \nabla \cdot \mathbf{v} = 0 $$ Where: - $\rho$ — gas density (kg/m³) - $p$ — pressure (Pa) - $\mu$ — dynamic viscosity (Pa$\cdot$s) ### 2.3 Knudsen Number and Transport Regimes At low pressures, the **Knudsen number** determines the transport regime: $$ Kn = \frac{\lambda}{L} = \frac{k_B T}{\sqrt{2} \pi d^2 p L} $$ Where: - $\lambda$ — mean free path (m) - $L$ — characteristic length (m) - $k_B$ — Boltzmann constant ($1.38 \times 10^{-23}$ J/K) - $T$ — temperature (K) - $d$ — molecular diameter (m) - $p$ — pressure (Pa) **Transport regime classification:** - $Kn < 0.01$ — **Continuum regime** → Navier-Stokes CFD - $0.01 < Kn < 0.1$ — **Slip flow regime** → Modified NS with slip boundary conditions - $0.1 < Kn < 10$ — **Transitional regime** → DSMC, Boltzmann equation - $Kn > 10$ — **Free molecular regime** → Ballistic/Monte Carlo methods ## 3. Surface Reaction Kinetics ### 3.1 Langmuir-Hinshelwood Mechanism For bimolecular surface reactions (common in CVD): $$ r = \frac{k \cdot K_A K_B \cdot p_A p_B}{(1 + K_A p_A + K_B p_B)^2} $$ Where: - $r$ — reaction rate (mol/m²$\cdot$s) - $k$ — surface reaction rate constant (mol/m²$\cdot$s) - $K_A, K_B$ — adsorption equilibrium constants (Pa⁻¹) - $p_A, p_B$ — partial pressures of reactants A and B (Pa) ### 3.2 Sticking Coefficient Model The probability that an impinging molecule adsorbs on the surface: $$ S = S_0 \exp\left( -\frac{E_a}{k_B T} \right) \cdot f(\theta) $$ Where: - $S$ — sticking coefficient (dimensionless) - $S_0$ — pre-exponential sticking factor - $E_a$ — activation energy (J) - $f(\theta) = (1 - \theta)^n$ — site blocking function - $\theta$ — surface coverage (dimensionless, 0 to 1) - $n$ — order of site blocking ### 3.3 Arrhenius Temperature Dependence $$ k(T) = A \exp\left( -\frac{E_a}{RT} \right) $$ Where: - $A$ — pre-exponential factor (frequency factor) - $E_a$ — activation energy (J/mol) - $R$ — universal gas constant (8.314 J/mol$\cdot$K) - $T$ — absolute temperature (K) ## 4. Film Growth Models ### 4.1 Continuum Surface Evolution #### Edwards-Wilkinson Equation (Linear Growth) $$ \frac{\partial h}{\partial t} = \nu \nabla^2 h + F + \eta(\mathbf{x}, t) $$ #### Kardar-Parisi-Zhang (KPZ) Equation (Nonlinear Growth) $$ \frac{\partial h}{\partial t} = \nu \nabla^2 h + \frac{\lambda}{2} |\nabla h|^2 + F + \eta $$ Where: - $h(\mathbf{x}, t)$ — surface height at position $\mathbf{x}$ and time $t$ - $\nu$ — surface diffusion coefficient (m²/s) - $\lambda$ — nonlinear growth parameter - $F$ — mean deposition flux (m/s) - $\eta$ — stochastic noise term (Gaussian white noise) ### 4.2 Scaling Relations Surface roughness evolves according to: $$ W(L, t) = L^\alpha f\left( \frac{t}{L^z} \right) $$ Where: - $W$ — interface width (roughness) - $L$ — system size - $\alpha$ — roughness exponent - $z$ — dynamic exponent - $f$ — scaling function ## 5. Step Coverage and Conformality ### 5.1 Thiele Modulus For high-aspect-ratio features, the **Thiele modulus** determines conformality: $$ \phi = L \sqrt{\frac{k_s}{D_{eff}}} $$ Where: - $\phi$ — Thiele modulus (dimensionless) - $L$ — feature depth (m) - $k_s$ — surface reaction rate constant (m/s) - $D_{eff}$ — effective diffusivity (m²/s) **Step coverage regimes:** - $\phi \ll 1$ — **Reaction-limited** → Excellent conformality - $\phi \gg 1$ — **Transport-limited** → Poor step coverage (bread-loafing) ### 5.2 Knudsen Diffusion in Trenches $$ D_K = \frac{w}{3} \sqrt{\frac{8 R T}{\pi M}} $$ Where: - $D_K$ — Knudsen diffusion coefficient (m²/s) - $w$ — trench width (m) - $R$ — universal gas constant (J/mol$\cdot$K) - $T$ — temperature (K) - $M$ — molecular weight (kg/mol) ### 5.3 Feature-Scale Concentration Profile Solving for concentration in a trench with reactive walls: $$ D_{eff} \frac{d^2 C}{dy^2} = \frac{2 k_s C}{w} $$ General solution: $$ C(y) = C_0 \frac{\cosh\left( \phi \frac{L - y}{L} \right)}{\cosh(\phi)} $$ ## 6. Atomic Layer Deposition (ALD) Models ### 6.1 Self-Limiting Surface Kinetics Surface site balance equation: $$ \frac{d\theta}{dt} = k_a C (1 - \theta) - k_d \theta $$ Where: - $\theta$ — fractional surface coverage - $k_a$ — adsorption rate constant (m³/mol$\cdot$s) - $k_d$ — desorption rate constant (s⁻¹) - $C$ — gas-phase precursor concentration (mol/m³) At equilibrium saturation: $$ \theta_{eq} = \frac{k_a C}{k_a C + k_d} \approx 1 \quad \text{(for strong chemisorption)} $$ ### 6.2 Growth Per Cycle (GPC) $$ \text{GPC} = \Gamma_0 \cdot \Omega \cdot \eta $$ Where: - $\Gamma_0$ — surface site density (sites/m²) - $\Omega$ — volume per deposited atom (m³) - $\eta$ — reaction efficiency (dimensionless) ### 6.3 Saturation Dose-Time Relationship $$ \theta(t) = 1 - \exp\left( -\frac{S \cdot \Phi \cdot t}{\Gamma_0} \right) $$ **Impingement flux** from kinetic theory: $$ \Phi = \frac{p}{\sqrt{2 \pi m k_B T}} $$ Where: - $\Phi$ — molecular impingement flux (molecules/m²$\cdot$s) - $p$ — precursor partial pressure (Pa) - $m$ — molecular mass (kg) ## 7. Plasma Modeling (PVD/PECVD) ### 7.1 Plasma Sheath Physics **Child-Langmuir law** for ion current density: $$ J_{ion} = \frac{4 \varepsilon_0}{9} \sqrt{\frac{2e}{M_i}} \frac{V_s^{3/2}}{d_s^2} $$ Where: - $J_{ion}$ — ion current density (A/m²) - $\varepsilon_0$ — vacuum permittivity ($8.85 \times 10^{-12}$ F/m) - $e$ — elementary charge ($1.6 \times 10^{-19}$ C) - $M_i$ — ion mass (kg) - $V_s$ — sheath voltage (V) - $d_s$ — sheath thickness (m) ### 7.2 Ion Energy at Substrate $$ \varepsilon_{ion} \approx e V_s + \frac{1}{2} M_i v_{Bohm}^2 $$ **Bohm velocity:** $$ v_{Bohm} = \sqrt{\frac{k_B T_e}{M_i}} $$ Where: - $T_e$ — electron temperature (K or eV) ### 7.3 Sputtering Yield (Sigmund Formula) $$ Y(E) = \frac{3 \alpha}{4 \pi^2} \cdot \frac{4 M_1 M_2}{(M_1 + M_2)^2} \cdot \frac{E}{U_0} $$ Where: - $Y$ — sputtering yield (atoms/ion) - $\alpha$ — dimensionless factor (~0.2–0.4) - $M_1$ — incident ion mass - $M_2$ — target atom mass - $E$ — incident ion energy (eV) - $U_0$ — surface binding energy (eV) ### 7.4 Electron Energy Distribution Function (EEDF) The Boltzmann equation in energy space: $$ \frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla f + \frac{e \mathbf{E}}{m_e} \cdot \nabla_v f = C[f] $$ Where: - $f$ — electron energy distribution function - $\mathbf{E}$ — electric field - $m_e$ — electron mass - $C[f]$ — collision integral ## 8. MDP: Markov Decision Process for Process Control ### 8.1 MDP Formulation A Markov Decision Process is defined by the tuple: $$ \mathcal{M} = (S, A, P, R, \gamma) $$ **Components in semiconductor context:** - **State space $S$**: Film thickness, resistivity, uniformity, equipment state, wafer position - **Action space $A$**: Temperature, pressure, flow rates, RF power, deposition time - **Transition probability $P(s' | s, a)$**: Stochastic process model - **Reward function $R(s, a)$**: Yield, uniformity, throughput, quality metrics - **Discount factor $\gamma$**: Time preference (typically 0.9–0.99) ### 8.2 Bellman Optimality Equation $$ V^*(s) = \max_{a \in A} \left[ R(s, a) + \gamma \sum_{s'} P(s' | s, a) V^*(s') \right] $$ **Q-function formulation:** $$ Q^*(s, a) = R(s, a) + \gamma \sum_{s'} P(s' | s, a) \max_{a'} Q^*(s', a') $$ ### 8.3 Run-to-Run (R2R) Control Optimal recipe adjustment after each wafer: $$ \mathbf{u}_{k+1} = \mathbf{u}_k + \mathbf{K} (\mathbf{y}_{target} - \mathbf{y}_k) $$ Where: - $\mathbf{u}_k$ — process recipe parameters at run $k$ - $\mathbf{y}_k$ — measured output at run $k$ - $\mathbf{K}$ — controller gain matrix (from MDP policy optimization) ### 8.4 Reinforcement Learning Approaches | Method | Application | Characteristics | |--------|-------------|-----------------| | **Q-Learning** | Discrete parameter optimization | Model-free, tabular | | **Deep Q-Network (DQN)** | High-dimensional state spaces | Neural network approximation | | **Policy Gradient** | Continuous process control | Direct policy optimization | | **Actor-Critic (A2C/PPO)** | Complex control tasks | Combined value and policy | | **Model-Based RL** | Physics-informed control | Sample efficient | ## 9. Electrochemical Deposition (Copper Damascene) ### 9.1 Butler-Volmer Equation $$ i = i_0 \left[ \exp\left( \frac{\alpha_a F \eta}{RT} \right) - \exp\left( -\frac{\alpha_c F \eta}{RT} \right) \right] $$ Where: - $i$ — current density (A/m²) - $i_0$ — exchange current density (A/m²) - $\alpha_a, \alpha_c$ — anodic and cathodic transfer coefficients - $F$ — Faraday constant (96,485 C/mol) - $\eta = E - E_{eq}$ — overpotential (V) - $R$ — gas constant (J/mol$\cdot$K) - $T$ — temperature (K) ### 9.2 Mass Transport Limited Current $$ i_L = \frac{n F D C_b}{\delta} $$ Where: - $i_L$ — limiting current density (A/m²) - $n$ — number of electrons transferred - $D$ — diffusion coefficient of Cu²⁺ (m²/s) - $C_b$ — bulk concentration (mol/m³) - $\delta$ — diffusion layer thickness (m) ### 9.3 Nernst-Planck Equation $$ \mathbf{J}_i = -D_i \nabla C_i - \frac{z_i F D_i}{RT} C_i \nabla \phi + C_i \mathbf{v} $$ Where: - $\mathbf{J}_i$ — flux of species $i$ - $z_i$ — charge number - $\phi$ — electric potential ### 9.4 Superfilling (Bottom-Up Fill) The curvature-enhanced accelerator mechanism: $$ v_n = v_0 (1 + \kappa \cdot \Gamma_{acc}) $$ Where: - $v_n$ — local growth velocity normal to surface - $v_0$ — baseline growth velocity - $\kappa$ — local surface curvature (1/m) - $\Gamma_{acc}$ — accelerator surface concentration ## 10. Multiscale Modeling Framework ### 10.1 Hierarchical Scale Integration ``` - ┌──────────────────────────────────────────────────────────────┐ │ REACTOR SCALE │ │ CFD: Flow, temperature, concentration │ │ Time: seconds | Length: cm │ └─────────────────────────┬────────────────────────────────────┘ │ Boundary fluxes ▼ ┌──────────────────────────────────────────────────────────────┐ │ FEATURE SCALE │ │ Level-set / String method for surface evolution │ │ Time: seconds | Length: $\mu$m │ └─────────────────────────┬────────────────────────────────────┘ │ Local rates ▼ ┌──────────────────────────────────────────────────────────────┐ │ MESOSCALE (kMC) │ │ Kinetic Monte Carlo: nucleation, island growth │ │ Time: ms | Length: nm │ └─────────────────────────┬────────────────────────────────────┘ │ Rate parameters ▼ ┌──────────────────────────────────────────────────────────────┐ │ ATOMISTIC (MD/DFT) │ │ Molecular dynamics, ab initio: binding energies, │ │ diffusion barriers, reaction paths │ │ Time: ps | Length: Å │ └──────────────────────────────────────────────────────────────┘ ``` ### 10.2 Kinetic Monte Carlo (kMC) Event rate from transition state theory: $$ k_i = \nu_0 \exp\left( -\frac{E_{a,i}}{k_B T} \right) $$ Total rate and time step: $$ k_{total} = \sum_i k_i, \quad \Delta t = -\frac{\ln(r)}{k_{total}} $$ Where $r \in (0, 1]$ is a uniform random number. ### 10.3 Molecular Dynamics Newton's equations of motion: $$ m_i \frac{d^2 \mathbf{r}_i}{dt^2} = -\nabla_i U(\mathbf{r}_1, \mathbf{r}_2, \ldots, \mathbf{r}_N) $$ **Lennard-Jones potential:** $$ U_{LJ}(r) = 4\varepsilon \left[ \left( \frac{\sigma}{r} \right)^{12} - \left( \frac{\sigma}{r} \right)^6 \right] $$ **Embedded Atom Method (EAM) for metals:** $$ U = \sum_i F_i(\rho_i) + \frac{1}{2} \sum_{i \neq j} \phi_{ij}(r_{ij}) $$ Where $\rho_i = \sum_{j \neq i} f_j(r_{ij})$ is the electron density at atom $i$. ## 11. Uniformity Modeling ### 11.1 Wafer-Scale Thickness Distribution (Sputtering) For a circular magnetron target: $$ t(r) = \int_{target} \frac{Y \cdot J_{ion} \cdot \cos\theta_t \cdot \cos\theta_w}{\pi R^2} \, dA $$ Where: - $t(r)$ — thickness at radial position $r$ - $\theta_t$ — emission angle from target - $\theta_w$ — incidence angle at wafer ### 11.2 Uniformity Metrics **Within-Wafer Uniformity (WIW):** $$ \sigma_{WIW} = \frac{1}{\bar{t}} \sqrt{\frac{1}{N} \sum_{i=1}^{N} (t_i - \bar{t})^2} \times 100\% $$ **Wafer-to-Wafer Uniformity (WTW):** $$ \sigma_{WTW} = \frac{1}{\bar{t}_{avg}} \sqrt{\frac{1}{M} \sum_{j=1}^{M} (\bar{t}_j - \bar{t}_{avg})^2} \times 100\% $$ **Target specifications:** - $\sigma_{WIW} < 1\%$ for advanced nodes (≤7 nm) - $\sigma_{WTW} < 0.5\%$ for high-volume manufacturing ## 12. Virtual Metrology and Statistical Models ### 12.1 Gaussian Process Regression (GPR) $$ f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}')) $$ **Squared exponential (RBF) kernel:** $$ k(\mathbf{x}, \mathbf{x}') = \sigma_f^2 \exp\left( -\frac{|\mathbf{x} - \mathbf{x}'|^2}{2\ell^2} \right) $$ **Predictive distribution:** $$ f_* | \mathbf{X}, \mathbf{y}, \mathbf{x}_* \sim \mathcal{N}(\bar{f}_*, \text{var}(f_*)) $$ ### 12.2 Partial Least Squares (PLS) $$ \mathbf{Y} = \mathbf{X} \mathbf{B} + \mathbf{E} $$ Where: - $\mathbf{X}$ — process parameter matrix - $\mathbf{Y}$ — quality outcome matrix - $\mathbf{B}$ — regression coefficient matrix - $\mathbf{E}$ — residual matrix ### 12.3 Principal Component Analysis (PCA) $$ \mathbf{X} = \mathbf{T} \mathbf{P}^T + \mathbf{E} $$ **Hotelling's $T^2$ statistic for fault detection:** $$ T^2 = \sum_{i=1}^{k} \frac{t_i^2}{\lambda_i} $$ ## 13. Process Optimization ### 13.1 Response Surface Methodology (RSM) **Second-order polynomial model:** $$ y = \beta_0 + \sum_{i=1}^{k} \beta_i x_i + \sum_{i=1}^{k} \beta_{ii} x_i^2 + \sum_{i < j} \beta_{ij} x_i x_j + \varepsilon $$ ### 13.2 Constrained Optimization $$ \min_{\mathbf{x}} f(\mathbf{x}) \quad \text{subject to} \quad g_i(\mathbf{x}) \leq 0, \quad h_j(\mathbf{x}) = 0 $$ **Example constraints:** - $g_1$: Non-uniformity ≤ 3% - $g_2$: Resistivity within spec - $g_3$: Throughput ≥ target - $h_1$: Total film thickness = target ### 13.3 Pareto Multi-Objective Optimization $$ \min_{\mathbf{x}} \left[ f_1(\mathbf{x}), f_2(\mathbf{x}), \ldots, f_m(\mathbf{x}) \right] $$ Common trade-offs: - Uniformity vs. throughput - Film quality vs. cost - Conformality vs. deposition rate ## 14. Mathematical Toolkit | Domain | Key Equations | Application | |--------|---------------|-------------| | **Transport** | Navier-Stokes, Convection-Diffusion | Gas flow, precursor delivery | | **Kinetics** | Arrhenius, Langmuir-Hinshelwood | Reaction rates | | **Surface Evolution** | KPZ, Level-set, Edwards-Wilkinson | Film morphology | | **Plasma** | Boltzmann, Child-Langmuir | Ion/electron dynamics | | **Electrochemistry** | Butler-Volmer, Nernst-Planck | Copper plating | | **Control** | Bellman, MDP, RL algorithms | Recipe optimization | | **Statistics** | GPR, PLS, PCA | Virtual metrology | | **Multiscale** | MD, kMC, Continuum | Integrated simulation | ## 15. Physical Constants | Constant | Symbol | Value | Units | |----------|--------|-------|-------| | Boltzmann constant | $k_B$ | $1.38 \times 10^{-23}$ | J/K | | Gas constant | $R$ | $8.314$ | J/(mol$\cdot$K) | | Faraday constant | $F$ | $96,485$ | C/mol | | Elementary charge | $e$ | $1.60 \times 10^{-19}$ | C | | Vacuum permittivity | $\varepsilon_0$ | $8.85 \times 10^{-12}$ | F/m | | Avogadro's number | $N_A$ | $6.02 \times 10^{23}$ | mol⁻¹ | | Electron mass | $m_e$ | $9.11 \times 10^{-31}$ | kg |
# Mathematical Modeling of Metal Deposition in Semiconductor Manufacturing ## 1. Overview: Metal Deposition Processes Metal deposition is a critical step in semiconductor fabrication, creating interconnects, contacts, barrier layers, and various metallic structures. The primary deposition methods require distinct mathematical treatments: | Process | Physics Domain | Key Mathematics | |---------|----------------|-----------------| | **PVD (Sputtering)** | Ballistic transport, plasma physics | Boltzmann transport, Monte Carlo | | **CVD/PECVD** | Gas-phase transport, surface reactions | Navier-Stokes, reaction-diffusion | | **ALD** | Self-limiting surface chemistry | Site-balance kinetics | | **Electroplating (ECD)** | Electrochemistry, mass transport | Butler-Volmer, Nernst-Planck | ## 2. Transport Phenomena Models ### 2.1 Gas-Phase Transport (CVD/PECVD) The precursor concentration field follows the **convection-diffusion-reaction equation**: $$ \frac{\partial C}{\partial t} + \mathbf{v} \cdot \nabla C = D \nabla^2 C + R_{gas} $$ Where: - $C$ — precursor concentration (mol/m³) - $\mathbf{v}$ — velocity field vector (m/s) - $D$ — diffusion coefficient (m²/s) - $R_{gas}$ — gas-phase reaction source term (mol/m³·s) ### 2.2 Flow Field Equations The **incompressible Navier-Stokes equations** govern the velocity field: $$ \rho \left( \frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = -\nabla p + \mu \nabla^2 \mathbf{v} $$ With continuity equation: $$ \nabla \cdot \mathbf{v} = 0 $$ Where: - $\rho$ — gas density (kg/m³) - $p$ — pressure (Pa) - $\mu$ — dynamic viscosity (Pa·s) ### 2.3 Knudsen Number and Transport Regimes At low pressures, the **Knudsen number** determines the transport regime: $$ Kn = \frac{\lambda}{L} = \frac{k_B T}{\sqrt{2} \pi d^2 p L} $$ Where: - $\lambda$ — mean free path (m) - $L$ — characteristic length (m) - $k_B$ — Boltzmann constant ($1.38 \times 10^{-23}$ J/K) - $T$ — temperature (K) - $d$ — molecular diameter (m) - $p$ — pressure (Pa) **Transport regime classification:** - $Kn < 0.01$ — **Continuum regime** → Navier-Stokes CFD - $0.01 < Kn < 0.1$ — **Slip flow regime** → Modified NS with slip boundary conditions - $0.1 < Kn < 10$ — **Transitional regime** → DSMC, Boltzmann equation - $Kn > 10$ — **Free molecular regime** → Ballistic/Monte Carlo methods ## 3. Surface Reaction Kinetics ### 3.1 Langmuir-Hinshelwood Mechanism For bimolecular surface reactions (common in CVD): $$ r = \frac{k \cdot K_A K_B \cdot p_A p_B}{(1 + K_A p_A + K_B p_B)^2} $$ Where: - $r$ — reaction rate (mol/m²·s) - $k$ — surface reaction rate constant (mol/m²·s) - $K_A, K_B$ — adsorption equilibrium constants (Pa⁻¹) - $p_A, p_B$ — partial pressures of reactants A and B (Pa) ### 3.2 Sticking Coefficient Model The probability that an impinging molecule adsorbs on the surface: $$ S = S_0 \exp\left( -\frac{E_a}{k_B T} \right) \cdot f(\theta) $$ Where: - $S$ — sticking coefficient (dimensionless) - $S_0$ — pre-exponential sticking factor - $E_a$ — activation energy (J) - $f(\theta) = (1 - \theta)^n$ — site blocking function - $\theta$ — surface coverage (dimensionless, 0 to 1) - $n$ — order of site blocking ### 3.3 Arrhenius Temperature Dependence $$ k(T) = A \exp\left( -\frac{E_a}{RT} \right) $$ Where: - $A$ — pre-exponential factor (frequency factor) - $E_a$ — activation energy (J/mol) - $R$ — universal gas constant (8.314 J/mol·K) - $T$ — absolute temperature (K) ## 4. Film Growth Models ### 4.1 Continuum Surface Evolution #### Edwards-Wilkinson Equation (Linear Growth) $$ \frac{\partial h}{\partial t} = \nu \nabla^2 h + F + \eta(\mathbf{x}, t) $$ #### Kardar-Parisi-Zhang (KPZ) Equation (Nonlinear Growth) $$ \frac{\partial h}{\partial t} = \nu \nabla^2 h + \frac{\lambda}{2} |\nabla h|^2 + F + \eta $$ Where: - $h(\mathbf{x}, t)$ — surface height at position $\mathbf{x}$ and time $t$ - $\nu$ — surface diffusion coefficient (m²/s) - $\lambda$ — nonlinear growth parameter - $F$ — mean deposition flux (m/s) - $\eta$ — stochastic noise term (Gaussian white noise) ### 4.2 Scaling Relations Surface roughness evolves according to: $$ W(L, t) = L^\alpha f\left( \frac{t}{L^z} \right) $$ Where: - $W$ — interface width (roughness) - $L$ — system size - $\alpha$ — roughness exponent - $z$ — dynamic exponent - $f$ — scaling function ## 5. Step Coverage and Conformality ### 5.1 Thiele Modulus For high-aspect-ratio features, the **Thiele modulus** determines conformality: $$ \phi = L \sqrt{\frac{k_s}{D_{eff}}} $$ Where: - $\phi$ — Thiele modulus (dimensionless) - $L$ — feature depth (m) - $k_s$ — surface reaction rate constant (m/s) - $D_{eff}$ — effective diffusivity (m²/s) **Step coverage regimes:** - $\phi \ll 1$ — **Reaction-limited** → Excellent conformality - $\phi \gg 1$ — **Transport-limited** → Poor step coverage (bread-loafing) ### 5.2 Knudsen Diffusion in Trenches $$ D_K = \frac{w}{3} \sqrt{\frac{8 R T}{\pi M}} $$ Where: - $D_K$ — Knudsen diffusion coefficient (m²/s) - $w$ — trench width (m) - $R$ — universal gas constant (J/mol·K) - $T$ — temperature (K) - $M$ — molecular weight (kg/mol) ### 5.3 Feature-Scale Concentration Profile Solving for concentration in a trench with reactive walls: $$ D_{eff} \frac{d^2 C}{dy^2} = \frac{2 k_s C}{w} $$ General solution: $$ C(y) = C_0 \frac{\cosh\left( \phi \frac{L - y}{L} \right)}{\cosh(\phi)} $$ ## 6. Atomic Layer Deposition (ALD) Models ### 6.1 Self-Limiting Surface Kinetics Surface site balance equation: $$ \frac{d\theta}{dt} = k_a C (1 - \theta) - k_d \theta $$ Where: - $\theta$ — fractional surface coverage - $k_a$ — adsorption rate constant (m³/mol·s) - $k_d$ — desorption rate constant (s⁻¹) - $C$ — gas-phase precursor concentration (mol/m³) At equilibrium saturation: $$ \theta_{eq} = \frac{k_a C}{k_a C + k_d} \approx 1 \quad \text{(for strong chemisorption)} $$ ### 6.2 Growth Per Cycle (GPC) $$ \text{GPC} = \Gamma_0 \cdot \Omega \cdot \eta $$ Where: - $\Gamma_0$ — surface site density (sites/m²) - $\Omega$ — volume per deposited atom (m³) - $\eta$ — reaction efficiency (dimensionless) ### 6.3 Saturation Dose-Time Relationship $$ \theta(t) = 1 - \exp\left( -\frac{S \cdot \Phi \cdot t}{\Gamma_0} \right) $$ **Impingement flux** from kinetic theory: $$ \Phi = \frac{p}{\sqrt{2 \pi m k_B T}} $$ Where: - $\Phi$ — molecular impingement flux (molecules/m²·s) - $p$ — precursor partial pressure (Pa) - $m$ — molecular mass (kg) ## 7. Plasma Modeling (PVD/PECVD) ### 7.1 Plasma Sheath Physics **Child-Langmuir law** for ion current density: $$ J_{ion} = \frac{4 \varepsilon_0}{9} \sqrt{\frac{2e}{M_i}} \frac{V_s^{3/2}}{d_s^2} $$ Where: - $J_{ion}$ — ion current density (A/m²) - $\varepsilon_0$ — vacuum permittivity ($8.85 \times 10^{-12}$ F/m) - $e$ — elementary charge ($1.6 \times 10^{-19}$ C) - $M_i$ — ion mass (kg) - $V_s$ — sheath voltage (V) - $d_s$ — sheath thickness (m) ### 7.2 Ion Energy at Substrate $$ \varepsilon_{ion} \approx e V_s + \frac{1}{2} M_i v_{Bohm}^2 $$ **Bohm velocity:** $$ v_{Bohm} = \sqrt{\frac{k_B T_e}{M_i}} $$ Where: - $T_e$ — electron temperature (K or eV) ### 7.3 Sputtering Yield (Sigmund Formula) $$ Y(E) = \frac{3 \alpha}{4 \pi^2} \cdot \frac{4 M_1 M_2}{(M_1 + M_2)^2} \cdot \frac{E}{U_0} $$ Where: - $Y$ — sputtering yield (atoms/ion) - $\alpha$ — dimensionless factor (~0.2–0.4) - $M_1$ — incident ion mass - $M_2$ — target atom mass - $E$ — incident ion energy (eV) - $U_0$ — surface binding energy (eV) ### 7.4 Electron Energy Distribution Function (EEDF) The Boltzmann equation in energy space: $$ \frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla f + \frac{e \mathbf{E}}{m_e} \cdot \nabla_v f = C[f] $$ Where: - $f$ — electron energy distribution function - $\mathbf{E}$ — electric field - $m_e$ — electron mass - $C[f]$ — collision integral ## 8. MDP: Markov Decision Process for Process Control ### 8.1 MDP Formulation A Markov Decision Process is defined by the tuple: $$ \mathcal{M} = (S, A, P, R, \gamma) $$ **Components in semiconductor context:** - **State space $S$**: Film thickness, resistivity, uniformity, equipment state, wafer position - **Action space $A$**: Temperature, pressure, flow rates, RF power, deposition time - **Transition probability $P(s' | s, a)$**: Stochastic process model - **Reward function $R(s, a)$**: Yield, uniformity, throughput, quality metrics - **Discount factor $\gamma$**: Time preference (typically 0.9–0.99) ### 8.2 Bellman Optimality Equation $$ V^*(s) = \max_{a \in A} \left[ R(s, a) + \gamma \sum_{s'} P(s' | s, a) V^*(s') \right] $$ **Q-function formulation:** $$ Q^*(s, a) = R(s, a) + \gamma \sum_{s'} P(s' | s, a) \max_{a'} Q^*(s', a') $$ ### 8.3 Run-to-Run (R2R) Control Optimal recipe adjustment after each wafer: $$ \mathbf{u}_{k+1} = \mathbf{u}_k + \mathbf{K} (\mathbf{y}_{target} - \mathbf{y}_k) $$ Where: - $\mathbf{u}_k$ — process recipe parameters at run $k$ - $\mathbf{y}_k$ — measured output at run $k$ - $\mathbf{K}$ — controller gain matrix (from MDP policy optimization) ### 8.4 Reinforcement Learning Approaches | Method | Application | Characteristics | |--------|-------------|-----------------| | **Q-Learning** | Discrete parameter optimization | Model-free, tabular | | **Deep Q-Network (DQN)** | High-dimensional state spaces | Neural network approximation | | **Policy Gradient** | Continuous process control | Direct policy optimization | | **Actor-Critic (A2C/PPO)** | Complex control tasks | Combined value and policy | | **Model-Based RL** | Physics-informed control | Sample efficient | ## 9. Electrochemical Deposition (Copper Damascene) ### 9.1 Butler-Volmer Equation $$ i = i_0 \left[ \exp\left( \frac{\alpha_a F \eta}{RT} \right) - \exp\left( -\frac{\alpha_c F \eta}{RT} \right) \right] $$ Where: - $i$ — current density (A/m²) - $i_0$ — exchange current density (A/m²) - $\alpha_a, \alpha_c$ — anodic and cathodic transfer coefficients - $F$ — Faraday constant (96,485 C/mol) - $\eta = E - E_{eq}$ — overpotential (V) - $R$ — gas constant (J/mol·K) - $T$ — temperature (K) ### 9.2 Mass Transport Limited Current $$ i_L = \frac{n F D C_b}{\delta} $$ Where: - $i_L$ — limiting current density (A/m²) - $n$ — number of electrons transferred - $D$ — diffusion coefficient of Cu²⁺ (m²/s) - $C_b$ — bulk concentration (mol/m³) - $\delta$ — diffusion layer thickness (m) ### 9.3 Nernst-Planck Equation $$ \mathbf{J}_i = -D_i \nabla C_i - \frac{z_i F D_i}{RT} C_i \nabla \phi + C_i \mathbf{v} $$ Where: - $\mathbf{J}_i$ — flux of species $i$ - $z_i$ — charge number - $\phi$ — electric potential ### 9.4 Superfilling (Bottom-Up Fill) The curvature-enhanced accelerator mechanism: $$ v_n = v_0 (1 + \kappa \cdot \Gamma_{acc}) $$ Where: - $v_n$ — local growth velocity normal to surface - $v_0$ — baseline growth velocity - $\kappa$ — local surface curvature (1/m) - $\Gamma_{acc}$ — accelerator surface concentration ## 10. Multiscale Modeling Framework ### 10.1 Hierarchical Scale Integration ``` ┌──────────────────────────────────────────────────────────────┐ │ REACTOR SCALE │ │ CFD: Flow, temperature, concentration │ │ Time: seconds | Length: cm │ └─────────────────────────┬────────────────────────────────────┘ │ Boundary fluxes ▼ ┌──────────────────────────────────────────────────────────────┐ │ FEATURE SCALE │ │ Level-set / String method for surface evolution │ │ Time: seconds | Length: μm │ └─────────────────────────┬────────────────────────────────────┘ │ Local rates ▼ ┌──────────────────────────────────────────────────────────────┐ │ MESOSCALE (kMC) │ │ Kinetic Monte Carlo: nucleation, island growth │ │ Time: ms | Length: nm │ └─────────────────────────┬────────────────────────────────────┘ │ Rate parameters ▼ ┌──────────────────────────────────────────────────────────────┐ │ ATOMISTIC (MD/DFT) │ │ Molecular dynamics, ab initio: binding energies, │ │ diffusion barriers, reaction paths │ │ Time: ps | Length: Å │ └──────────────────────────────────────────────────────────────┘ ``` ### 10.2 Kinetic Monte Carlo (kMC) Event rate from transition state theory: $$ k_i = \nu_0 \exp\left( -\frac{E_{a,i}}{k_B T} \right) $$ Total rate and time step: $$ k_{total} = \sum_i k_i, \quad \Delta t = -\frac{\ln(r)}{k_{total}} $$ Where $r \in (0, 1]$ is a uniform random number. ### 10.3 Molecular Dynamics Newton's equations of motion: $$ m_i \frac{d^2 \mathbf{r}_i}{dt^2} = -\nabla_i U(\mathbf{r}_1, \mathbf{r}_2, \ldots, \mathbf{r}_N) $$ **Lennard-Jones potential:** $$ U_{LJ}(r) = 4\varepsilon \left[ \left( \frac{\sigma}{r} \right)^{12} - \left( \frac{\sigma}{r} \right)^6 \right] $$ **Embedded Atom Method (EAM) for metals:** $$ U = \sum_i F_i(\rho_i) + \frac{1}{2} \sum_{i \neq j} \phi_{ij}(r_{ij}) $$ Where $\rho_i = \sum_{j \neq i} f_j(r_{ij})$ is the electron density at atom $i$. ## 11. Uniformity Modeling ### 11.1 Wafer-Scale Thickness Distribution (Sputtering) For a circular magnetron target: $$ t(r) = \int_{target} \frac{Y \cdot J_{ion} \cdot \cos\theta_t \cdot \cos\theta_w}{\pi R^2} \, dA $$ Where: - $t(r)$ — thickness at radial position $r$ - $\theta_t$ — emission angle from target - $\theta_w$ — incidence angle at wafer ### 11.2 Uniformity Metrics **Within-Wafer Uniformity (WIW):** $$ \sigma_{WIW} = \frac{1}{\bar{t}} \sqrt{\frac{1}{N} \sum_{i=1}^{N} (t_i - \bar{t})^2} \times 100\% $$ **Wafer-to-Wafer Uniformity (WTW):** $$ \sigma_{WTW} = \frac{1}{\bar{t}_{avg}} \sqrt{\frac{1}{M} \sum_{j=1}^{M} (\bar{t}_j - \bar{t}_{avg})^2} \times 100\% $$ **Target specifications:** - $\sigma_{WIW} < 1\%$ for advanced nodes (≤7 nm) - $\sigma_{WTW} < 0.5\%$ for high-volume manufacturing ## 12. Virtual Metrology and Statistical Models ### 12.1 Gaussian Process Regression (GPR) $$ f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}')) $$ **Squared exponential (RBF) kernel:** $$ k(\mathbf{x}, \mathbf{x}') = \sigma_f^2 \exp\left( -\frac{|\mathbf{x} - \mathbf{x}'|^2}{2\ell^2} \right) $$ **Predictive distribution:** $$ f_* | \mathbf{X}, \mathbf{y}, \mathbf{x}_* \sim \mathcal{N}(\bar{f}_*, \text{var}(f_*)) $$ ### 12.2 Partial Least Squares (PLS) $$ \mathbf{Y} = \mathbf{X} \mathbf{B} + \mathbf{E} $$ Where: - $\mathbf{X}$ — process parameter matrix - $\mathbf{Y}$ — quality outcome matrix - $\mathbf{B}$ — regression coefficient matrix - $\mathbf{E}$ — residual matrix ### 12.3 Principal Component Analysis (PCA) $$ \mathbf{X} = \mathbf{T} \mathbf{P}^T + \mathbf{E} $$ **Hotelling's $T^2$ statistic for fault detection:** $$ T^2 = \sum_{i=1}^{k} \frac{t_i^2}{\lambda_i} $$ ## 13. Process Optimization ### 13.1 Response Surface Methodology (RSM) **Second-order polynomial model:** $$ y = \beta_0 + \sum_{i=1}^{k} \beta_i x_i + \sum_{i=1}^{k} \beta_{ii} x_i^2 + \sum_{i < j} \beta_{ij} x_i x_j + \varepsilon $$ ### 13.2 Constrained Optimization $$ \min_{\mathbf{x}} f(\mathbf{x}) \quad \text{subject to} \quad g_i(\mathbf{x}) \leq 0, \quad h_j(\mathbf{x}) = 0 $$ **Example constraints:** - $g_1$: Non-uniformity ≤ 3% - $g_2$: Resistivity within spec - $g_3$: Throughput ≥ target - $h_1$: Total film thickness = target ### 13.3 Pareto Multi-Objective Optimization $$ \min_{\mathbf{x}} \left[ f_1(\mathbf{x}), f_2(\mathbf{x}), \ldots, f_m(\mathbf{x}) \right] $$ Common trade-offs: - Uniformity vs. throughput - Film quality vs. cost - Conformality vs. deposition rate ## 14. Mathematical Toolkit Reference | Domain | Key Equations | Application | |--------|---------------|-------------| | **Transport** | Navier-Stokes, Convection-Diffusion | Gas flow, precursor delivery | | **Kinetics** | Arrhenius, Langmuir-Hinshelwood | Reaction rates | | **Surface Evolution** | KPZ, Level-set, Edwards-Wilkinson | Film morphology | | **Plasma** | Boltzmann, Child-Langmuir | Ion/electron dynamics | | **Electrochemistry** | Butler-Volmer, Nernst-Planck | Copper plating | | **Control** | Bellman, MDP, RL algorithms | Recipe optimization | | **Statistics** | GPR, PLS, PCA | Virtual metrology | | **Multiscale** | MD, kMC, Continuum | Integrated simulation | ## 15. Physical Constants | Constant | Symbol | Value | Units | |----------|--------|-------|-------| | Boltzmann constant | $k_B$ | $1.38 \times 10^{-23}$ | J/K | | Gas constant | $R$ | $8.314$ | J/(mol·K) | | Faraday constant | $F$ | $96,485$ | C/mol | | Elementary charge | $e$ | $1.60 \times 10^{-19}$ | C | | Vacuum permittivity | $\varepsilon_0$ | $8.85 \times 10^{-12}$ | F/m | | Avogadro's number | $N_A$ | $6.02 \times 10^{23}$ | mol⁻¹ | | Electron mass | $m_e$ | $9.11 \times 10^{-31}$ | kg |
Dummy metal shapes to balance density.
Fermi level of metal gate electrode.
Metal hard masks in BEOL enable tighter pitch through improved etch selectivity versus traditional materials.
Metal pitch is the center-to-center distance between adjacent metal lines determining routing density and interconnect scaling.
Metal recess controls metal height after CMP affecting resistance and subsequent via formation.
Metal-only ECOs change interconnect layers without altering transistors reducing cost.
Design porous coordination polymers.
Emerging resist for EUV with better performance.
Metal impurities causing defects.
MetaMath augments math training data. Better math reasoning.
Define expected relationships between inputs.
Test using input transformations.
Metapaths are composite relations connecting nodes through sequences of edge types in heterogeneous graphs used for similarity and embedding.
Heterogeneous graph embeddings.