device physics tcad,tcad,device physics,semiconductor device physics,band theory,drift diffusion,poisson equation,boltzmann transport,carrier transport,mobility models,recombination models,process tcad
# Device Physics, TCAD, and Mathematical Modeling 1. Physical Foundation 1.1 Band Theory and Electronic Structure - Energy bands arise from the periodic potential of the crystal lattice - Conduction band (empty states available for electron transport) - Valence band (filled states; holes represent missing electrons) - Bandgap $E_g$ separates these bands (Si: ~1.12 eV at 300K) - Effective mass approximation - Electrons and holes behave as quasi-particles with modified mass - Electron effective mass: $m_n^*$ - Hole effective mass: $m_p^*$ - Carrier statistics follow Fermi-Dirac distribution: $$ f(E) = \frac{1}{1 + \exp\left(\frac{E - E_F}{k_B T}\right)} $$ - Carrier concentrations in non-degenerate semiconductors: $$ n = N_C \exp\left(-\frac{E_C - E_F}{k_B T}\right) $$ $$ p = N_V \exp\left(-\frac{E_F - E_V}{k_B T}\right) $$ Where: - $N_C$, $N_V$ = effective density of states in conduction/valence bands - $E_C$, $E_V$ = conduction/valence band edges - $E_F$ = Fermi level 1.2 Carrier Transport Mechanisms | Mechanism | Driving Force | Current Density | |-----------|---------------|-----------------| | Drift | Electric field $\mathbf{E}$ | $\mathbf{J} = qn\mu\mathbf{E}$ | | Diffusion | Concentration gradient | $\mathbf{J} = qD\nabla n$ | | Thermionic emission | Thermal energy over barrier | Exponential in $\phi_B/k_BT$ | | Tunneling | Quantum penetration | Exponential in barrier | - Einstein relation connects mobility and diffusivity: $$ D = \frac{k_B T}{q} \mu $$ 1.3 Generation and Recombination - Thermal equilibrium condition: $$ np = n_i^2 $$ - Three primary recombination mechanisms: 1. Shockley-Read-Hall (SRH) — trap-assisted 2. Auger — three-particle process (dominant at high injection) 3. Radiative — photon emission (important in direct bandgap materials) 2. Mathematical Hierarchy 2.1 Quantum Mechanical Level (Most Fundamental) Time-Independent Schrödinger Equation $$ \left[-\frac{\hbar^2}{2m^*}\nabla^2 + V(\mathbf{r})\right]\psi = E\psi $$ Where: - $\hbar$ = reduced Planck constant - $m^*$ = effective mass - $V(\mathbf{r})$ = potential energy - $\psi$ = wavefunction - $E$ = energy eigenvalue Non-Equilibrium Green's Function (NEGF) For open quantum systems (nanoscale devices, tunneling): $$ G^R = [EI - H - \Sigma]^{-1} $$ - $G^R$ = retarded Green's function - $H$ = device Hamiltonian - $\Sigma$ = self-energy (encodes contact coupling) Applications: - Tunnel FETs - Ultra-scaled MOSFETs ($L_g < 10$ nm) - Quantum well devices - Resonant tunneling diodes 2.2 Boltzmann Transport Level Boltzmann Transport Equation (BTE) $$ \frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{r}} f + \frac{\mathbf{F}}{\hbar} \cdot \nabla_{\mathbf{k}} f = \left(\frac{\partial f}{\partial t}\right)_{\text{coll}} $$ Where: - $f(\mathbf{r}, \mathbf{k}, t)$ = distribution function in phase space - $\mathbf{v}$ = group velocity - $\mathbf{F}$ = external force - RHS = collision integral Solution Methods: - Monte Carlo (stochastic particle tracking) - Spherical Harmonics Expansion (SHE) - Moments methods → leads to drift-diffusion, hydrodynamic Captures: - Hot carrier effects - Velocity overshoot - Non-equilibrium distributions - Ballistic transport 2.3 Hydrodynamic / Energy Balance Level Derived from moments of BTE with carrier temperature as variable: $$ \frac{\partial (nw)}{\partial t} + \nabla \cdot \mathbf{S} = \mathbf{J} \cdot \mathbf{E} - \frac{n(w - w_0)}{\tau_w} $$ - $w$ = carrier energy density - $\mathbf{S}$ = energy flux - $\tau_w$ = energy relaxation time - $w_0$ = equilibrium energy density Key feature: Carrier temperature $T_n \neq$ lattice temperature $T_L$ 2.4 Drift-Diffusion Level (The Workhorse) The most widely used TCAD formulation — three coupled PDEs: Poisson's Equation (Electrostatics) $$ \nabla \cdot (\varepsilon \nabla \psi) = -\rho = -q(p - n + N_D^+ - N_A^-) $$ - $\psi$ = electrostatic potential - $\varepsilon$ = permittivity - $\rho$ = charge density - $N_D^+$, $N_A^-$ = ionized donor/acceptor concentrations Electron Continuity Equation $$ \frac{\partial n}{\partial t} = \frac{1}{q}\nabla \cdot \mathbf{J}_n + G_n - R_n $$ Hole Continuity Equation $$ \frac{\partial p}{\partial t} = -\frac{1}{q}\nabla \cdot \mathbf{J}_p + G_p - R_p $$ Current Density Equations Standard form: $$ \mathbf{J}_n = q\mu_n n \mathbf{E} + qD_n \nabla n $$ $$ \mathbf{J}_p = q\mu_p p \mathbf{E} - qD_p \nabla p $$ Quasi-Fermi level formulation: $$ \mathbf{J}_n = q\mu_n n \nabla E_{F,n} $$ $$ \mathbf{J}_p = q\mu_p p \nabla E_{F,p} $$ System characteristics: - Coupled, nonlinear, elliptic-parabolic PDEs - Carrier concentrations vary exponentially with potential - Spans 10+ orders of magnitude across junctions 3. Numerical Methods 3.1 Spatial Discretization Finite Difference Method (FDM) - Simple implementation - Limited to structured (rectangular) grids - Box integration for conservation Finite Element Method (FEM) - Handles complex geometries - Basis function expansion - Weak (variational) formulation Finite Volume Method (FVM) - Ensures local conservation - Natural for semiconductor equations - Control volume integration 3.2 Scharfetter-Gummel Discretization Critical for numerical stability — handles exponential carrier variations: $$ J_{n,i+\frac{1}{2}} = \frac{qD_n}{h}\left[n_i B\left(\frac{\psi_i - \psi_{i+1}}{V_T}\right) - n_{i+1} B\left(\frac{\psi_{i+1} - \psi_i}{V_T}\right)\right] $$ Where the Bernoulli function is: $$ B(x) = \frac{x}{e^x - 1} $$ Properties: - Reduces to central difference for small $\Delta\psi$ - Reduces to upwind for large $\Delta\psi$ - Prevents spurious oscillations - Thermal voltage: $V_T = k_B T / q \approx 26$ mV at 300K 3.3 Mesh Generation - 2D: Delaunay triangulation - 3D: Tetrahedral meshing Adaptive refinement criteria: - Junction regions (high field gradients) - Oxide interfaces - Contact regions - High current density areas Quality metrics: - Aspect ratio - Orthogonality (important for FVM) - Delaunay property (circumsphere criterion) 3.4 Nonlinear Solvers Gummel Iteration (Decoupled) repeat: 1. Solve Poisson equation → ψ 2. Solve electron continuity → n 3. Solve hole continuity → p until convergence Pros: - Simple implementation - Robust for moderate bias - Each subproblem is smaller Cons: - Poor convergence at high injection - Slow for strongly coupled systems Newton-Raphson (Fully Coupled) Solve the linearized system: $$ \mathbf{J} \cdot \delta\mathbf{x} = -\mathbf{F}(\mathbf{x}) $$ Where: - $\mathbf{J}$ = Jacobian matrix $\partial \mathbf{F}/\partial \mathbf{x}$ - $\mathbf{F}$ = residual vector - $\delta\mathbf{x}$ = update vector Pros: - Quadratic convergence near solution - Handles strong coupling Cons: - Requires good initial guess - Expensive Jacobian assembly - Larger linear systems Hybrid Methods - Start with Gummel to get close - Switch to Newton for fast final convergence 3.5 Linear Solvers For large, sparse, ill-conditioned Jacobian systems: | Method | Type | Characteristics | |--------|------|-----------------| | LU (PARDISO, UMFPACK) | Direct | Robust, memory-intensive | | GMRES | Iterative | Krylov subspace, needs preconditioning | | BiCGSTAB | Iterative | Non-symmetric systems | | Multigrid | Iterative | Optimal for Poisson-like equations | 4. Physical Models in TCAD 4.1 Mobility Models Matthiessen's Rule Combines independent scattering mechanisms: $$ \frac{1}{\mu} = \frac{1}{\mu_{\text{lattice}}} + \frac{1}{\mu_{\text{impurity}}} + \frac{1}{\mu_{\text{surface}}} + \cdots $$ Lattice Scattering $$ \mu_L = \mu_0 \left(\frac{T}{300}\right)^{-\alpha} $$ - Si electrons: $\alpha \approx 2.4$ - Si holes: $\alpha \approx 2.2$ Ionized Impurity Scattering Brooks-Herring model: $$ \mu_I \propto \frac{T^{3/2}}{N_I \cdot \ln(1 + b^2) - b^2/(1+b^2)} $$ High-Field Saturation (Caughey-Thomas) $$ \mu(E) = \frac{\mu_0}{\left[1 + \left(\frac{\mu_0 E}{v_{\text{sat}}}\right)^\beta\right]^{1/\beta}} $$ - $v_{\text{sat}}$ = saturation velocity (~$10^7$ cm/s for Si) - $\beta$ = fitting parameter (~2 for electrons, ~1 for holes) 4.2 Recombination Models Shockley-Read-Hall (SRH) $$ R_{\text{SRH}} = \frac{np - n_i^2}{\tau_p(n + n_1) + \tau_n(p + p_1)} $$ Where: - $\tau_n$, $\tau_p$ = carrier lifetimes - $n_1 = n_i \exp[(E_t - E_i)/k_BT]$ - $p_1 = n_i \exp[(E_i - E_t)/k_BT]$ - $E_t$ = trap energy level Auger Recombination $$ R_{\text{Auger}} = (C_n n + C_p p)(np - n_i^2) $$ - $C_n$, $C_p$ = Auger coefficients (~$10^{-31}$ cm$^6$/s for Si) - Dominant at high carrier densities ($>10^{18}$ cm$^{-3}$) Radiative Recombination $$ R_{\text{rad}} = B(np - n_i^2) $$ - $B$ = radiative coefficient - Important in direct bandgap materials (GaAs, InP) 4.3 Band-to-Band Tunneling For tunnel FETs, Zener diodes: $$ G_{\text{BTBT}} = A \cdot E^2 \exp\left(-\frac{B}{E}\right) $$ - $A$, $B$ = material-dependent parameters - $E$ = electric field magnitude 4.4 Quantum Corrections Density Gradient Method Adds quantum potential to classical equations: $$ V_Q = -\frac{\hbar^2}{6m^*} \frac{\nabla^2\sqrt{n}}{\sqrt{n}} $$ Or equivalently, the quantum potential term: $$ \Lambda_n = \frac{\hbar^2}{12 m_n^* k_B T} \nabla^2 \ln(n) $$ Applications: - Inversion layer quantization in MOSFETs - Thin body SOI devices - FinFETs, nanowires 1D Schrödinger-Poisson For stronger quantum confinement: 1. Solve 1D Schrödinger in confinement direction → subbands $E_i$, $\psi_i$ 2. Calculate 2D density of states 3. Compute carrier density from subband occupation 4. Solve 2D Poisson with quantum charge 5. Iterate to self-consistency 4.5 Bandgap Narrowing At high doping ($N > 10^{17}$ cm$^{-3}$): $$ \Delta E_g = A \cdot N^{1/3} + B \cdot \ln\left(\frac{N}{N_{\text{ref}}}\right) $$ Effect: Increases $n_i^2$ → affects recombination and device characteristics 4.6 Interface Models - Interface trap density: $D_{it}(E)$ — states per cm$^2$·eV - Oxide charges: - Fixed oxide charge $Q_f$ - Mobile ionic charge $Q_m$ - Oxide trapped charge $Q_{ot}$ - Interface trapped charge $Q_{it}$ 5. Process TCAD 5.1 Ion Implantation Monte Carlo Method - Track individual ion trajectories - Binary collision approximation - Accurate for low doses, complex geometries Analytical Profiles Gaussian: $$ N(x) = \frac{\Phi}{\sqrt{2\pi}\Delta R_p} \exp\left[-\frac{(x - R_p)^2}{2\Delta R_p^2}\right] $$ - $\Phi$ = dose (ions/cm$^2$) - $R_p$ = projected range - $\Delta R_p$ = straggle Pearson IV: Adds skewness and kurtosis for better accuracy 5.2 Diffusion Fick's First Law: $$ \mathbf{J} = -D \nabla C $$ Fick's Second Law: $$ \frac{\partial C}{\partial t} = \nabla \cdot (D \nabla C) $$ Concentration-dependent diffusion: $$ D = D_i \left(\frac{n}{n_i}\right)^2 + D_v + D_x \left(\frac{n}{n_i}\right) $$ (Accounts for charged point defects) 5.3 Oxidation Deal-Grove Model: $$ x_{ox}^2 + A \cdot x_{ox} = B(t + \tau) $$ - $x_{ox}$ = oxide thickness - $A$, $B$ = temperature-dependent parameters - Linear regime: $x_{ox} \approx (B/A) \cdot t$ (thin oxide) - Parabolic regime: $x_{ox} \approx \sqrt{B \cdot t}$ (thick oxide) 5.4 Etching and Deposition Level-set method for surface evolution: $$ \frac{\partial \phi}{\partial t} + v_n |\nabla \phi| = 0 $$ - $\phi$ = level-set function (zero contour = surface) - $v_n$ = normal velocity (etch/deposition rate) 6. Multiphysics and Advanced Topics 6.1 Electrothermal Coupling Heat equation: $$ \rho c_p \frac{\partial T}{\partial t} = \nabla \cdot (\kappa \nabla T) + H $$ Heat generation: $$ H = \mathbf{J} \cdot \mathbf{E} + (R - G)(E_g + 3k_BT) $$ - First term: Joule heating - Second term: recombination heating Thermoelectric effects: - Seebeck effect - Peltier effect - Thomson effect 6.2 Electromechanical Coupling Strain effects on mobility: $$ \mu_{\text{strained}} = \mu_0 (1 + \Pi \cdot \sigma) $$ - $\Pi$ = piezoresistance coefficient - $\sigma$ = mechanical stress Applications: Strained Si, SiGe channels 6.3 Statistical Variability Sources of random variation: - Random Dopant Fluctuations (RDF) — discrete dopant positions - Line Edge Roughness (LER) — gate patterning variation - Metal Gate Granularity (MGG) — work function variation - Oxide Thickness Variation (OTV) Simulation approach: - Monte Carlo sampling over device instances - Statistical TCAD → threshold voltage distributions 6.4 Reliability Modeling Bias Temperature Instability (BTI): - Defect generation at Si/SiO$_2$ interface - Reaction-diffusion models Hot Carrier Injection (HCI): - High-energy carriers damage interface - Coupled with energy transport 6.5 Noise Modeling Noise sources: - Thermal noise: $S_I = 4k_BT/R$ - Shot noise: $S_I = 2qI$ - 1/f noise (flicker): $S_I \propto I^2/(f \cdot N)$ Impedance field method for spatial correlation 7. Computational Architecture 7.1 Model Hierarchy Comparison | Level | Physics | Math | Cost | Accuracy | |-------|---------|------|------|----------| | NEGF | Quantum coherence | $G = [E-H-\Sigma]^{-1}$ | $$$$$ | Highest | | Monte Carlo | Distribution function | Stochastic DEs | $$$$ | High | | Hydrodynamic | Carrier temperature | Hyperbolic-parabolic PDEs | $$$ | Good | | Drift-Diffusion | Continuum transport | Elliptic-parabolic PDEs | $$ | Moderate | | Compact Models | Empirical | Algebraic | $ | Calibrated | 7.2 Software Architecture ```text ┌─────────────────────────────────────────┐ │ User Interface (GUI) │ ├─────────────────────────────────────────┤ │ Structure Definition │ │ (Geometry, Mesh, Materials) │ ├─────────────────────────────────────────┤ │ Physical Models │ │ (Mobility, Recombination, Quantum) │ ├─────────────────────────────────────────┤ │ Numerical Engine │ │ (Discretization, Solvers, Linear Alg) │ ├─────────────────────────────────────────┤ │ Post-Processing │ │ (Visualization, Parameter Extraction) │ └─────────────────────────────────────────┘ ``` 7.3 TCAD ↔ Compact Model Flow ```text ┌──────────┐ calibrate ┌──────────────┐ │ TCAD │ ──────────────► │ Compact Model│ │(Physics) │ │ (BSIM,PSP) │ └──────────┘ └──────────────┘ │ │ │ validate │ enable ▼ ▼ ┌──────────┐ ┌──────────────┐ │ Silicon │ │ Circuit │ │ Data │ │ Simulation │ └──────────┘ └──────────────┘ ``` Equations: Fundamental Constants | Symbol | Name | Value | |--------|------|-------| | $q$ | Elementary charge | $1.602 \times 10^{-19}$ C | | $k_B$ | Boltzmann constant | $1.381 \times 10^{-23}$ J/K | | $\hbar$ | Reduced Planck | $1.055 \times 10^{-34}$ J·s | | $\varepsilon_0$ | Vacuum permittivity | $8.854 \times 10^{-12}$ F/m | | $V_T$ | Thermal voltage (300K) | 25.9 mV | Silicon Properties (300K) | Property | Value | |----------|-------| | Bandgap $E_g$ | 1.12 eV | | Intrinsic carrier density $n_i$ | $1.0 \times 10^{10}$ cm$^{-3}$ | | Electron mobility $\mu_n$ | 1450 cm$^2$/V·s | | Hole mobility $\mu_p$ | 500 cm$^2$/V·s | | Electron saturation velocity | $1.0 \times 10^7$ cm/s | | Relative permittivity $\varepsilon_r$ | 11.7 |