← Back to AI Factory Chat

AI Factory Glossary

217 technical terms and definitions

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Showing page 2 of 5 (217 entries)

omegaconf, infrastructure

Configuration system for complex projects.

on-call rotation,operations

Schedule for responding to production issues.

on-chip aging sensors, design

Measure degradation in-situ.

on-chip variation (ocv),on-chip variation,ocv,design

Account for within-die parameter variation.

on-device ai,edge ai

Run models locally on user devices.

on-device model, llm architecture

On-device models run locally on user hardware without cloud connectivity.

on-device overlay, metrology

Measure overlay on product patterns.

on-device training, edge ai

Train models directly on edge devices.

on-die decap sizing, signal & power integrity

On-die decoupling capacitor sizing balances area overhead with impedance targets at high frequencies.

on-die decap, signal & power integrity

On-die decoupling capacitors integrated in chip area provide fast response to local current demands minimizing dynamic voltage drop.

on-die sensors,design

Measure temperature voltage process on chip.

on-site solar, environmental & sustainability

On-site solar photovoltaic systems generate renewable electricity directly at manufacturing facilities.

on-the-fly augmentation, infrastructure

Generate augmented data during training.

once for all,supernet,subnet

Once-for-all trains single supernet containing all subnets. Extract subnet for target constraint. Efficient NAS.

once-for-all networks, neural architecture

Train supernet once search many times.

once-for-all, neural architecture search

Once-for-all networks train a single supernet that supports diverse architectural configurations enabling efficient deployment-specific specialization.

one-class svm ts, time series models

One-class SVM for time series learns boundaries of normal behavior detecting anomalies as deviations from learned support.

one-piece flow, manufacturing operations

One-piece flow processes single units through operations without batching enabling rapid response.

one-point lesson, quality & reliability

One-point lessons teach single concepts on single page for quick learning.

one-shot learning,few-shot learning

Learn from single example per class.

one-shot nas, neural architecture

Single training run to evaluate architectures.

one-shot prompting, prompting

Single example in prompt.

one-shot prompting, prompting techniques

One-shot prompting includes single example demonstrating desired response format.

one-shot pruning, model optimization

One-shot pruning removes all unnecessary parameters in single step before retraining.

one-shot pruning,model optimization

Prune once without retraining.

one-shot weight sharing, neural architecture search

One-shot weight sharing trains single supernet where subnetworks share weights for efficient architecture evaluation.

one-sided confidence interval, reliability

Lower or upper bound only.

one-way anova, quality & reliability

One-way ANOVA compares means for single factor with multiple levels.

oneapi,hardware

Intel's unified programming model for diverse architectures.

oneapi,intel oneapi,sycl,cross-architecture

oneAPI is Intel cross-architecture programming. SYCL-based. Targets CPUs, GPUs, FPGAs with single code.

online distillation, model compression

Distill during training of teacher.

online hard example mining, ohem, computer vision

Mine hard examples during training.

online learning,machine learning

Update model as new data arrives.

online learning,streaming,update

Online learning updates model continuously as new data arrives. Important for non-stationary environments.

onnx (open neural network exchange),onnx,open neural network exchange,deployment

Format for exchanging models between frameworks.

onnx export,convert,portable

Export to ONNX for portability. Run on different runtimes.

onnx format, onnx, model optimization

ONNX provides open standard for representing deep learning models enabling framework interoperability.

onnx runtime, onnx, model optimization

ONNX Runtime provides cross-platform inference optimization for ONNX format models.

onnx,export,interoperability

ONNX is an open format for ML models. Export PyTorch/TensorFlow to ONNX for deployment on different runtimes.

onnx,interoperability,format

ONNX is open model format. Export from PyTorch/TensorFlow, run anywhere. Enables portability.

oom,out of memory,gpu memory

When you hit GPU OOM, I will help you reduce memory usage by adjusting batch size, sequence length, model size, or using quantization.

opc convergence, opc, lithography

How quickly OPC reaches solution.

opc model calibration, opc, lithography

Fit OPC model to test patterns.

opc model validation, opc, lithography

Verify OPC model on new patterns.

opc verification, opc, lithography

Check that OPC achieves desired results.

opc, optical proximity correction, opc modeling, lithography opc, mask correction, proximity effects, opc optimization, rule-based opc, model-based opc

# Optical Proximity Correction (OPC): Mathematical Modeling ## 1. The Physical Problem When projecting mask patterns onto a silicon wafer using light (typically 193nm DUV or 13.5nm EUV), several phenomena distort the image: - **Diffraction**: Light bending around features near or below the wavelength - **Interference**: Constructive/destructive wave interactions - **Optical aberrations**: Lens imperfections - **Resist effects**: Photochemical behavior during exposure and development - **Etch loading**: Pattern-density-dependent etch rates **OPC pre-distorts the mask** so that after all these effects, the printed pattern matches the design intent. ### Key Parameters | Parameter | Typical Value | Description | |-----------|---------------|-------------| | $\lambda$ | 193 nm (DUV), 13.5 nm (EUV) | Exposure wavelength | | $NA$ | 0.33 - 1.35 | Numerical aperture | | $k_1$ | 0.25 - 0.40 | Process factor | | Resolution | $\frac{k_1 \lambda}{NA}$ | Minimum feature size | ## 2. Hopkins Imaging Model The foundational mathematical framework for **partially coherent lithographic imaging** comes from Hopkins' theory (1953). ### Aerial Image Intensity The aerial image intensity at position $\mathbf{r} = (x, y)$ is given by: $$ I(\mathbf{r}) = \iiint\!\!\!\iint TCC(\mathbf{f}_1, \mathbf{f}_2) \cdot M(\mathbf{f}_1) \cdot M^*(\mathbf{f}_2) \cdot e^{2\pi i (\mathbf{f}_1 - \mathbf{f}_2) \cdot \mathbf{r}} \, d\mathbf{f}_1 \, d\mathbf{f}_2 $$ Where: - $M(\mathbf{f})$ — Fourier transform of the mask transmission function - $M^*(\mathbf{f})$ — Complex conjugate of $M(\mathbf{f})$ - $TCC$ — Transmission Cross Coefficient - $\mathbf{f} = (f_x, f_y)$ — Spatial frequency coordinates ### Transmission Cross Coefficient (TCC) The TCC encodes the optical system characteristics: $$ TCC(\mathbf{f}_1, \mathbf{f}_2) = \iint J(\mathbf{f}) \cdot H(\mathbf{f} + \mathbf{f}_1) \cdot H^*(\mathbf{f} + \mathbf{f}_2) \, d\mathbf{f} $$ Where: - $J(\mathbf{f})$ — Source (illumination) intensity distribution (mutual intensity at mask) - $H(\mathbf{f})$ — Pupil function of the projection lens - $H^*(\mathbf{f})$ — Complex conjugate of pupil function ### Pupil Function For an ideal circular aperture: $$ H(\mathbf{f}) = \begin{cases} 1 & \text{if } |\mathbf{f}| \leq \frac{NA}{\lambda} \\ 0 & \text{otherwise} \end{cases} $$ With aberrations included: $$ H(\mathbf{f}) = P(\mathbf{f}) \cdot e^{i \cdot W(\mathbf{f})} $$ Where $W(\mathbf{f})$ is the wavefront aberration function (Zernike polynomial expansion). ## 3. SOCS Decomposition ### Sum of Coherent Systems To make computation tractable, the TCC (a Hermitian matrix when discretized) is decomposed via **eigenvalue decomposition**: $$ TCC(\mathbf{f}_1, \mathbf{f}_2) = \sum_{n=1}^{N} \lambda_n \cdot \phi_n(\mathbf{f}_1) \cdot \phi_n^*(\mathbf{f}_2) $$ Where: - $\lambda_n$ — Eigenvalues (sorted in descending order) - $\phi_n(\mathbf{f})$ — Eigenvectors (orthonormal kernels) ### Image Computation This allows the image to be computed as a **sum of coherent images**: $$ I(\mathbf{r}) = \sum_{n=1}^{N} \lambda_n \left| \mathcal{F}^{-1}\{\phi_n \cdot M\} \right|^2 $$ Or equivalently: $$ I(\mathbf{r}) = \sum_{n=1}^{N} \lambda_n \left| I_n(\mathbf{r}) \right|^2 $$ Where each coherent image is: $$ I_n(\mathbf{r}) = \mathcal{F}^{-1}\{\phi_n(\mathbf{f}) \cdot M(\mathbf{f})\} $$ ### Practical Considerations - **Eigenvalue decay**: $\lambda_n$ decay rapidly; typically only 10–50 terms needed - **Speedup**: Converts one $O(N^4)$ partially coherent calculation into $\sim$20 $O(N^2 \log N)$ FFT operations - **Accuracy**: Trade-off between number of terms and simulation accuracy ## 4. OPC Problem Formulation ### Forward Problem Given mask $M(\mathbf{r})$, predict wafer pattern $W(\mathbf{r})$: $$ M \xrightarrow{\text{optics}} I(\mathbf{r}) \xrightarrow{\text{resist}} R(\mathbf{r}) \xrightarrow{\text{etch}} W(\mathbf{r}) $$ **Mathematical chain:** 1. **Optical Model**: $I = \mathcal{O}(M)$ — Hopkins/SOCS imaging 2. **Resist Model**: $R = \mathcal{R}(I)$ — Threshold or convolution model 3. **Etch Model**: $W = \mathcal{E}(R)$ — Etch bias and loading ### Inverse Problem (OPC) Given target pattern $T(\mathbf{r})$, find mask $M(\mathbf{r})$ such that: $$ W(M) \approx T $$ **This is fundamentally ill-posed:** - Non-unique: Many masks could produce similar results - Nonlinear: The imaging equation is quadratic in mask transmission - Constrained: Mask must be manufacturable ## 5. Edge Placement Error Minimization ### Objective Function The standard OPC objective minimizes **Edge Placement Error (EPE)**: $$ \min_M \mathcal{L}(M) = \sum_{i=1}^{N_{\text{edges}}} w_i \cdot \text{EPE}_i^2 $$ Where: $$ \text{EPE}_i = x_i^{\text{printed}} - x_i^{\text{target}} $$ - $x_i^{\text{printed}}$ — Actual edge position after lithography - $x_i^{\text{target}}$ — Desired edge position from design - $w_i$ — Weight for edge $i$ (can prioritize critical features) ### Constraints Subject to mask manufacturability: - **Minimum feature size**: $\text{CD}_{\text{mask}} \geq \text{CD}_{\min}$ - **Minimum spacing**: $\text{Space}_{\text{mask}} \geq \text{Space}_{\min}$ - **Maximum jog**: Limit on edge fragmentation complexity - **MEEF constraint**: Mask Error Enhancement Factor within spec ### Iterative Edge-Based OPC Algorithm The classic algorithm moves mask edges iteratively: $$ \Delta x^{(n+1)} = \Delta x^{(n)} - \alpha \cdot \text{EPE}^{(n)} $$ Where: - $\Delta x$ — Edge movement from original position - $\alpha$ — Damping factor (typically 0.3–0.8) - $n$ — Iteration number **Convergence criterion:** $$ \max_i |\text{EPE}_i| < \epsilon \quad \text{or} \quad n > n_{\max} $$ ### Gradient Computation Using the chain rule: $$ \frac{\partial \text{EPE}}{\partial m} = \frac{\partial \text{EPE}}{\partial I} \cdot \frac{\partial I}{\partial m} $$ Where $m$ represents mask parameters (edge positions, segment lengths). At a contour position where $I = I_{th}$: $$ \frac{\partial x_{\text{edge}}}{\partial m} = -\frac{1}{|\nabla I|} \cdot \frac{\partial I}{\partial m} $$ The **image log-slope (ILS)** is a key metric: $$ \text{ILS} = \frac{1}{I} \left| \frac{\partial I}{\partial x} \right|_{I = I_{th}} $$ Higher ILS → better process latitude, lower EPE sensitivity. ## 6. Resist Modeling ### Threshold Model (Simplest) The resist develops where intensity exceeds threshold: $$ R(\mathbf{r}) = \begin{cases} 1 & \text{if } I(\mathbf{r}) > I_{th} \\ 0 & \text{otherwise} \end{cases} $$ The printed contour is the $I_{th}$ isoline. ### Variable Threshold Resist (VTR) The threshold varies with local context: $$ I_{th}(\mathbf{r}) = I_{th,0} + \beta_1 \cdot \bar{I}_{\text{local}} + \beta_2 \cdot \nabla^2 I + \beta_3 \cdot (\nabla I)^2 + \ldots $$ Where: - $I_{th,0}$ — Base threshold - $\bar{I}_{\text{local}}$ — Local average intensity (density effect) - $\nabla^2 I$ — Laplacian (curvature effect) - $\beta_i$ — Fitted coefficients ### Compact Phenomenological Models For OPC speed, empirical models are used instead of physics-based resist simulation: $$ R(\mathbf{r}) = \sum_{j=1}^{N_k} w_j \cdot \left( K_j \otimes g_j(I) \right) $$ Where: - $K_j$ — Convolution kernels (typically Gaussians): $$K_j(\mathbf{r}) = \frac{1}{2\pi\sigma_j^2} \exp\left( -\frac{|\mathbf{r}|^2}{2\sigma_j^2} \right)$$ - $g_j(I)$ — Nonlinear functions: $I$, $I^2$, $\log(I)$, $\sqrt{I}$, etc. - $w_j$ — Fitted weights - $\otimes$ — Convolution operator ### Physical Interpretation | Kernel Width | Physical Effect | |--------------|-----------------| | Small $\sigma$ | Optical proximity effects | | Medium $\sigma$ | Acid/base diffusion in resist | | Large $\sigma$ | Long-range loading effects | ### Model Calibration Parameters are fitted to wafer measurements: $$ \min_{\theta} \sum_{k=1}^{N_{\text{test}}} \left( \text{CD}_k^{\text{measured}} - \text{CD}_k^{\text{model}}(\theta) \right)^2 + \lambda \|\theta\|^2 $$ Where: - $\theta = \{w_j, \sigma_j, \beta_i, \ldots\}$ — Model parameters - $\lambda \|\theta\|^2$ — Regularization term - Test structures: Lines, spaces, contacts, line-ends at various pitches/densities ## 7. Inverse Lithography Technology ### Full Optimization Formulation ILT treats the mask as a continuous optimization variable (pixelated): $$ \min_{M} \mathcal{L}(M) = \| W(M) - T \|^2 + \lambda \cdot \mathcal{R}(M) $$ Where: - $W(M)$ — Predicted wafer pattern - $T$ — Target pattern - $\mathcal{R}(M)$ — Regularization for manufacturability - $\lambda$ — Regularization weight ### Cost Function Components **Pattern Fidelity Term:** $$ \mathcal{L}_{\text{fidelity}} = \int \left( W(\mathbf{r}) - T(\mathbf{r}) \right)^2 d\mathbf{r} $$ Or in discrete form: $$ \mathcal{L}_{\text{fidelity}} = \sum_{\mathbf{r} \in \text{grid}} \left( W(\mathbf{r}) - T(\mathbf{r}) \right)^2 $$ ### Regularization Terms **Total Variation** (promotes piecewise constant, sharp edges): $$ \mathcal{R}_{TV}(M) = \int |\nabla M| \, d\mathbf{r} = \int \sqrt{\left(\frac{\partial M}{\partial x}\right)^2 + \left(\frac{\partial M}{\partial y}\right)^2} \, d\mathbf{r} $$ **Curvature Penalty** (promotes smooth contours): $$ \mathcal{R}_{\kappa}(M) = \oint_{\partial M} \kappa^2 \, ds $$ Where $\kappa$ is the local curvature of the mask boundary. **Minimum Feature Size** (MRC - Mask Rule Check): $$ \mathcal{R}_{MRC}(M) = \sum_{\text{violations}} \text{penalty}(\text{violation severity}) $$ **Sigmoid Regularization** (push mask toward binary): $$ \mathcal{R}_{\text{binary}}(M) = \int M(1-M) \, d\mathbf{r} $$ ### Level Set Formulation Represent the mask boundary implicitly via level set function $\phi(\mathbf{r})$: - Inside chrome: $\phi(\mathbf{r}) < 0$ - Outside chrome: $\phi(\mathbf{r}) > 0$ - Boundary: $\phi(\mathbf{r}) = 0$ **Evolution equation:** $$ \frac{\partial \phi}{\partial t} = -v \cdot |\nabla \phi| $$ Where velocity $v$ is derived from the cost function gradient: $$ v = -\frac{\delta \mathcal{L}}{\delta \phi} $$ **Advantages:** - Naturally handles topological changes (features splitting/merging) - Implicit curvature regularization available - Well-studied numerical methods ### Optimization Algorithms Since the problem is **non-convex**, various methods are used: 1. **Gradient Descent with Momentum:** $$ M^{(n+1)} = M^{(n)} - \eta \nabla_M \mathcal{L} + \mu \left( M^{(n)} - M^{(n-1)} \right) $$ 2. **Conjugate Gradient:** $$ d^{(n+1)} = -\nabla \mathcal{L}^{(n+1)} + \beta^{(n)} d^{(n)} $$ 3. **Adam Optimizer:** $$ m_t = \beta_1 m_{t-1} + (1-\beta_1) g_t $$ $$ v_t = \beta_2 v_{t-1} + (1-\beta_2) g_t^2 $$ $$ M_{t+1} = M_t - \eta \frac{\hat{m}_t}{\sqrt{\hat{v}_t} + \epsilon} $$ 4. **Genetic Algorithms** (for discrete/combinatorial aspects) 5. **Simulated Annealing** (for escaping local minima) ## 8. Source-Mask Optimization ### Joint Optimization SMO optimizes both illumination source $S$ and mask $M$ simultaneously: $$ \min_{S, M} \sum_{j \in \text{PW}} w_j \cdot \| W(S, M, \text{condition}_j) - T \|^2 $$ ### Source Parameterization **Pixelated Source:** $$ S = \{s_{ij}\} \quad \text{where } s_{ij} \in [0, 1] $$ Each pixel in the pupil plane is a free variable. **Parametric Source:** - Annular: $(R_{\text{inner}}, R_{\text{outer}})$ - Quadrupole: $(R, \theta, \sigma)$ - Freeform: Spline or Zernike coefficients ### Alternating Optimization **Algorithm:** ``` Initialize: S⁰, M⁰ for k = 1 to max_iter: # Step 1: Fix S, optimize M (standard OPC) M^k = argmin_M L(S^(k-1), M) # Step 2: Fix M, optimize S S^k = argmin_S L(S, M^k) # Check convergence if |L^k - L^(k-1)| < tolerance: break ``` **Note:** Step 2 is often convex in $S$ when $M$ is fixed (linear in source pixels for intensity-based metrics). ### Mathematical Form for Source Optimization When mask is fixed, the image is linear in source: $$ I(\mathbf{r}; S) = \sum_{ij} s_{ij} \cdot I_{ij}(\mathbf{r}) $$ Where $I_{ij}$ is the image contribution from source pixel $(i,j)$. This makes source optimization a **quadratic program** (convex if cost is convex in $I$). ## 9. Process Window Optimization ### Multi-Condition Optimization Real manufacturing has variations. Robust OPC optimizes across a **process window (PW)**: $$ \min_M \sum_{j \in \text{PW}} w_j \cdot \mathcal{L}(M, \text{condition}_j) $$ ### Process Window Dimensions | Dimension | Typical Range | Effect | |-----------|---------------|--------| | Focus | $\pm 50$ nm | Defocus blur | | Dose | $\pm 3\%$ | Threshold shift | | Mask CD | $\pm 2$ nm | Feature size bias | | Aberrations | Per-lens | Pattern distortion | ### Worst-Case (Minimax) Formulation $$ \min_M \max_{j \in \text{PW}} \text{EPE}_j(M) $$ This is more conservative but ensures robustness. ### Soft Constraints via Barrier Functions $$ \mathcal{L}_{PW}(M) = \sum_j w_j \cdot \text{EPE}_j^2 + \mu \sum_j \sum_i \max(0, |\text{EPE}_{ij}| - \text{spec})^2 $$ ### Process Window Metrics **Common Process Window (CPW):** $$ \text{CPW} = \text{Focus Range} \times \text{Dose Range} $$ Where all specs are simultaneously met. **Exposure Latitude (EL):** $$ \text{EL} = \frac{\Delta \text{Dose}}{\text{Dose}_{\text{nom}}} \times 100\% $$ **Depth of Focus (DOF):** $$ \text{DOF} = \text{Focus range where } |\text{EPE}| < \text{spec} $$ ## 10. Stochastic Effects (EUV) At EUV wavelengths (13.5 nm), **photon counts are low** and shot noise becomes significant. ### Photon Statistics Number of photons per pixel follows **Poisson distribution**: $$ P(n | \bar{n}) = \frac{\bar{n}^n e^{-\bar{n}}}{n!} $$ Where: $$ \bar{n} = \frac{E \cdot A \cdot \eta}{\frac{hc}{\lambda}} $$ - $E$ — Exposure dose (mJ/cm²) - $A$ — Pixel area - $\eta$ — Quantum efficiency - $\frac{hc}{\lambda}$ — Photon energy ### Signal-to-Noise Ratio $$ \text{SNR} = \frac{\bar{n}}{\sqrt{\bar{n}}} = \sqrt{\bar{n}} $$ For reliable imaging, need $\text{SNR} > 5$, requiring $\bar{n} > 25$ photons/pixel. ### Line Edge Roughness (LER) Random edge fluctuations characterized by: - **3σ LER**: $3 \times \text{standard deviation of edge position}$ - **Correlation length** $\xi$: Spatial extent of roughness **Power Spectral Density:** $$ \text{PSD}(f) = \frac{2\sigma^2 \xi}{1 + (2\pi f \xi)^{2\alpha}} $$ Where $\alpha$ is the roughness exponent (typically 0.5–1.0). ### Stochastic Defect Probability Probability of a stochastic failure (missing contact, bridging): $$ P_{\text{fail}} = 1 - \prod_{\text{features}} (1 - p_i) $$ For rare events, approximately: $$ P_{\text{fail}} \approx \sum_i p_i $$ ### Stochastic-Aware OPC Objective $$ \min_M \mathbb{E}[\text{EPE}^2] + \lambda_1 \cdot \text{Var}(\text{EPE}) + \lambda_2 \cdot P_{\text{fail}} $$ ### Monte Carlo Simulation For stochastic modeling: 1. Sample photon arrival: $n_{ij} \sim \text{Poisson}(\bar{n}_{ij})$ 2. Simulate acid generation: Proportional to absorbed photons 3. Simulate diffusion: Random walk or stochastic PDE 4. Simulate development: Threshold with noise 5. Repeat $N$ times, compute statistics ## 11. Machine Learning Approaches ### Neural Network Forward Models Train networks to approximate expensive simulations: $$ \hat{I} = f_\theta(M) \approx I_{\text{optical}}(M) $$ **Architectures:** - **CNN**: Convolutional neural networks for local pattern effects - **U-Net**: Encoder-decoder for image-to-image translation - **GAN**: Generative adversarial networks for realistic image generation **Training:** $$ \min_\theta \sum_{k} \| f_\theta(M_k) - I_k^{\text{simulation}} \|^2 $$ ### End-to-End ILT with Deep Learning Directly predict corrected masks: $$ \hat{M}_{\text{OPC}} = G_\theta(T) $$ **Training data:** Pairs $(T, M_{\text{optimal}})$ from conventional ILT. **Loss function:** $$ \mathcal{L} = \| W(G_\theta(T)) - T \|^2 + \lambda \| G_\theta(T) - M_{\text{ref}} \|^2 $$ ### Hybrid Approaches Combine ML speed with physics accuracy: 1. **ML Initialization**: $M^{(0)} = G_\theta(T)$ 2. **Physics Refinement**: Run conventional OPC starting from $M^{(0)}$ **Benefits:** - Faster convergence (good starting point) - Physics ensures accuracy - ML handles global pattern context ### Neural Network Architectures for OPC | Architecture | Use Case | Advantages | |--------------|----------|------------| | CNN | Local correction prediction | Fast inference | | U-Net | Full mask prediction | Multi-scale features | | GAN | Realistic mask generation | Sharp boundaries | | Transformer | Global context | Long-range dependencies | | Physics-Informed NN | Constrained prediction | Respects physics | ## 12. Computational Complexity ### Scale of Full-Chip OPC - **Features per chip**: $10^9 - 10^{10}$ - **Evaluation points**: $\sim 10^{12}$ (multiple points per feature) - **Iterations**: 10–50 per feature - **Optical simulations**: $O(N \log N)$ per FFT ### Complexity Analysis **Single feature OPC:** $$ T_{\text{feature}} = O(N_{\text{iter}} \times N_{\text{SOCS}} \times N_{\text{grid}} \log N_{\text{grid}}) $$ **Full chip:** $$ T_{\text{chip}} = O(N_{\text{features}} \times T_{\text{feature}}) $$ **Result:** Hours to days on large compute clusters. ### Acceleration Strategies **Hierarchical Processing:** - Identify repeated cells (memory arrays, standard cells) - Compute OPC once, reuse for identical instances - Speedup: $10\times - 100\times$ for regular designs **GPU Parallelization:** - FFTs parallelize well on GPUs - Convolutions map to tensor operations - Multiple features processed simultaneously - Speedup: $10\times - 50\times$ **Approximate Models:** - **Kernel-based**: Pre-compute influence functions - **Variable resolution**: Fine grid only near edges - **Neural surrogates**: Replace simulation with inference **Domain Decomposition:** - Divide chip into tiles - Process tiles in parallel - Handle tile boundaries with overlap or iteration ## 13. Mathematical Toolkit Summary | Domain | Techniques | |--------|-----------| | **Optics** | Fourier transforms, Hopkins theory, SOCS decomposition, Abbe imaging | | **Optimization** | Gradient descent, conjugate gradient, level sets, genetic algorithms, simulated annealing | | **Linear Algebra** | Eigendecomposition (TCC), sparse matrices, SVD, matrix factorization | | **PDEs** | Diffusion equations (resist), level set evolution, Hamilton-Jacobi | | **Statistics** | Poisson processes, Monte Carlo, stochastic simulation, Bayesian inference | | **Machine Learning** | CNNs, GANs, U-Net, transformers, physics-informed neural networks | | **Computational Geometry** | Polygon operations, fragmentation, contour extraction, Boolean operations | | **Numerical Methods** | FFT, finite differences, quadrature, interpolation | ## Equations Quick Reference ### Hopkins Imaging $$ I(\mathbf{r}) = \iiint\!\!\!\iint TCC(\mathbf{f}_1, \mathbf{f}_2) \cdot M(\mathbf{f}_1) \cdot M^*(\mathbf{f}_2) \cdot e^{2\pi i (\mathbf{f}_1 - \mathbf{f}_2) \cdot \mathbf{r}} \, d\mathbf{f}_1 \, d\mathbf{f}_2 $$ ### SOCS Image $$ I(\mathbf{r}) = \sum_{n=1}^{N} \lambda_n \left| \mathcal{F}^{-1}\{\phi_n \cdot M\} \right|^2 $$ ### EPE Minimization $$ \min_M \sum_{i} w_i \left( x_i^{\text{printed}} - x_i^{\text{target}} \right)^2 $$ ### ILT Cost Function $$ \min_{M} \| W(M) - T \|^2 + \lambda \cdot \mathcal{R}(M) $$ ### Level Set Evolution $$ \frac{\partial \phi}{\partial t} = -v \cdot |\nabla \phi| $$ ### Poisson Photon Statistics $$ P(n | \bar{n}) = \frac{\bar{n}^n e^{-\bar{n}}}{n!} $$

open fault,testing

Broken connection.

open information extraction,nlp

Extract facts without predefined schema.

open source,oss,local model,llama

Open-source LLMs (e.g. Llama-style) let you run models locally or on your own servers, customize them via fine-tuning, and control data privacy.

open source,weights,community

Open source AI: released weights, training code, data. Community innovation. Llama, Mistral examples.