← Back to AI Factory Chat

AI Factory Glossary

758 technical terms and definitions

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Showing page 5 of 16 (758 entries)

personalized federated learning, federated learning

Learn personalized models while sharing knowledge.

personalized ranking,recommender systems

Order items for each user.

personalized treatment plans,healthcare ai

Customize therapy for each patient.

personnel as contamination source, contamination

Humans introducing particles or chemicals.

perspective api, ai safety

Google's toxicity detection.

perspective api,ai safety

Google's API for detecting toxic comments.

perspective taking,reasoning

Consider situations from different viewpoints.

pert, pert, quality & reliability

Program Evaluation and Review Technique schedules projects under uncertainty.

pessimistic mdp, reinforcement learning advanced

Pessimistic MDPs incorporate model uncertainty penalties preventing policy optimization from exploiting model errors in offline RL.

pets, pets, reinforcement learning advanced

Probabilistic Ensemble with Trajectory Sampling uses ensembles of neural networks for uncertainty-aware planning in model-based RL.

pfc abatement, pfc, environmental & sustainability

Perfluorocompound abatement reduces greenhouse gas emissions from plasma etching and CVD through combustion or catalytic destruction.

pfc destruction efficiency, pfc, environmental & sustainability

PFC destruction efficiency measures percentage of perfluorocompounds converted by abatement systems.

pgd attack, pgd, ai safety

Iterative attack projecting onto constraint set.

pgd attack, pgd, interpretability

Projected Gradient Descent iteratively perturbs inputs within constraint set for strong adversarial attacks.

pgvector,postgres,extension

pgvector adds vectors to PostgreSQL. Stay in Postgres.

ph measurement, manufacturing equipment

pH measurement monitors acidity or alkalinity of chemical solutions.

pharmacophore modeling, healthcare ai

Identify key features for biological activity.

phase change tim, thermal management

Phase change thermal interface materials soften at operating temperatures conforming to surfaces and solidifying for low thermal resistance.

phase control in silicide,process

Ensure correct crystal phase forms.

phase diagram prediction, materials science

Predict stable phases.

phase transitions in model behavior, theory

Sudden capability emergence.

phase transitions in training, training phenomena

Abrupt changes in model behavior.

phase-shift mask (psm),phase-shift mask,psm,lithography

Use phase to improve resolution and depth of focus.

phenaki, multimodal ai

Phenaki generates variable-length videos from open-domain textual prompts.

phi,microsoft,small

Phi is Microsoft small but capable model. Textbook-quality data.

phind,code,search

Phind is code-specialized model. Search-augmented coding assistant.

phoenix,arize,observability

Phoenix (Arize) provides LLM observability. Trace visualization. Open source.

phonon mode analysis, metrology

Identify vibrational modes from Raman.

phonon scattering, device physics

Scattering by lattice vibrations.

phosphoric acid etch,etch

Hot H3PO4 to selectively etch nitride over oxide.

phosphorus gettering, process

Use phosphorus diffusion for gettering.

photochemical contamination, contamination

Contamination from photoresist outgassing.

photoemission imaging, failure analysis advanced

Photoemission imaging captures spatial distribution of light emission from reverse-biased junctions or gate oxide breakdown.

photoemission microscopy, failure analysis advanced

Photoemission microscopy detects light emission from hot carriers at reverse-biased junctions localizing gate oxide shorts and junction leakage.

photogrammetry with ai,computer vision

AI-enhanced 3D reconstruction from photos.

photolithography, what is photolithography, lithography process, semiconductor lithography, photoresist, euv lithography, duv lithography, stepper, scanner, patterning

# Semiconductor Manufacturing Process: Lithography Mathematical Modeling ## 1. Introduction Lithography is the critical patterning step in semiconductor manufacturing that transfers circuit designs onto silicon wafers. It is essentially the "printing press" of chip making and determines the minimum feature sizes achievable. ### 1.1 Basic Process Flow 1. Coat wafer with photoresist 2. Expose photoresist to light through a mask/reticle 3. Develop the photoresist (remove exposed or unexposed regions) 4. Etch or deposit through the patterned resist 5. Strip the remaining resist ### 1.2 Types of Lithography - **Optical lithography:** DUV at 193nm, EUV at 13.5nm - **Electron beam lithography:** Direct-write, maskless - **Nanoimprint lithography:** Mechanical pattern transfer - **X-ray lithography:** Short wavelength exposure ## 2. Optical Image Formation The foundation of lithography modeling is **partially coherent imaging theory**, formalized through the Hopkins integral. ### 2.1 Hopkins Integral The intensity distribution at the image plane is given by: $$ I(x,y) = \iiint\!\!\!\int TCC(f_1,g_1;f_2,g_2) \cdot \tilde{M}(f_1,g_1) \cdot \tilde{M}^*(f_2,g_2) \cdot e^{2\pi i[(f_1-f_2)x + (g_1-g_2)y]} \, df_1\,dg_1\,df_2\,dg_2 $$ Where: - $I(x,y)$ — Intensity at image plane coordinates $(x,y)$ - $\tilde{M}(f,g)$ — Fourier transform of the mask transmission function - $TCC$ — Transmission Cross Coefficient ### 2.2 Transmission Cross Coefficient (TCC) The TCC encodes both the illumination source and lens pupil: $$ TCC(f_1,g_1;f_2,g_2) = \iint S(f,g) \cdot P(f+f_1,g+g_1) \cdot P^*(f+f_2,g+g_2) \, df\,dg $$ Where: - $S(f,g)$ — Source intensity distribution - $P(f,g)$ — Pupil function (encodes aberrations, NA cutoff) - $P^*$ — Complex conjugate of the pupil function ### 2.3 Sum of Coherent Systems (SOCS) To accelerate computation, the TCC is decomposed using eigendecomposition: $$ TCC(f_1,g_1;f_2,g_2) = \sum_{k=1}^{N} \lambda_k \cdot \phi_k(f_1,g_1) \cdot \phi_k^*(f_2,g_2) $$ The image becomes a weighted sum of coherent images: $$ I(x,y) = \sum_{k=1}^{N} \lambda_k \left| \mathcal{F}^{-1}\{\phi_k \cdot \tilde{M}\} \right|^2 $$ ### 2.4 Coherence Factor The partial coherence factor $\sigma$ is defined as: $$ \sigma = \frac{NA_{source}}{NA_{lens}} $$ - $\sigma = 0$ — Fully coherent illumination - $\sigma = 1$ — Matched illumination - $\sigma > 1$ — Overfilled illumination ## 3. Resolution Limits and Scaling Laws ### 3.1 Rayleigh Criterion The minimum resolvable feature size: $$ R = k_1 \frac{\lambda}{NA} $$ Where: - $R$ — Minimum resolvable feature - $k_1$ — Process factor (theoretical limit $\approx 0.25$, practical $\approx 0.3\text{--}0.4$) - $\lambda$ — Wavelength of light - $NA$ — Numerical aperture $= n \sin\theta$ ### 3.2 Depth of Focus $$ DOF = k_2 \frac{\lambda}{NA^2} $$ Where: - $DOF$ — Depth of focus - $k_2$ — Process-dependent constant ### 3.3 Technology Comparison | Technology | $\lambda$ (nm) | NA | Min. Feature | DOF | |:-----------|:---------------|:-----|:-------------|:----| | DUV ArF | 193 | 1.35 | ~38 nm | ~100 nm | | EUV | 13.5 | 0.33 | ~13 nm | ~120 nm | | High-NA EUV | 13.5 | 0.55 | ~8 nm | ~45 nm | ### 3.4 Resolution Enhancement Techniques (RETs) Key techniques to reduce effective $k_1$: - **Off-Axis Illumination (OAI):** Dipole, quadrupole, annular - **Phase-Shift Masks (PSM):** Alternating, attenuated - **Optical Proximity Correction (OPC):** Bias, serifs, sub-resolution assist features (SRAFs) - **Multiple Patterning:** LELE, SADP, SAQP ## 4. Rigorous Electromagnetic Mask Modeling ### 4.1 Thin Mask Approximation (Kirchhoff) For features much larger than wavelength: $$ E_{mask}(x,y) = t(x,y) \cdot E_{incident} $$ Where $t(x,y)$ is the complex transmission function. ### 4.2 Maxwell's Equations For sub-wavelength features, we must solve Maxwell's equations rigorously: $$ \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} $$ $$ \nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t} $$ ### 4.3 RCWA (Rigorous Coupled-Wave Analysis) For periodic structures with grating period $d$, fields are expanded in Floquet modes: $$ E(x,z) = \sum_{n=-N}^{N} A_n(z) \cdot e^{i k_{xn} x} $$ Where the wavevector components are: $$ k_{xn} = k_0 \sin\theta_0 + \frac{2\pi n}{d} $$ This yields a matrix eigenvalue problem: $$ \frac{d^2}{dz^2}\mathbf{A} = \mathbf{K}^2 \mathbf{A} $$ Where $\mathbf{K}$ couples different diffraction orders through the dielectric tensor. ### 4.4 FDTD (Finite-Difference Time-Domain) Discretizing Maxwell's equations on a Yee grid: $$ \frac{\partial H_y}{\partial t} = \frac{1}{\mu}\left(\frac{\partial E_x}{\partial z} - \frac{\partial E_z}{\partial x}\right) $$ $$ \frac{\partial E_x}{\partial t} = \frac{1}{\epsilon}\left(\frac{\partial H_y}{\partial z} - J_x\right) $$ ### 4.5 EUV Mask 3D Effects Shadowing from absorber thickness $h$ at angle $\theta$: $$ \Delta x = h \tan\theta $$ For EUV at 6° chief ray angle: $$ \Delta x \approx 0.105 \cdot h $$ ## 5. Photoresist Modeling ### 5.1 Dill ABC Model (Exposure) The photoactive compound (PAC) concentration evolves as: $$ \frac{\partial M(z,t)}{\partial t} = -I(z,t) \cdot M(z,t) \cdot C $$ Light absorption follows Beer-Lambert law: $$ \frac{dI}{dz} = -\alpha(M) \cdot I $$ $$ \alpha(M) = A \cdot M + B $$ Where: - $A$ — Bleachable absorption coefficient - $B$ — Non-bleachable absorption coefficient - $C$ — Exposure rate constant (quantum efficiency) - $M$ — Normalized PAC concentration ### 5.2 Post-Exposure Bake (PEB) — Reaction-Diffusion For chemically amplified resists (CARs): $$ \frac{\partial h}{\partial t} = D \nabla^2 h + k \cdot h \cdot M_{blocking} $$ Where: - $h$ — Acid concentration - $D$ — Diffusion coefficient - $k$ — Reaction rate constant - $M_{blocking}$ — Blocking group concentration The blocking group deprotection: $$ \frac{\partial M_{blocking}}{\partial t} = -k_{amp} \cdot h \cdot M_{blocking} $$ ### 5.3 Mack Development Rate Model $$ r(m) = r_{max} \cdot \frac{(a+1)(1-m)^n}{a + (1-m)^n} + r_{min} $$ Where: - $r$ — Development rate - $m$ — Normalized PAC concentration remaining - $n$ — Contrast (dissolution selectivity) - $a$ — Inhibition depth - $r_{max}$ — Maximum development rate (fully exposed) - $r_{min}$ — Minimum development rate (unexposed) ### 5.4 Enhanced Mack Model Including surface inhibition: $$ r(m,z) = r_{max} \cdot \frac{(a+1)(1-m)^n}{a + (1-m)^n} \cdot \left(1 - e^{-z/l}\right) + r_{min} $$ Where $l$ is the surface inhibition depth. ## 6. Optical Proximity Correction (OPC) ### 6.1 Forward Problem Given mask $M$, compute the printed wafer image: $$ I = F(M) $$ Where $F$ represents the complete optical and resist model. ### 6.2 Inverse Problem Given target pattern $T$, find mask $M$ such that: $$ F(M) \approx T $$ ### 6.3 Edge Placement Error (EPE) $$ EPE_i = x_{printed,i} - x_{target,i} $$ ### 6.4 OPC Optimization Formulation Minimize the cost function: $$ \mathcal{L}(M) = \sum_{i=1}^{N} w_i \cdot EPE_i^2 + \lambda \cdot R(M) $$ Where: - $w_i$ — Weight for evaluation point $i$ - $R(M)$ — Regularization term for mask manufacturability - $\lambda$ — Regularization strength ### 6.5 Gradient-Based OPC Using gradient descent: $$ M_{n+1} = M_n - \eta \frac{\partial \mathcal{L}}{\partial M} $$ The gradient requires computing: $$ \frac{\partial \mathcal{L}}{\partial M} = \sum_i 2 w_i \cdot EPE_i \cdot \frac{\partial EPE_i}{\partial M} + \lambda \frac{\partial R}{\partial M} $$ ### 6.6 Adjoint Method for Gradient Computation The sensitivity $\frac{\partial I}{\partial M}$ is computed efficiently using the adjoint formulation: $$ \frac{\partial \mathcal{L}}{\partial M} = \text{Re}\left\{ \tilde{M}^* \cdot \mathcal{F}\left\{ \sum_k \lambda_k \phi_k^* \cdot \mathcal{F}^{-1}\left\{ \phi_k \cdot \frac{\partial \mathcal{L}}{\partial I} \right\} \right\} \right\} $$ This avoids computing individual sensitivities for each mask pixel. ### 6.7 Mask Manufacturability Constraints Common regularization terms: - **Minimum feature size:** $R_1(M) = \sum \max(0, w_{min} - w_i)^2$ - **Minimum space:** $R_2(M) = \sum \max(0, s_{min} - s_i)^2$ - **Edge curvature:** $R_3(M) = \int |\kappa(s)|^2 ds$ - **Shot count:** $R_4(M) = N_{vertices}$ ## 7. Source-Mask Optimization (SMO) ### 7.1 Joint Optimization Formulation $$ \min_{S,M} \sum_{\text{patterns}} \|I(S,M) - T\|^2 + \lambda_S R_S(S) + \lambda_M R_M(M) $$ Where: - $S$ — Source intensity distribution - $M$ — Mask transmission function - $T$ — Target pattern - $R_S(S)$ — Source manufacturability regularization - $R_M(M)$ — Mask manufacturability regularization ### 7.2 Source Parameterization Pixelated source with constraints: $$ S(f,g) = \sum_{i,j} s_{ij} \cdot \text{rect}\left(\frac{f - f_i}{\Delta f}\right) \cdot \text{rect}\left(\frac{g - g_j}{\Delta g}\right) $$ Subject to: $$ 0 \leq s_{ij} \leq 1 \quad \forall i,j $$ $$ \sum_{i,j} s_{ij} = S_{total} $$ ### 7.3 Alternating Optimization **Algorithm:** 1. Initialize $S_0$, $M_0$ 2. For iteration $n = 1, 2, \ldots$: - Fix $S_n$, optimize $M_{n+1} = \arg\min_M \mathcal{L}(S_n, M)$ - Fix $M_{n+1}$, optimize $S_{n+1} = \arg\min_S \mathcal{L}(S, M_{n+1})$ 3. Repeat until convergence ### 7.4 Gradient Computation for SMO Source gradient: $$ \frac{\partial I}{\partial S}(x,y) = \left| \mathcal{F}^{-1}\{P \cdot \tilde{M}\}(x,y) \right|^2 $$ Mask gradient uses the adjoint method as in OPC. ## 8. Stochastic Effects and EUV ### 8.1 Photon Shot Noise Photon counts follow a Poisson distribution: $$ P(n) = \frac{\bar{n}^n e^{-\bar{n}}}{n!} $$ For EUV at 13.5 nm, photon energy is: $$ E_{photon} = \frac{hc}{\lambda} = \frac{1240 \text{ eV} \cdot \text{nm}}{13.5 \text{ nm}} \approx 92 \text{ eV} $$ Mean photons per pixel: $$ \bar{n} = \frac{\text{Dose} \cdot A_{pixel}}{E_{photon}} $$ ### 8.2 Relative Shot Noise $$ \frac{\sigma_n}{\bar{n}} = \frac{1}{\sqrt{\bar{n}}} $$ For 30 mJ/cm² dose and 10 nm pixel: $$ \bar{n} \approx 200 \text{ photons} \implies \sigma/\bar{n} \approx 7\% $$ ### 8.3 Line Edge Roughness (LER) Characterized by power spectral density: $$ PSD(f) = \frac{LER^2 \cdot \xi}{1 + (2\pi f \xi)^{2(1+H)}} $$ Where: - $LER$ — RMS line edge roughness (3σ value) - $\xi$ — Correlation length - $H$ — Hurst exponent (0 < H < 1) - $f$ — Spatial frequency ### 8.4 LER Decomposition $$ LER^2 = LWR^2/2 + \sigma_{placement}^2 $$ Where: - $LWR$ — Line width roughness - $\sigma_{placement}$ — Line placement error ### 8.5 Stochastic Defectivity Probability of printing failure (e.g., missing contact): $$ P_{fail} = 1 - \prod_{i} \left(1 - P_{fail,i}\right) $$ For a chip with $10^{10}$ contacts at 99.9999999% yield per contact: $$ P_{chip,fail} \approx 1\% $$ ### 8.6 Monte Carlo Simulation Steps 1. **Photon absorption:** Generate random events $\sim \text{Poisson}(\bar{n})$ 2. **Acid generation:** Each photon generates acid at random location 3. **Diffusion:** Brownian motion during PEB: $\langle r^2 \rangle = 6Dt$ 4. **Deprotection:** Local reaction based on acid concentration 5. **Development:** Cellular automata or level-set method ## 9. Multiple Patterning Mathematics ### 9.1 Graph Coloring Formulation When pitch $< \lambda/(2NA)$, single-exposure patterning fails. **Graph construction:** - Nodes $V$ = features (polygons) - Edges $E$ = spacing conflicts (features too close for one mask) - Colors $C$ = different masks ### 9.2 k-Colorability Problem Find assignment $c: V \rightarrow \{1, 2, \ldots, k\}$ such that: $$ c(u) \neq c(v) \quad \forall (u,v) \in E $$ This is **NP-complete** for $k \geq 3$. ### 9.3 Integer Linear Programming (ILP) Formulation Binary variables: $x_{v,c} \in \{0,1\}$ (node $v$ assigned color $c$) **Objective:** $$ \min \sum_{(u,v) \in E} \sum_c x_{u,c} \cdot x_{v,c} \cdot w_{uv} $$ **Constraints:** $$ \sum_{c=1}^{k} x_{v,c} = 1 \quad \forall v \in V $$ $$ x_{u,c} + x_{v,c} \leq 1 \quad \forall (u,v) \in E, \forall c $$ ### 9.4 Self-Aligned Multiple Patterning (SADP) Spacer pitch after $n$ iterations: $$ p_n = \frac{p_0}{2^n} $$ Where $p_0$ is the initial (lithographic) pitch. ## 10. Process Control Mathematics ### 10.1 Overlay Control Polynomial model across the wafer: $$ OVL_x(x,y) = a_0 + a_1 x + a_2 y + a_3 xy + a_4 x^2 + a_5 y^2 + \ldots $$ **Physical interpretation:** | Coefficient | Physical Effect | |:------------|:----------------| | $a_0$ | Translation | | $a_1$, $a_2$ | Scale (magnification) | | $a_3$ | Rotation | | $a_4$, $a_5$ | Non-orthogonality | ### 10.2 Overlay Correction Least squares fitting: $$ \mathbf{a} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} $$ Where $\mathbf{X}$ is the design matrix and $\mathbf{y}$ is measured overlay. ### 10.3 Run-to-Run Control — EWMA Exponentially Weighted Moving Average: $$ \hat{y}_{n+1} = \lambda y_n + (1-\lambda)\hat{y}_n $$ Where: - $\hat{y}_{n+1}$ — Predicted output - $y_n$ — Measured output at step $n$ - $\lambda$ — Smoothing factor $(0 < \lambda < 1)$ ### 10.4 CDU Variance Decomposition $$ \sigma^2_{total} = \sigma^2_{local} + \sigma^2_{field} + \sigma^2_{wafer} + \sigma^2_{lot} $$ **Sources:** - **Local:** Shot noise, LER, resist - **Field:** Lens aberrations, mask - **Wafer:** Focus/dose uniformity - **Lot:** Tool-to-tool variation ### 10.5 Process Capability Index $$ C_{pk} = \min\left(\frac{USL - \mu}{3\sigma}, \frac{\mu - LSL}{3\sigma}\right) $$ Where: - $USL$, $LSL$ — Upper/lower specification limits - $\mu$ — Process mean - $\sigma$ — Process standard deviation ## 11. Machine Learning Integration ### 11.1 Applications Overview | Application | Method | Purpose | |:------------|:-------|:--------| | Hotspot detection | CNNs | Predict yield-limiting patterns | | OPC acceleration | Neural surrogates | Replace expensive physics sims | | Metrology | Regression models | Virtual measurements | | Defect classification | Image classifiers | Automated inspection | | Etch prediction | Physics-informed NN | Predict etch profiles | ### 11.2 Neural Network Surrogate Model A neural network approximates the forward model: $$ \hat{I}(x,y) = f_{NN}(\text{mask}, \text{source}, \text{focus}, \text{dose}; \theta) $$ Training objective: $$ \theta^* = \arg\min_\theta \sum_{i=1}^{N} \|f_{NN}(M_i; \theta) - I_i^{rigorous}\|^2 $$ ### 11.3 Hotspot Detection with CNNs Binary classification: $$ P(\text{hotspot} | \text{pattern}) = \sigma(\mathbf{W} \cdot \mathbf{features} + b) $$ Where $\sigma$ is the sigmoid function and features are extracted by convolutional layers. ### 11.4 Inverse Lithography with Deep Learning Generator network $G$ maps target to mask: $$ \hat{M} = G(T; \theta_G) $$ Training with physics-based loss: $$ \mathcal{L} = \|F(G(T)) - T\|^2 + \lambda \cdot R(G(T)) $$ ## 12. Mathematical Disciplines | Mathematical Domain | Application in Lithography | |:--------------------|:---------------------------| | **Fourier Optics** | Image formation, aberrations, frequency analysis | | **Electromagnetic Theory** | RCWA, FDTD, rigorous mask simulation | | **Partial Differential Equations** | Resist diffusion, development, reaction kinetics | | **Optimization Theory** | OPC, SMO, inverse problems, gradient descent | | **Probability & Statistics** | Shot noise, LER, SPC, process control | | **Linear Algebra** | Matrix methods, eigendecomposition, least squares | | **Graph Theory** | Multiple patterning decomposition, routing | | **Numerical Methods** | FEM, finite differences, Monte Carlo | | **Machine Learning** | Surrogate models, pattern recognition, CNNs | | **Signal Processing** | Image analysis, metrology, filtering | ## Key Equations Quick Reference ### Imaging $$ I(x,y) = \sum_{k} \lambda_k \left| \mathcal{F}^{-1}\{\phi_k \cdot \tilde{M}\} \right|^2 $$ ### Resolution $$ R = k_1 \frac{\lambda}{NA} $$ ### Depth of Focus $$ DOF = k_2 \frac{\lambda}{NA^2} $$ ### Development Rate $$ r(m) = r_{max} \cdot \frac{(a+1)(1-m)^n}{a + (1-m)^n} + r_{min} $$ ### LER Power Spectrum $$ PSD(f) = \frac{LER^2 \cdot \xi}{1 + (2\pi f \xi)^{2(1+H)}} $$ ### OPC Cost Function $$ \mathcal{L}(M) = \sum_{i} w_i \cdot EPE_i^2 + \lambda \cdot R(M) $$

photoluminescence lifetime mapping, metrology

Map carrier lifetime across wafer.

photoluminescence mapping, metrology

Spatial uniformity of optical properties.

photoluminescence, pl, metrology

Light emission from optical excitation.

photometric loss, 3d vision

Match rendered to real images.

photon emission microscopy,failure analysis

Image emitted photons from defects.

photon emission microscopy,quality

Detect light from defects or hot spots.

photon shot noise,lithography

Statistical variation in photon number.

photon sieve,lithography

Alternative optics for EUV lithography.

photonic computing, research

Use light for computation.

photonic computing,hardware

Use light instead of electricity for computation.

photonics,optical compute

Optical/photonic computing uses light for matrix multiplication. Experimental but potentially very efficient.

photorealistic style transfer,computer vision

Transfer while maintaining realism.

photoresist,lithography

Light-sensitive polymer that changes solubility when exposed.

phrase masking, nlp

Mask multi-token phrases.