← Back to AI Factory Chat

AI Factory Glossary

9,967 technical terms and definitions

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Showing page 145 of 200 (9,967 entries)

reflection coefficient, signal & power integrity

Reflection coefficient quantifies signal reflection magnitude from impedance discontinuities.

reflection high-energy electron diffraction (rheed),reflection high-energy electron diffraction,rheed,metrology

In-situ surface crystallography.

reflection interferometry,metrology

Monitor etch depth using interference.

reflection prompting, prompting

Model reflects on and improves output.

reflection, prompting techniques

Reflection prompts models to critique and refine their own outputs iteratively.

reflection,self critique,refine

Reflection prompts model to critique its own output and refine. Iterative improvement without external feedback.

reflections,design

Signal bouncing due to impedance mismatch.

reflective optics (euv),reflective optics,euv,lithography

Mirrors instead of lenses for EUV light.

reflectometry,metrology

Measure film thickness from interference of reflected light.

reflexion,ai agent

Agent learns from feedback and mistakes by generating reflections and improving.

reflow profile, packaging

Temperature vs time during reflow.

reflow soldering for smt, packaging

Solder paste melted to attach.

reformer, llm architecture

Reformer uses locality-sensitive hashing for approximate attention matching.

reformer,foundation model

Use LSH attention to reduce complexity from quadratic to linear.

refusal behavior, ai safety

Model declining to answer.

refusal calibration, ai safety

Balance safety and helpfulness.

refusal training, ai safety

Refusal training explicitly teaches models when to decline requests.

refusal training, ai safety

Teach model when to refuse.

refusal,decline,cannot

Graceful refusal when model cannot or should not help. Explain limitation, suggest alternatives.

refused bequest, code ai

Subclass not using inherited methods.

regenerative thermal, environmental & sustainability

Regenerative thermal oxidizers recover heat through ceramic beds improving energy efficiency.

regex constraint, llm optimization

Regex constraints enforce pattern matching during text generation.

regex,pattern,generate

Generate regex from description. Complex patterns made easy.

region-based captioning, multimodal ai

Caption specific image areas.

register adaptation, nlp

Match language register.

register file, hardware

Fastest GPU memory.

register tokens, computer vision

Extra tokens improving ViT training stability.

regnet, computer vision

Design space for efficient networks.

regression analysis quality, quality & reliability

Regression analysis models relationships between response and predictor variables.

regression analysis,regression,ols,least squares,pls,partial least squares,ridge,lasso,semiconductor regression,process regression

# Regression Analysis Semiconductor fabrication involves hundreds of sequential process steps, each governed by dozens of parameters. Regression analysis serves critical functions: - Process Modeling: Understanding relationships between inputs and quality outputs - Virtual Metrology: Predicting measurements from real-time sensor data - Run-to-Run Control: Adaptive process adjustment - Yield Optimization: Maximizing device performance and throughput - Fault Detection: Identifying and diagnosing process excursions Core Mathematical Framework Ordinary Least Squares (OLS) The foundational linear regression model: $$ \mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon} $$ Variable Definitions: - $\mathbf{y}$ — $n \times 1$ response vector (e.g., film thickness, etch rate, yield) - $\mathbf{X}$ — $n \times (k+1)$ design matrix of process parameters - $\boldsymbol{\beta}$ — $(k+1) \times 1$ coefficient vector - $\boldsymbol{\varepsilon} \sim N(\mathbf{0}, \sigma^2\mathbf{I})$ — error term OLS Estimator: $$ \hat{\boldsymbol{\beta}} = (\mathbf{X}^\top\mathbf{X})^{-1}\mathbf{X}^\top\mathbf{y} $$ Variance-Covariance Matrix of Estimator: $$ \text{Var}(\hat{\boldsymbol{\beta}}) = \sigma^2(\mathbf{X}^\top\mathbf{X})^{-1} $$ Unbiased Variance Estimate: $$ \hat{\sigma}^2 = \frac{\mathbf{e}^\top\mathbf{e}}{n - k - 1} = \frac{\sum_{i=1}^{n}(y_i - \hat{y}_i)^2}{n - k - 1} $$ Response Surface Methodology (RSM) Critical for semiconductor process optimization, RSM uses second-order polynomial models. Second-Order Model $$ y = \beta_0 + \sum_{i=1}^{k}\beta_i x_i + \sum_{i=1}^{k}\beta_{ii}x_i^2 + \sum_{i n$) - Addresses multicollinearity - Captures latent variable structures - Simultaneously models X and Y relationships NIPALS Algorithm 1. Initialize: $\mathbf{u} = \mathbf{y}$ 2. X-weight: $$\mathbf{w} = \frac{\mathbf{X}^\top\mathbf{u}}{\|\mathbf{X}^\top\mathbf{u}\|}$$ 3. X-score: $$\mathbf{t} = \mathbf{X}\mathbf{w}$$ 4. Y-loading: $$q = \frac{\mathbf{y}^\top\mathbf{t}}{\mathbf{t}^\top\mathbf{t}}$$ 5. Y-score update: $$\mathbf{u} = \frac{\mathbf{y}q}{q^2}$$ 6. Iterate until convergence 7. Deflate X and Y, extract next component Model Structure $$ \mathbf{X} = \mathbf{T}\mathbf{P}^\top + \mathbf{E} $$ $$ \mathbf{Y} = \mathbf{T}\mathbf{Q}^\top + \mathbf{F} $$ Where: - $\mathbf{T}$ — score matrix (latent variables) - $\mathbf{P}$ — X-loadings - $\mathbf{Q}$ — Y-loadings - $\mathbf{E}, \mathbf{F}$ — residuals Spatial Regression for Wafer Maps Wafer-level variation exhibits spatial patterns requiring specialized models. Zernike Polynomial Decomposition General Form: $$ Z(r,\theta) = \sum_{n,m} a_{nm} Z_n^m(r,\theta) $$ Standard Zernike Polynomials (first few terms): | Index | Name | Formula | |-------|------|---------| | $Z_0^0$ | Piston | $1$ | | $Z_1^{-1}$ | Tilt Y | $r\sin\theta$ | | $Z_1^{1}$ | Tilt X | $r\cos\theta$ | | $Z_2^{-2}$ | Astigmatism 45° | $r^2\sin 2\theta$ | | $Z_2^{0}$ | Defocus | $2r^2 - 1$ | | $Z_2^{2}$ | Astigmatism 0° | $r^2\cos 2\theta$ | | $Z_3^{-1}$ | Coma Y | $(3r^3 - 2r)\sin\theta$ | | $Z_3^{1}$ | Coma X | $(3r^3 - 2r)\cos\theta$ | | $Z_4^{0}$ | Spherical | $6r^4 - 6r^2 + 1$ | Orthogonality Property: $$ \int_0^1 \int_0^{2\pi} Z_n^m(r,\theta) Z_{n'}^{m'}(r,\theta) \, r \, dr \, d\theta = \frac{\pi}{n+1}\delta_{nn'}\delta_{mm'} $$ Gaussian Process Regression (Kriging) Prior Distribution: $$ f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}')) $$ Common Kernel Functions: *Squared Exponential (RBF)*: $$ k(\mathbf{x}, \mathbf{x}') = \sigma^2 \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2\ell^2}\right) $$ *Matérn Kernel*: $$ k(r) = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)}\left(\frac{\sqrt{2\nu}r}{\ell}\right)^\nu K_\nu\left(\frac{\sqrt{2\nu}r}{\ell}\right) $$ Where $K_\nu$ is the modified Bessel function of the second kind. Posterior Predictive Mean: $$ \bar{f}_* = \mathbf{k}_*^\top(\mathbf{K} + \sigma_n^2\mathbf{I})^{-1}\mathbf{y} $$ Posterior Predictive Variance: $$ \text{Var}(f_*) = k(\mathbf{x}_*, \mathbf{x}_*) - \mathbf{k}_*^\top(\mathbf{K} + \sigma_n^2\mathbf{I})^{-1}\mathbf{k}_* $$ Mixed Effects Models Semiconductor data has hierarchical structure (wafers within lots, lots within tools). General Model $$ y_{ijk} = \mathbf{x}_{ijk}^\top\boldsymbol{\beta} + b_i^{(\text{tool})} + b_{ij}^{(\text{lot})} + \varepsilon_{ijk} $$ Random Effects Distribution: - $b_i^{(\text{tool})} \sim N(0, \sigma_{\text{tool}}^2)$ - $b_{ij}^{(\text{lot})} \sim N(0, \sigma_{\text{lot}}^2)$ - $\varepsilon_{ijk} \sim N(0, \sigma^2)$ Matrix Notation $$ \mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}\mathbf{b} + \boldsymbol{\varepsilon} $$ Where: - $\mathbf{b} \sim N(\mathbf{0}, \mathbf{G})$ - $\boldsymbol{\varepsilon} \sim N(\mathbf{0}, \mathbf{R})$ - $\text{Var}(\mathbf{y}) = \mathbf{V} = \mathbf{Z}\mathbf{G}\mathbf{Z}^\top + \mathbf{R}$ REML Estimation Restricted Log-Likelihood: $$ \ell_{\text{REML}}(\boldsymbol{\theta}) = -\frac{1}{2}\left[\log|\mathbf{V}| + \log|\mathbf{X}^\top\mathbf{V}^{-1}\mathbf{X}| + \mathbf{r}^\top\mathbf{V}^{-1}\mathbf{r}\right] $$ Where $\mathbf{r} = \mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}$. Physics-Informed Regression Models Arrhenius-Based Models (Thermal Processes) Rate Equation: $$ k = A \exp\left(-\frac{E_a}{RT}\right) $$ Linearized Form (for regression): $$ \ln(k) = \ln(A) - \frac{E_a}{R} \cdot \frac{1}{T} $$ Parameters: - $k$ — rate constant - $A$ — pre-exponential factor - $E_a$ — activation energy (J/mol) - $R$ — gas constant (8.314 J/mol·K) - $T$ — absolute temperature (K) Preston's Equation (CMP) Basic Form: $$ \text{MRR} = K_p \cdot P \cdot V $$ Extended Model: $$ \text{MRR} = K_p \cdot P^a \cdot V^b \cdot f(\text{slurry}, \text{pad}) $$ Where: - MRR — material removal rate - $K_p$ — Preston coefficient - $P$ — applied pressure - $V$ — relative velocity Lithography Focus-Exposure Model $$ \text{CD} = \beta_0 + \beta_1 E + \beta_2 F + \beta_3 E^2 + \beta_4 F^2 + \beta_5 EF + \varepsilon $$ Variables: - CD — critical dimension - $E$ — exposure dose - $F$ — focus offset Bossung Curve: Plot of CD vs. focus at various exposure levels. Virtual Metrology Mathematics Predicting quality measurements from equipment sensor data in real-time. Model Structure $$ \hat{y} = f(\mathbf{x}_{\text{FDC}}; \boldsymbol{\theta}) $$ Where $\mathbf{x}_{\text{FDC}}$ is Fault Detection and Classification sensor data. EWMA Run-to-Run Control Exponentially Weighted Moving Average: $$ \hat{T}_{n+1} = \lambda y_n + (1-\lambda)\hat{T}_n $$ Properties: - $\lambda \in (0,1]$ — smoothing parameter - Smaller $\lambda$ → more smoothing - Larger $\lambda$ → faster response to changes Kalman Filter Approach State Equation: $$ \mathbf{x}_{k} = \mathbf{A}\mathbf{x}_{k-1} + \mathbf{w}_k, \quad \mathbf{w}_k \sim N(\mathbf{0}, \mathbf{Q}) $$ Measurement Equation: $$ y_k = \mathbf{H}\mathbf{x}_k + v_k, \quad v_k \sim N(0, R) $$ Update Equations: *Predict*: $$ \hat{\mathbf{x}}_{k|k-1} = \mathbf{A}\hat{\mathbf{x}}_{k-1|k-1} $$ $$ \mathbf{P}_{k|k-1} = \mathbf{A}\mathbf{P}_{k-1|k-1}\mathbf{A}^\top + \mathbf{Q} $$ *Update*: $$ \mathbf{K}_k = \mathbf{P}_{k|k-1}\mathbf{H}^\top(\mathbf{H}\mathbf{P}_{k|k-1}\mathbf{H}^\top + R)^{-1} $$ $$ \hat{\mathbf{x}}_{k|k} = \hat{\mathbf{x}}_{k|k-1} + \mathbf{K}_k(y_k - \mathbf{H}\hat{\mathbf{x}}_{k|k-1}) $$ Classification and Count Models Logistic Regression (Binary Outcomes) For pass/fail or defect/no-defect classification: Model: $$ P(Y=1|\mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{x}^\top\boldsymbol{\beta})} = \sigma(\mathbf{x}^\top\boldsymbol{\beta}) $$ Logit Link: $$ \text{logit}(p) = \ln\left(\frac{p}{1-p}\right) = \mathbf{x}^\top\boldsymbol{\beta} $$ Log-Likelihood: $$ \ell(\boldsymbol{\beta}) = \sum_{i=1}^{n}\left[y_i \log(\pi_i) + (1-y_i)\log(1-\pi_i)\right] $$ Newton-Raphson Update: $$ \boldsymbol{\beta}^{(t+1)} = \boldsymbol{\beta}^{(t)} + (\mathbf{X}^\top\mathbf{W}\mathbf{X})^{-1}\mathbf{X}^\top(\mathbf{y} - \boldsymbol{\pi}) $$ Where $\mathbf{W} = \text{diag}(\pi_i(1-\pi_i))$. Poisson Regression (Defect Counts) Model: $$ \log(\mu) = \mathbf{x}^\top\boldsymbol{\beta}, \quad Y \sim \text{Poisson}(\mu) $$ Probability Mass Function: $$ P(Y = y) = \frac{\mu^y e^{-\mu}}{y!} $$ Model Validation and Diagnostics Goodness of Fit Metrics Coefficient of Determination: $$ R^2 = 1 - \frac{\text{SSE}}{\text{SST}} = 1 - \frac{\sum_{i=1}^{n}(y_i - \hat{y}_i)^2}{\sum_{i=1}^{n}(y_i - \bar{y})^2} $$ Adjusted R-Squared: $$ R^2_{\text{adj}} = 1 - (1-R^2)\frac{n-1}{n-k-1} $$ Root Mean Square Error: $$ \text{RMSE} = \sqrt{\frac{1}{n}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2} $$ Mean Absolute Error: $$ \text{MAE} = \frac{1}{n}\sum_{i=1}^{n}|y_i - \hat{y}_i| $$ Cross-Validation K-Fold CV Error: $$ \text{CV}_{(K)} = \frac{1}{K}\sum_{k=1}^{K}\text{MSE}_k $$ Leave-One-Out CV: $$ \text{LOOCV} = \frac{1}{n}\sum_{i=1}^{n}(y_i - \hat{y}_{(-i)})^2 $$ Information Criteria Akaike Information Criterion: $$ \text{AIC} = 2k - 2\ln(\hat{L}) $$ Bayesian Information Criterion: $$ \text{BIC} = k\ln(n) - 2\ln(\hat{L}) $$ Diagnostic Statistics Variance Inflation Factor: $$ \text{VIF}_j = \frac{1}{1-R_j^2} $$ Where $R_j^2$ is the $R^2$ from regressing $x_j$ on all other predictors. Rule of thumb: VIF > 10 indicates problematic multicollinearity. Cook's Distance: $$ D_i = \frac{(\hat{\mathbf{y}} - \hat{\mathbf{y}}_{(-i)})^\top(\hat{\mathbf{y}} - \hat{\mathbf{y}}_{(-i)})}{k \cdot \text{MSE}} $$ Leverage: $$ h_{ii} = [\mathbf{H}]_{ii} $$ Where $\mathbf{H} = \mathbf{X}(\mathbf{X}^\top\mathbf{X})^{-1}\mathbf{X}^\top$ is the hat matrix. Studentized Residuals: $$ r_i = \frac{e_i}{\hat{\sigma}\sqrt{1 - h_{ii}}} $$ Bayesian Regression Provides full uncertainty quantification for risk-sensitive manufacturing decisions. Bayesian Linear Regression Prior: $$ \boldsymbol{\beta} | \sigma^2 \sim N(\boldsymbol{\beta}_0, \sigma^2\mathbf{V}_0) $$ $$ \sigma^2 \sim \text{Inverse-Gamma}(a_0, b_0) $$ Posterior: $$ \boldsymbol{\beta} | \mathbf{y}, \sigma^2 \sim N(\boldsymbol{\beta}_n, \sigma^2\mathbf{V}_n) $$ Posterior Parameters: $$ \mathbf{V}_n = (\mathbf{V}_0^{-1} + \mathbf{X}^\top\mathbf{X})^{-1} $$ $$ \boldsymbol{\beta}_n = \mathbf{V}_n(\mathbf{V}_0^{-1}\boldsymbol{\beta}_0 + \mathbf{X}^\top\mathbf{y}) $$ Predictive Distribution $$ p(y_*|\mathbf{x}_*, \mathbf{y}) = \int p(y_*|\mathbf{x}_*, \boldsymbol{\beta}, \sigma^2) \, p(\boldsymbol{\beta}, \sigma^2|\mathbf{y}) \, d\boldsymbol{\beta} \, d\sigma^2 $$ For conjugate priors, this is a Student-t distribution. Credible Intervals 95% Credible Interval for $\beta_j$: $$ \beta_j \in \left[\hat{\beta}_j - t_{0.025,\nu}\cdot \text{SE}(\hat{\beta}_j), \quad \hat{\beta}_j + t_{0.025,\nu}\cdot \text{SE}(\hat{\beta}_j)\right] $$ Design of Experiments (DOE) Full Factorial Design For $k$ factors at 2 levels: $$ N = 2^k \text{ runs} $$ Fractional Factorial Design $$ N = 2^{k-p} \text{ runs} $$ Resolution: - Resolution III: Main effects aliased with 2-factor interactions - Resolution IV: Main effects clear; 2FIs aliased with each other - Resolution V: Main effects and 2FIs clear Central Composite Design (CCD) Components: - $2^k$ factorial points - $2k$ axial (star) points at distance $\alpha$ - $n_0$ center points Rotatability Condition: $$ \alpha = (2^k)^{1/4} $$ D-Optimal Design Maximizes the determinant of the information matrix: $$ \max_{\mathbf{X}} |\mathbf{X}^\top\mathbf{X}| $$ Equivalently, minimizes the generalized variance of $\hat{\boldsymbol{\beta}}$. I-Optimal Design Minimizes average prediction variance: $$ \min_{\mathbf{X}} \int_{\mathcal{R}} \text{Var}(\hat{y}(\mathbf{x})) \, d\mathbf{x} $$ Reliability Analysis Cox Proportional Hazards Model Hazard Function: $$ h(t|\mathbf{x}) = h_0(t) \cdot \exp(\mathbf{x}^\top\boldsymbol{\beta}) $$ Where: - $h(t|\mathbf{x})$ — hazard at time $t$ given covariates $\mathbf{x}$ - $h_0(t)$ — baseline hazard - $\boldsymbol{\beta}$ — regression coefficients Partial Likelihood $$ L(\boldsymbol{\beta}) = \prod_{i: \delta_i = 1} \frac{\exp(\mathbf{x}_i^\top\boldsymbol{\beta})}{\sum_{j \in \mathcal{R}(t_i)} \exp(\mathbf{x}_j^\top\boldsymbol{\beta})} $$ Where $\mathcal{R}(t_i)$ is the risk set at time $t_i$. Challenge-Method Mapping | Manufacturing Challenge | Mathematical Approach | |------------------------|----------------------| | High dimensionality | PLS, LASSO, Elastic Net | | Multicollinearity | Ridge regression, PCR, VIF analysis | | Spatial wafer patterns | Zernike polynomials, GP regression | | Hierarchical data | Mixed effects models, REML | | Nonlinear processes | RSM, polynomial models, transformations | | Physics constraints | Arrhenius, Preston equation integration | | Uncertainty quantification | Bayesian methods, bootstrap, prediction intervals | | Binary outcomes | Logistic regression | | Count data | Poisson regression | | Real-time control | Kalman filter, EWMA | | Time-to-failure | Cox proportional hazards | Equations Quick Reference Estimation $$ \hat{\boldsymbol{\beta}}_{\text{OLS}} = (\mathbf{X}^\top\mathbf{X})^{-1}\mathbf{X}^\top\mathbf{y} $$ $$ \hat{\boldsymbol{\beta}}_{\text{Ridge}} = (\mathbf{X}^\top\mathbf{X} + \lambda\mathbf{I})^{-1}\mathbf{X}^\top\mathbf{y} $$ Prediction Interval $$ \hat{y}_0 \pm t_{\alpha/2, n-k-1} \cdot \sqrt{\text{MSE}\left(1 + \mathbf{x}_0^\top(\mathbf{X}^\top\mathbf{X})^{-1}\mathbf{x}_0\right)} $$ Confidence Interval for $\beta_j$ $$ \hat{\beta}_j \pm t_{\alpha/2, n-k-1} \cdot \text{SE}(\hat{\beta}_j) $$ Process Capability $$ C_p = \frac{\text{USL} - \text{LSL}}{6\sigma} $$ $$ C_{pk} = \min\left(\frac{\text{USL} - \mu}{3\sigma}, \frac{\mu - \text{LSL}}{3\sigma}\right) $$ Reference | Symbol | Description | |--------|-------------| | $\mathbf{y}$ | Response vector | | $\mathbf{X}$ | Design matrix | | $\boldsymbol{\beta}$ | Coefficient vector | | $\hat{\boldsymbol{\beta}}$ | Estimated coefficients | | $\boldsymbol{\varepsilon}$ | Error vector | | $\sigma^2$ | Error variance | | $\lambda$ | Regularization parameter | | $\mathbf{I}$ | Identity matrix | | $\|\cdot\|_1$ | L1 norm (sum of absolute values) | | $\|\cdot\|_2$ | L2 norm (Euclidean) | | $\mathbf{A}^\top$ | Matrix transpose | | $\mathbf{A}^{-1}$ | Matrix inverse | | $|\mathbf{A}|$ | Matrix determinant | | $N(\mu, \sigma^2)$ | Normal distribution | | $\mathcal{GP}$ | Gaussian Process |

regression test,eval suite,ci

Automated eval suites catch regressions. Run on every model update. Track metrics over time.

regression-based ocd, metrology

Fit model parameters directly.

regression,continuous,predict

Regression predicts continuous values. Linear, polynomial.

regret minimization,machine learning

Goal in online learning to minimize cumulative mistakes.

regularization,dropout,weight decay

Regularization prevents overfitting. Dropout randomly zeros neurons. Weight decay penalizes large weights. Both improve generalization.

rehearsal methods,continual learning

Store and replay old examples.

reinforcement graph gen, graph neural networks

Reinforcement learning guides graph generation through rewards for desired properties like drug-likeness.

reinforcement learning for nas, neural architecture

Use RL to search architectures.

reinforcement learning for scheduling, digital manufacturing

Optimize wafer scheduling with RL.

reinforcement learning,rl,reward

RL learns from rewards by trial and error. Used in game AI, robotics, and RLHF for LLM alignment.

reinforcement learning,rl,reward

RL learns from reward signal. Policy gradient, Q-learning. Games, robotics, RLHF.

reject option,ai safety

Allow model to say "I don't know".

relation extraction as pre-training, nlp

Use relation extraction as pretext task.

relation extraction,knowledge,triple

Relation extraction finds relationships between entities. Build knowledge graphs. (subject, relation, object).

relation extraction,nlp

Identify relationships between entities.

relation networks, neural architecture

Networks explicitly modeling pairwise relations.

relation-aware aggregation, graph neural networks

Relation-aware aggregation weights messages by edge types when updating node representations.

relational knowledge distillation, rkd, model compression

Transfer relationships between samples.

relational reasoning, reasoning

Reason about relationships between entities.

relations diagram, quality & reliability

Relations diagrams map cause-effect relationships for complex problems.