← Back to AI Factory Chat

AI Factory Glossary

9,967 technical terms and definitions

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Showing page 54 of 200 (9,967 entries)

electrical test structures,metrology

On-wafer structures for measuring parameters.

electrical wafer sort (ews),electrical wafer sort,ews,testing

Test dies electrically on wafer.

electrical width, yield enhancement

Electrical width is measured linewidth from resistance or capacitance differing from physical dimension.

electrochemical migration, reliability

Metal transport under bias.

electrochemical plating (ecp),electrochemical plating,ecp,beol

Deposit copper by electroplating.

electrodeionization, environmental & sustainability

Electrodeionization combines ion exchange and electrodialysis for continuous ultra-pure water production.

electroless plating,beol

Chemical plating without external current.

electroluminescence, el, metrology

Light emission from electrical injection.

electromagnetism,electromagnetism mathematics,maxwell equations,drift diffusion,semiconductor electromagnetism,poisson equation,boltzmann transport,negf,quantum transport,optoelectronics

# Electromagnetism Mathematics Modeling A comprehensive guide to the mathematical frameworks used in semiconductor device simulation, covering electromagnetic theory, carrier transport, and quantum effects. 1. The Core Problem Semiconductor device modeling requires solving coupled systems that describe: - How electromagnetic fields propagate in and interact with semiconductor materials - How charge carriers (electrons and holes) move in response to fields - How quantum effects modify classical behavior at nanoscales Key Variables: | Symbol | Description | Units | |--------|-------------|-------| | $\phi$ | Electrostatic potential | V | | $n$ | Electron concentration | cm⁻³ | | $p$ | Hole concentration | cm⁻³ | | $\mathbf{E}$ | Electric field | V/cm | | $\mathbf{J}_n, \mathbf{J}_p$ | Current densities | A/cm² | 2. Fundamental Mathematical Frameworks 2.1 Drift-Diffusion System The workhorse of semiconductor device simulation couples three fundamental equations. 2.1.1 Poisson's Equation (Electrostatics) $$ \nabla \cdot (\varepsilon \nabla \phi) = -q(p - n + N_D^+ - N_A^-) $$ Where: - $\varepsilon$ — Permittivity of the semiconductor - $\phi$ — Electrostatic potential - $q$ — Elementary charge ($1.602 \times 10^{-19}$ C) - $n, p$ — Electron and hole concentrations - $N_D^+$ — Ionized donor concentration - $N_A^-$ — Ionized acceptor concentration 2.1.2 Continuity Equations (Carrier Conservation) For electrons: $$ \frac{\partial n}{\partial t} = \frac{1}{q}\nabla \cdot \mathbf{J}_n - R + G $$ For holes: $$ \frac{\partial p}{\partial t} = -\frac{1}{q}\nabla \cdot \mathbf{J}_p - R + G $$ Where: - $R$ — Recombination rate (cm⁻³s⁻¹) - $G$ — Generation rate (cm⁻³s⁻¹) 2.1.3 Current Density Relations Electron current (drift + diffusion): $$ \mathbf{J}_n = q\mu_n n \mathbf{E} + qD_n \nabla n $$ Hole current (drift + diffusion): $$ \mathbf{J}_p = q\mu_p p \mathbf{E} - qD_p \nabla p $$ Einstein Relations: $$ D_n = \frac{k_B T}{q} \mu_n \quad \text{and} \quad D_p = \frac{k_B T}{q} \mu_p $$ 2.1.4 Recombination Models - Shockley-Read-Hall (SRH): $$ R_{SRH} = \frac{np - n_i^2}{\tau_p(n + n_1) + \tau_n(p + p_1)} $$ - Auger Recombination: $$ R_{Auger} = (C_n n + C_p p)(np - n_i^2) $$ - Radiative Recombination: $$ R_{rad} = B(np - n_i^2) $$ 2.2 Maxwell's Equations in Semiconductors For optoelectronics and high-frequency devices, the full electromagnetic treatment is necessary. 2.2.1 Maxwell's Equations $$ \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} $$ $$ \nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t} $$ $$ \nabla \cdot \mathbf{D} = \rho $$ $$ \nabla \cdot \mathbf{B} = 0 $$ 2.2.2 Constitutive Relations Displacement field: $$ \mathbf{D} = \varepsilon_0 \varepsilon_r(\omega) \mathbf{E} $$ Current density: $$ \mathbf{J} = \sigma(\omega) \mathbf{E} $$ 2.2.3 Frequency-Dependent Dielectric Function $$ \varepsilon(\omega) = \varepsilon_\infty - \frac{\omega_p^2}{\omega^2 + i\gamma\omega} + \sum_j \frac{f_j}{\omega_j^2 - \omega^2 - i\Gamma_j\omega} $$ Components: - First term ($\varepsilon_\infty$): High-frequency (background) permittivity - Second term (Drude): Free carrier response - $\omega_p = \sqrt{\frac{nq^2}{\varepsilon_0 m^*}}$ — Plasma frequency - $\gamma$ — Damping rate - Third term (Lorentz oscillators): Interband transitions - $\omega_j$ — Resonance frequencies - $\Gamma_j$ — Linewidths - $f_j$ — Oscillator strengths 2.2.4 Complex Refractive Index $$ \tilde{n}(\omega) = n(\omega) + i\kappa(\omega) = \sqrt{\varepsilon(\omega)} $$ Optical properties: - Refractive index: $n = \text{Re}(\tilde{n})$ - Extinction coefficient: $\kappa = \text{Im}(\tilde{n})$ - Absorption coefficient: $\alpha = \frac{2\omega\kappa}{c} = \frac{4\pi\kappa}{\lambda}$ 2.3 Boltzmann Transport Equation When drift-diffusion is insufficient (hot carriers, high fields, ultrafast phenomena): $$ \frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla_\mathbf{r} f + \frac{\mathbf{F}}{\hbar} \cdot \nabla_\mathbf{k} f = \left(\frac{\partial f}{\partial t}\right)_{\text{coll}} $$ Where: - $f(\mathbf{r}, \mathbf{k}, t)$ — Distribution function in 6D phase space - $\mathbf{v} = \frac{1}{\hbar}\nabla_\mathbf{k} E(\mathbf{k})$ — Group velocity - $\mathbf{F}$ — External force (e.g., $q\mathbf{E}$) 2.3.1 Collision Integral (Relaxation Time Approximation) $$ \left(\frac{\partial f}{\partial t}\right)_{\text{coll}} \approx -\frac{f - f_0}{\tau} $$ 2.3.2 Scattering Mechanisms - Acoustic phonon scattering: $$ \frac{1}{\tau_{ac}} \propto T \cdot E^{1/2} $$ - Optical phonon scattering: $$ \frac{1}{\tau_{op}} \propto \left(N_{op} + \frac{1}{2} \mp \frac{1}{2}\right) $$ - Ionized impurity scattering (Brooks-Herring): $$ \frac{1}{\tau_{ii}} \propto \frac{N_I}{E^{3/2}} $$ 2.3.3 Solution Approaches - Monte Carlo methods: Stochastically simulate individual carrier trajectories - Moment expansions: Derive hydrodynamic equations from velocity moments - Spherical harmonic expansion: Expand angular dependence in k-space 2.4 Quantum Transport For nanoscale devices where quantum effects dominate. 2.4.1 Schrödinger Equation (Effective Mass Approximation) $$ \left[-\frac{\hbar^2}{2m^*}\nabla^2 + V(\mathbf{r})\right]\psi = E\psi $$ 2.4.2 Schrödinger-Poisson Self-Consistent Loop ┌─────────────────────────────────────────────────┐ │ │ │ Initial guess: V(r) │ │ │ │ │ ▼ │ │ Solve Schrodinger: H*psi = E*psi │ │ │ │ │ ▼ │ │ Calculate charge density: │ │ rho(r) = q * sum |psi_i(r)|^2 * f(E_i) │ │ │ │ │ ▼ │ │ Solve Poisson: div(grad V) = -rho/eps │ │ │ │ │ ▼ │ │ Check convergence ──► If not, iterate │ │ │ └─────────────────────────────────────────────────┘ 2.4.3 Non-Equilibrium Green's Function (NEGF) Retarded Green's function: $$ [EI - H - \Sigma^R]G^R = I $$ Lesser Green's function (for electron density): $$ G^< = G^R \Sigma^< G^A $$ Current formula (Landauer-Büttiker type): $$ I = \frac{2q}{h}\int \text{Tr}\left[\Sigma^< G^> - \Sigma^> G^<\right] dE $$ Transmission function: $$ T(E) = \text{Tr}\left[\Gamma_L G^R \Gamma_R G^A\right] $$ where $\Gamma_{L,R} = i(\Sigma_{L,R}^R - \Sigma_{L,R}^A)$ are the broadening matrices. 2.4.4 Wigner Function Formalism Quantum analog of the Boltzmann distribution: $$ f_W(\mathbf{r}, \mathbf{p}, t) = \frac{1}{(\pi\hbar)^3}\int \psi^*\left(\mathbf{r}+\mathbf{s}\right)\psi\left(\mathbf{r}-\mathbf{s}\right) e^{2i\mathbf{p}\cdot\mathbf{s}/\hbar} d^3s $$ 3. Coupled Optoelectronic Modeling For solar cells, LEDs, and lasers, optical and electrical physics must be solved self-consistently. 3.1 Self-Consistent Loop ┌─────────────────────────────────────────────────────────────┐ │ │ │ Maxwell's Equations ──────► Optical field E(r,w) │ │ │ │ │ ▼ │ │ Generation rate: G(r) = alpha*|E|^2/(hbar*w) │ │ │ │ │ ▼ │ │ Drift-Diffusion ──────► Carrier densities n(r), p(r) │ │ │ │ │ ▼ │ │ Update eps(w,n,p) ──────► Free carrier absorption, │ │ │ plasma effects, band filling │ │ │ │ │ └──────────────── iterate ────────────────────┘ │ │ │ └─────────────────────────────────────────────────────────────┘ 3.2 Key Coupling Equations Optical generation rate: $$ G(\mathbf{r}) = \frac{\alpha(\mathbf{r})|\mathbf{E}(\mathbf{r})|^2}{2\hbar\omega} $$ Free carrier absorption (modifies permittivity): $$ \Delta\alpha_{fc} = \sigma_n n + \sigma_p p $$ Band gap narrowing (high injection): $$ \Delta E_g = -A\left(\ln\frac{n}{n_0} + \ln\frac{p}{p_0}\right) $$ 3.3 Laser Rate Equations Carrier density: $$ \frac{dn}{dt} = \frac{\eta I}{qV} - \frac{n}{\tau} - g(n)S $$ Photon density: $$ \frac{dS}{dt} = \Gamma g(n)S - \frac{S}{\tau_p} + \Gamma\beta\frac{n}{\tau} $$ Gain function (linear approximation): $$ g(n) = g_0(n - n_{tr}) $$ 4. Numerical Methods 4.1 Method Comparison | Method | Best For | Key Features | Computational Cost | |--------|----------|--------------|-------------------| | Finite Element (FEM) | Complex geometries | Adaptive meshing, handles interfaces | Medium-High | | Finite Difference (FDM) | Regular grids | Simpler implementation | Low-Medium | | FDTD | Time-domain EM | Explicit time stepping, broadband | High | | Transfer Matrix (TMM) | Multilayer thin films | Analytical for 1D, very fast | Very Low | | RCWA | Periodic structures | Fourier expansion | Medium | | Monte Carlo | High-field transport | Stochastic, parallelizable | Very High | 4.2 Scharfetter-Gummel Discretization Essential for numerical stability in drift-diffusion. For electron current between nodes $i$ and $i+1$: $$ J_{n,i+1/2} = \frac{qD_n}{h}\left[n_i B\left(\frac{\phi_i - \phi_{i+1}}{V_T}\right) - n_{i+1} B\left(\frac{\phi_{i+1} - \phi_i}{V_T}\right)\right] $$ Bernoulli function: $$ B(x) = \frac{x}{e^x - 1} $$ 4.3 FDTD Yee Grid Update equations (1D example): $$ E_x^{n+1}(k) = E_x^n(k) + \frac{\Delta t}{\varepsilon \Delta z}\left[H_y^{n+1/2}(k+1/2) - H_y^{n+1/2}(k-1/2)\right] $$ $$ H_y^{n+1/2}(k+1/2) = H_y^{n-1/2}(k+1/2) + \frac{\Delta t}{\mu \Delta z}\left[E_x^n(k+1) - E_x^n(k)\right] $$ Courant stability condition: $$ \Delta t \leq \frac{\Delta x}{c\sqrt{d}} $$ where $d$ is the number of spatial dimensions. 4.4 Newton-Raphson for Coupled System For the coupled Poisson-continuity system, solve: $$ \begin{pmatrix} \frac{\partial F_\phi}{\partial \phi} & \frac{\partial F_\phi}{\partial n} & \frac{\partial F_\phi}{\partial p} \\ \frac{\partial F_n}{\partial \phi} & \frac{\partial F_n}{\partial n} & \frac{\partial F_n}{\partial p} \\ \frac{\partial F_p}{\partial \phi} & \frac{\partial F_p}{\partial n} & \frac{\partial F_p}{\partial p} \end{pmatrix} \begin{pmatrix} \delta\phi \\ \delta n \\ \delta p \end{pmatrix} = - \begin{pmatrix} F_\phi \\ F_n \\ F_p \end{pmatrix} $$ 5. Multiscale Challenge 5.1 Hierarchy of Scales | Scale | Size | Method | Physics Captured | |-------|------|--------|------------------| | Atomic | 0.1–1 nm | DFT, tight-binding | Band structure, material parameters | | Quantum | 1–100 nm | NEGF, Wigner function | Tunneling, confinement | | Mesoscale | 10–1000 nm | Boltzmann, Monte Carlo | Hot carriers, non-equilibrium | | Device | 100 nm–μm | Drift-diffusion | Classical transport | | Circuit | μm–mm | Compact models (SPICE) | Lumped elements | 5.2 Scale-Bridging Techniques - Parameter extraction: DFT → effective masses, band gaps → drift-diffusion parameters - Quantum corrections to drift-diffusion: $$ n = N_c F_{1/2}\left(\frac{E_F - E_c - \Lambda_n}{k_B T}\right) $$ where $\Lambda_n$ is the quantum potential from density-gradient theory: $$ \Lambda_n = -\frac{\hbar^2}{12m^*}\frac{\nabla^2 \sqrt{n}}{\sqrt{n}} $$ - Machine learning surrogates: Train neural networks on expensive quantum simulations 6. Key Mathematical Difficulties 6.1 Extreme Nonlinearity Carrier concentrations depend exponentially on potential: $$ n = n_i \exp\left(\frac{E_F - E_i}{k_B T}\right) = n_i \exp\left(\frac{q\phi}{k_B T}\right) $$ At room temperature, $k_B T/q \approx 26$ mV, so small potential changes cause huge concentration swings. Solutions: - Gummel iteration (decouple and solve sequentially) - Newton-Raphson with damping - Continuation methods 6.2 Numerical Stiffness - Doping varies by $10^{10}$ or more (from intrinsic to heavily doped) - Depletion regions: nm-scale features in μm-scale devices - Time scales: fs (optical) to ms (thermal) Solutions: - Adaptive mesh refinement - Implicit time stepping - Logarithmic variable transformations: $u = \ln(n/n_i)$ 6.3 High Dimensionality - Full Boltzmann: 7D (3 position + 3 momentum + time) - NEGF: Large matrix inversions per energy point Solutions: - Mode-space approximation - Hierarchical matrix methods - GPU acceleration 6.4 Multiphysics Coupling Interacting effects: - Electro-thermal: $\mu(T)$, $\kappa(T)$, Joule heating - Opto-electrical: Generation, free-carrier absorption - Electro-mechanical: Piezoelectric effects, strain-modified bands 7. Emerging Frontiers 7.1 Topological Effects Berry curvature: $$ \mathbf{\Omega}_n(\mathbf{k}) = i\langle\nabla_\mathbf{k} u_n| \times |\nabla_\mathbf{k} u_n\rangle $$ Anomalous velocity contribution: $$ \dot{\mathbf{r}} = \frac{1}{\hbar}\nabla_\mathbf{k} E_n - \dot{\mathbf{k}} \times \mathbf{\Omega}_n $$ Applications: Topological insulators, quantum Hall effect, valley-selective transport 7.2 2D Materials Graphene (Dirac equation): $$ H = v_F \begin{pmatrix} 0 & p_x - ip_y \\ p_x + ip_y & 0 \end{pmatrix} = v_F \boldsymbol{\sigma} \cdot \mathbf{p} $$ Linear dispersion: $$ E = \pm \hbar v_F |\mathbf{k}| $$ TMDCs (valley physics): $$ H = at(\tau k_x \sigma_x + k_y \sigma_y) + \frac{\Delta}{2}\sigma_z + \lambda\tau\frac{\sigma_z - 1}{2}s_z $$ 7.3 Spintronics Spin drift-diffusion: $$ \frac{\partial \mathbf{s}}{\partial t} = D_s \nabla^2 \mathbf{s} - \frac{\mathbf{s}}{\tau_s} + \mathbf{s} \times \boldsymbol{\omega} $$ Landau-Lifshitz-Gilbert (magnetization dynamics): $$ \frac{d\mathbf{M}}{dt} = -\gamma \mathbf{M} \times \mathbf{H}_{eff} + \frac{\alpha}{M_s}\mathbf{M} \times \frac{d\mathbf{M}}{dt} $$ 7.4 Plasmonics in Semiconductors Nonlocal dielectric response: $$ \varepsilon(\omega, \mathbf{k}) = \varepsilon_\infty - \frac{\omega_p^2}{\omega^2 + i\gamma\omega - \beta^2 k^2} $$ where $\beta^2 = \frac{3}{5}v_F^2$ accounts for spatial dispersion. Quantum corrections (Feibelman parameters): $$ d_\perp(\omega) = \frac{\int z \delta n(z) dz}{\int \delta n(z) dz} $$ Constants: | Constant | Symbol | Value | |----------|--------|-------| | Elementary charge | $q$ | $1.602 \times 10^{-19}$ C | | Planck's constant | $h$ | $6.626 \times 10^{-34}$ J·s | | Reduced Planck's constant | $\hbar$ | $1.055 \times 10^{-34}$ J·s | | Boltzmann constant | $k_B$ | $1.381 \times 10^{-23}$ J/K | | Vacuum permittivity | $\varepsilon_0$ | $8.854 \times 10^{-12}$ F/m | | Electron mass | $m_0$ | $9.109 \times 10^{-31}$ kg | | Speed of light | $c$ | $2.998 \times 10^{8}$ m/s | Material Parameters (Silicon @ 300K): | Parameter | Symbol | Value | |-----------|--------|-------| | Band gap | $E_g$ | 1.12 eV | | Intrinsic carrier concentration | $n_i$ | $1.0 \times 10^{10}$ cm⁻³ | | Electron mobility | $\mu_n$ | 1400 cm²/V·s | | Hole mobility | $\mu_p$ | 450 cm²/V·s | | Relative permittivity | $\varepsilon_r$ | 11.7 | | Electron effective mass | $m_n^*/m_0$ | 0.26 | | Hole effective mass | $m_p^*/m_0$ | 0.39 |

electromigration beol, signal & power integrity

Electromigration in back-end interconnects causes metal migration under high current density leading to voids or hillocks and failures.

electromigration in copper,reliability

Copper atom migration under current.

electromigration modeling, reliability

Model metal migration.

electromigration simulation,reliability

Predict metal lifetime under current stress.

electromigration,reliability

Failure mechanism where current causes metal atoms to migrate.

electron backscatter diffraction, ebsd, metrology

Map crystal orientation in SEM.

electron beam induced current (ebic),electron beam induced current,ebic,metrology

Map electrical activity in devices.

electron channeling contrast imaging, ecci, metrology

Defect imaging using electron channeling.

electron energy loss spectroscopy (eels),electron energy loss spectroscopy,eels,metrology

Analyze composition and bonding in TEM.

electron microscopy,metrology

Use electrons for high-magnification imaging.

electron ptychography, metrology

Atomic resolution phase imaging.

electronic structure features, materials science

DFT-derived descriptors.

electroplating solder, packaging

Deposit solder electrochemically.

electrostatic chuck (esc),electrostatic chuck,esc,cvd

Uses electrostatic force to hold wafer flat.

electrostatic chuck, manufacturing operations

Electrostatic chucks use electric fields to hold wafers without mechanical clamping.

electrostatic discharge control, esd, facility

Prevent damage from static.

electrostatic force microscopy (efm),electrostatic force microscopy,efm,metrology

Detect electric fields.

electrothermal, thermal management

Electrothermal simulation couples electrical and thermal domains capturing self-heating effects on device characteristics and circuit performance.

ellipsometry,metrology

Optical technique to measure film thickness and refractive index.

elmore delay, signal & power integrity

Elmore delay approximates RC tree delay through first moment of impulse response.

elo rating for models,evaluation

Rate model quality using ELO system from pairwise comparisons.

elo rating, training techniques

Elo ratings rank model performance through win-loss records against opponents.

elu, elu, neural architecture

Smooth negative part.

em immortality, em, signal & power integrity

Electromigration immortality occurs when current density falls below threshold where void nucleation is suppressed preventing failure.

em-aware routing, signal & power integrity

Electromigration-aware routing sizes and routes wires considering current density limits for reliability.

email generation,content creation

Draft emails automatically.

email,compose,assistant

AI composes emails. Professional tone, context-aware.

embedded carbon, environmental & sustainability

Embedded carbon represents emissions from material production and manufacturing embodied in products.

embedded machine learning, edge ai

ML on embedded systems.

embedded multi-die interconnect bridge, emib, advanced packaging

Intel's chiplet bridge technology.

embedded sige source/drain,process

SiGe regions creating compressive stress.

embedded sige, process integration

Embedded silicon-germanium in source-drain regions induces compressive stress enhancing PMOS hole mobility.

embedding caching, rag

Cache computed embeddings.

embedding fine-tuning, rag

Embedding fine-tuning adapts pre-trained encoders to domain-specific retrieval.

embedding model, rag

Embedding models encode text into dense vector representations.

embedding model,e5,bge

E5 and BGE are strong open embedding models. MTEB benchmarks.

embedding store,mlops

Database optimized for storing and retrieving embeddings.

embedding-based retrieval, rag

Use vector similarity.

embedding,embeddings,vector,semantic

Embeddings map text to vectors where similar meanings are close. Use them for search, clustering, recommendation, and deduplication.

embedding,vector,representation

Embeddings convert tokens to vectors. Learned during training. Capture semantic meaning in vector space.

embeddings in diffusion, generative models

Learned concept representations.