alloy design, materials science
Optimize metallic alloy compositions.
9,967 technical terms and definitions
Optimize metallic alloy compositions.
Scattering in mixed semiconductors.
Alpaca demonstrates instruction-following through distillation from stronger models.
Alpaca is Stanford instruction-tuned Llama. Self-instruct method.
Automated evaluation using LLM-as-judge.
Internal testing.
DeepMind's competitive programming model.
DeepMind's protein structure prediction system.
AlphaFold predicts protein 3D structure from sequence. Revolutionary for biology. Nobel Prize work.
Alternating Least Squares with implicit feedback handles binary observations like clicks without explicit ratings.
Alternating Least Squares optimizes matrix factorization by alternately fixing user factors and item factors for efficient large-scale training.
Altair is declarative visualization. Vega-Lite based.
Adjacent features have opposite phase.
Alternative chemistries develop less hazardous process chemicals maintaining performance while reducing environmental impact.
# Aluminum Metal Etch Mathematical Modeling
1. Overview
1.1 Why Aluminum Etch Modeling is Complex
Aluminum etching (typically using $\text{Cl}_2/\text{BCl}_3$ plasmas) involves multiple coupled physical and chemical phenomena:
- Plasma generation and transport → determines species fluxes to wafer
- Ion-surface interactions → physical and chemical mechanisms
- Surface reactions → Langmuir-Hinshelwood kinetics
- Feature-scale evolution → profile development inside trenches/vias
- Redeposition and passivation → sidewall chemistry
1.2 Fundamental Reaction
The basic aluminum chlorination reaction:
$$
\text{Al} + 3\text{Cl} \rightarrow \text{AlCl}_3 \uparrow
$$
Complications requiring sophisticated modeling:
- Breaking through native $\text{Al}_2\text{O}_3$ layer (15-30 Å)
- Maintaining profile anisotropy
- Controlling selectivity to mask and underlayers
- Managing Cu residues in Al-Cu alloys
2. Kinetic and Chemical Rate Modeling
2.1 General Etch Rate Formulation
A comprehensive etch rate model combines three primary mechanisms:
$$
ER = \underbrace{k_{th} \cdot \Gamma_{Cl} \cdot f(\theta)}_{\text{thermal chemical}} + \underbrace{Y_s \cdot \Gamma_{ion} \cdot \sqrt{E_{ion}}}_{\text{physical sputtering}} + \underbrace{\beta \cdot \Gamma_{ion}^a \cdot \Gamma_{Cl}^b \cdot E_{ion}^c}_{\text{ion-enhanced (synergistic)}}
$$
Parameter Definitions:
| Symbol | Description | Units |
|--------|-------------|-------|
| $\Gamma_{Cl}$ | Neutral chlorine flux | $\text{cm}^{-2}\text{s}^{-1}$ |
| $\Gamma_{ion}$ | Ion flux | $\text{cm}^{-2}\text{s}^{-1}$ |
| $E_{ion}$ | Ion energy | eV |
| $\theta$ | Surface coverage of reactive species | dimensionless |
| $Y_s$ | Physical sputtering yield | atoms/ion |
| $\beta$ | Synergy coefficient | varies |
| $a, b, c$ | Exponents (typically 0.5-1) | dimensionless |
2.2 Surface Coverage Dynamics
The reactive site balance follows Langmuir-Hinshelwood kinetics:
$$
\frac{d\theta}{dt} = k_{ads} \cdot \Gamma_{Cl} \cdot (1-\theta) - k_{des} \cdot \theta \cdot \exp\left(-\frac{E_d}{k_B T}\right) - Y_{react}(\theta, E_{ion}) \cdot \Gamma_{ion} \cdot \theta
$$
Term-by-term breakdown:
- Term 1: $k_{ads} \cdot \Gamma_{Cl} \cdot (1-\theta)$ — Adsorption rate (proportional to empty sites)
- Term 2: $k_{des} \cdot \theta \cdot \exp(-E_d/k_B T)$ — Thermal desorption (Arrhenius)
- Term 3: $Y_{react} \cdot \Gamma_{ion} \cdot \theta$ — Ion-induced reaction/removal
Steady-State Solution ($d\theta/dt = 0$):
$$
\theta_{ss} = \frac{k_{ads} \cdot \Gamma_{Cl}}{k_{ads} \cdot \Gamma_{Cl} + k_{des} \cdot e^{-E_d/k_B T} + Y_{react} \cdot \Gamma_{ion}}
$$
2.3 Temperature Dependence
All rate constants follow Arrhenius behavior:
$$
k_i(T) = A_i \cdot \exp\left(-\frac{E_{a,i}}{k_B T}\right)
$$
Typical activation energies for aluminum etching:
- Ion-enhanced reactions: $E_a \approx 0.1 - 0.3 \text{ eV}$
- Purely thermal processes: $E_a \approx 0.5 - 1.0 \text{ eV}$
- Chlorine desorption: $E_d \approx 0.3 - 0.5 \text{ eV}$
2.4 Complete Etch Rate Expression
Combining all terms with explicit dependencies:
$$
ER(T, \Gamma_{ion}, \Gamma_{Cl}, E_{ion}) = A_1 e^{-E_1/k_B T} \Gamma_{Cl} \theta + Y_0 \Gamma_{ion} \sqrt{E_{ion}} + A_2 e^{-E_2/k_B T} \Gamma_{ion}^{0.5} \Gamma_{Cl}^{0.5} E_{ion}^{0.5}
$$
3. Ion-Surface Interaction Physics
3.1 Ion Energy Distribution Function (IEDF)
For RF-biased electrodes, the IEDF is approximately bimodal:
$$
f(E) \propto \frac{1}{\sqrt{|E - E_{dc}|}} \quad \text{for } E_{dc} - E_{rf} < E < E_{dc} + E_{rf}
$$
Key parameters:
- $E_{dc} = e \cdot V_{dc}$ — DC self-bias energy
- $E_{rf} = e \cdot V_{rf}$ — RF amplitude energy
- Peak separation: $\Delta E = 2 E_{rf}$
Collisional effects:
In collisional sheaths, charge-exchange collisions broaden the distribution:
$$
f(E) \propto \exp\left(-\frac{E}{\bar{E}}\right) \cdot \left[1 + \text{erf}\left(\frac{E - E_{dc}}{\sigma_E}\right)\right]
$$
3.2 Ion Angular Distribution Function (IADF)
The angular spread is approximately Gaussian:
$$
f(\theta) = \frac{1}{\sqrt{2\pi}\sigma_\theta} \exp\left(-\frac{\theta^2}{2\sigma_\theta^2}\right)
$$
Angular spread calculation:
$$
\sigma_\theta \approx \sqrt{\frac{k_B T_i}{e V_{sheath}}} \approx \arctan\left(\sqrt{\frac{T_i}{V_{sheath}}}\right)
$$
Typical values:
- Ion temperature: $T_i \approx 0.05 - 0.5 \text{ eV}$
- Sheath voltage: $V_{sheath} \approx 50 - 500 \text{ V}$
- Angular spread: $\sigma_\theta \approx 2° - 5°$
3.3 Physical Sputtering Yield
Yamamura Formula (Angular Dependence)
$$
Y(\theta) = Y(0°) \cdot \cos^{-f}(\theta) \cdot \exp\left[b\left(1 - \frac{1}{\cos\theta}\right)\right]
$$
Parameters for aluminum:
- $f \approx 1.5 - 2.0$
- $b \approx 0.1 - 0.3$ (depends on ion/target mass ratio)
- Maximum yield typically at $\theta \approx 60° - 70°$
Sigmund Theory (Energy Dependence)
$$
Y(E) = \frac{0.042 \cdot Q \cdot \alpha(M_2/M_1) \cdot S_n(E)}{U_s}
$$
Where:
- $S_n(E)$ = nuclear stopping power (Thomas-Fermi)
- $U_s = 3.4 \text{ eV}$ (surface binding energy for Al)
- $Q$ = dimensionless factor ($\approx 1$ for metals)
- $\alpha$ = mass-dependent parameter
- $M_1, M_2$ = projectile and target masses
Nuclear Stopping Power
$$
S_n(\epsilon) = \frac{0.5 \ln(1 + 1.2288\epsilon)}{\epsilon + 0.1728\sqrt{\epsilon} + 0.008\epsilon^{0.1504}}
$$
With reduced energy:
$$
\epsilon = \frac{M_2 E}{(M_1 + M_2) Z_1 Z_2 e^2} \cdot \frac{a_{TF}}{1}
$$
3.4 Ion-Enhanced Etching Yield
The total etch yield combines mechanisms:
$$
Y_{total} = Y_{physical} + Y_{chemical} + Y_{synergistic}
$$
Synergistic enhancement factor:
$$
\eta = \frac{Y_{total}}{Y_{physical} + Y_{chemical}} > 1
$$
For Al/Cl₂ systems, $\eta$ can exceed 10 under optimal conditions.
4. Plasma Modeling (Reactor Scale)
4.1 Species Continuity Equations
For each species $i$ (electrons, ions, neutrals):
$$
\frac{\partial n_i}{\partial t} + \nabla \cdot \vec{\Gamma}_i = S_i - L_i
$$
Flux expressions:
- Drift-diffusion: $\vec{\Gamma}_i = -D_i \nabla n_i + \mu_i n_i \vec{E}$
- Full momentum: $\vec{\Gamma}_i = n_i \vec{v}_i$ with momentum equation
Source/sink terms:
$$
S_i = \sum_j k_{ij} n_j n_e \quad \text{(ionization, dissociation)}
$$
$$
L_i = \sum_j k_{ij}^{loss} n_i n_j \quad \text{(recombination, attachment)}
$$
4.2 Electron Energy Balance
$$
\frac{\partial}{\partial t}\left(\frac{3}{2} n_e k_B T_e\right) + \nabla \cdot \vec{Q}_e = P_{abs} - P_{loss}
$$
Heat flux:
$$
\vec{Q}_e = \frac{5}{2} k_B T_e \vec{\Gamma}_e - \kappa_e \nabla T_e
$$
Power absorption (ICP):
$$
P_{abs} = \frac{1}{2} \text{Re}(\sigma_p) |E|^2
$$
Collisional losses:
$$
P_{loss} = \sum_j n_e n_j k_j \varepsilon_j
$$
Where $\varepsilon_j$ is the energy loss per collision event $j$.
4.3 Plasma Conductivity
$$
\sigma_p = \frac{n_e e^2}{m_e(\nu_m + i\omega)}
$$
Skin depth:
$$
\delta = \sqrt{\frac{2}{\omega \mu_0 \text{Re}(\sigma_p)}}
$$
4.4 Electromagnetic Field Equations
Maxwell's equations (frequency domain):
$$
\nabla \times \vec{E} = -i\omega \vec{B}
$$
$$
\nabla \times \vec{B} = \mu_0 \sigma_p \vec{E} + i\omega \mu_0 \epsilon_0 \vec{E}
$$
Wave equation:
$$
\nabla^2 \vec{E} + \left(\frac{\omega^2}{c^2} - i\omega\mu_0\sigma_p\right)\vec{E} = 0
$$
4.5 Sheath Physics
Child-Langmuir Law (Collisionless Sheath)
$$
J_{ion} = \frac{4\epsilon_0}{9}\sqrt{\frac{2e}{M}} \cdot \frac{V_s^{3/2}}{s^2}
$$
Where:
- $J_{ion}$ = ion current density
- $V_s$ = sheath voltage
- $s$ = sheath thickness
- $M$ = ion mass
Bohm Criterion
Ions must enter sheath with velocity:
$$
v_{Bohm} = \sqrt{\frac{k_B T_e}{M}}
$$
Ion flux at sheath edge:
$$
\Gamma_{ion} = n_s \cdot v_{Bohm} = 0.61 \cdot n_0 \sqrt{\frac{k_B T_e}{M}}
$$
Sheath Thickness
$$
s \approx \lambda_D \cdot \left(\frac{2 e V_s}{k_B T_e}\right)^{3/4}
$$
Debye length:
$$
\lambda_D = \sqrt{\frac{\epsilon_0 k_B T_e}{n_e e^2}}
$$
5. Feature-Scale Profile Evolution
5.1 Level Set Method
The surface is represented implicitly by $\phi(\vec{r}, t) = 0$:
$$
\frac{\partial \phi}{\partial t} + V_n |\nabla \phi| = 0
$$
Normal velocity calculation:
$$
V_n(\vec{r}) = \int_0^{E_{max}} \int_0^{\theta_{max}} Y(E, \theta_{local}) \cdot f_{IEDF}(E) \cdot f_{IADF}(\theta) \cdot \Gamma_{ion}(\vec{r}) \, dE \, d\theta
$$
Plus contributions from:
- Neutral chemical etching
- Redeposition
- Surface diffusion
5.2 Hamilton-Jacobi Formulation
$$
\frac{\partial \phi}{\partial t} + H(\nabla \phi, \vec{r}, t) = 0
$$
Hamiltonian for etch:
$$
H = V_n \sqrt{\phi_x^2 + \phi_y^2 + \phi_z^2}
$$
With $V_n$ dependent on:
- Local surface normal: $\hat{n} = -\nabla\phi / |\nabla\phi|$
- Local fluxes: $\Gamma(\vec{r})$
- Local angles: $\theta = \arccos(\hat{n} \cdot \hat{z})$
5.3 Visibility and View Factors
Direct Flux
The flux reaching a point inside a feature depends on solid angle visibility:
$$
\Gamma_{direct}(\vec{r}) = \int_{\Omega_{visible}} \Gamma_0 \cdot \cos\theta \cdot \frac{d\Omega}{\pi}
$$
Reflected/Reemitted Flux
For neutrals with sticking coefficient $s$:
$$
\Gamma_{total}(\vec{r}) = \Gamma_{direct}(\vec{r}) + (1-s) \cdot \Gamma_{reflected}(\vec{r})
$$
This leads to coupled integral equations:
$$
\Gamma(\vec{r}) = \Gamma_{plasma}(\vec{r}) + (1-s) \int_{S'} K(\vec{r}, \vec{r'}) \Gamma(\vec{r'}) dS'
$$
Kernel function:
$$
K(\vec{r}, \vec{r'}) = \frac{\cos\theta \cos\theta'}{\pi |\vec{r} - \vec{r'}|^2} \cdot V(\vec{r}, \vec{r'})
$$
Where $V(\vec{r}, \vec{r'})$ is the visibility function (1 if visible, 0 otherwise).
5.4 Aspect Ratio Dependent Etching (ARDE)
Empirical model:
$$
\frac{ER(AR)}{ER_0} = \frac{1}{1 + (AR/AR_c)^n}
$$
Where:
- $AR = \text{depth}/\text{width}$ (aspect ratio)
- $AR_c$ = critical aspect ratio (process-dependent)
- $n \approx 1 - 2$
Knudsen transport model:
$$
\Gamma_{neutral}(z) = \Gamma_0 \cdot \frac{W}{W + \alpha \cdot z}
$$
Where:
- $z$ = feature depth
- $W$ = feature width
- $\alpha$ = Clausing factor (depends on geometry and sticking)
Clausing factor for cylinder:
$$
\alpha = \frac{8}{3} \cdot \frac{1 - s}{s}
$$
6. Aluminum-Specific Phenomena
6.1 Native Oxide Breakthrough
$\text{Al}_2\text{O}_3$ (15-30 Å native oxide) requires physical sputtering:
$$
ER_{oxide} \approx Y_{\text{BCl}_3^+}(E) \cdot \Gamma_{ion}
$$
Why BCl₃ is critical:
1. Heavy $\text{BCl}_3^+$ ions provide efficient momentum transfer
2. BCl₃ scavenges oxygen chemically:
$$
2\text{BCl}_3 + \text{Al}_2\text{O}_3 \rightarrow 2\text{AlCl}_3 \uparrow + \text{B}_2\text{O}_3
$$
Breakthrough time:
$$
t_{breakthrough} = \frac{d_{oxide}}{ER_{oxide}} = \frac{d_{oxide}}{Y_{BCl_3^+} \cdot \Gamma_{ion}}
$$
6.2 Sidewall Passivation Dynamics
Anisotropic profiles require passivation of sidewalls:
$$
\frac{d\tau_{pass}}{dt} = R_{dep}(\Gamma_{redeposition}, s_{stick}) - R_{removal}(\Gamma_{ion}, \theta_{sidewall})
$$
Deposition sources:
- $\text{AlCl}_x$ redeposition from etch products
- Photoresist erosion products (C, H, O, N)
- Intentional additives: $\text{N}_2 \rightarrow \text{AlN}$ formation
Why sidewalls are protected:
At grazing incidence ($\theta \approx 85° - 90°$):
- Ion flux geometric factor: $\Gamma_{sidewall} = \Gamma_0 \cdot \cos(90° - \alpha) \approx \Gamma_0 \cdot \sin\alpha$
- For $\alpha = 5°$: $\Gamma_{sidewall} \approx 0.09 \cdot \Gamma_0$
- Sputtering yield at grazing incidence approaches zero
- Net passivation accumulates → blocks lateral etching
6.3 Notching and Charging Effects
At dielectric interfaces, differential charging causes ion deflection:
Surface charge evolution:
$$
\frac{d\sigma}{dt} = J_{ion} - J_{electron}
$$
Where:
- $\sigma$ = surface charge density (C/cm²)
- $J_{ion}$ = ion current (always positive)
- $J_{electron}$ = electron current (depends on local potential)
Local electric field:
$$
\vec{E}_{charging} = -\nabla V_{charging}
$$
Laplace equation in feature:
$$
\nabla^2 V = -\frac{\rho}{\epsilon_0} \quad \text{(with } \rho = 0 \text{ in vacuum)}
$$
Modified ion trajectory:
$$
m \frac{d^2\vec{r}}{dt^2} = e\left(\vec{E}_{sheath} + \vec{E}_{charging}\right)
$$
Result: Ions deflect toward charged surfaces → notching at feature bottom.
Mitigation strategies:
- Pulsed plasmas (allow electron neutralization)
- Low-frequency bias (time for charge equilibration)
- Conductive underlayers
6.4 Copper Residue Formation (Al-Cu Alloys)
Al-Cu alloys (0.5-4% Cu) leave Cu residues because Cu chlorides are less volatile:
Volatility comparison:
| Species | Sublimation/Boiling Point |
|---------|---------------------------|
| $\text{AlCl}_3$ | 180°C (sublimes) |
| $\text{CuCl}$ | 430°C (sublimes) |
| $\text{CuCl}_2$ | 300°C (decomposes) |
Residue accumulation rate:
$$
\frac{d[\text{Cu}]_{surface}}{dt} = x_{Cu} \cdot ER_{Al} - ER_{Cu}
$$
Where:
- $x_{Cu}$ = Cu atomic fraction in alloy
- At low temperature: $ER_{Cu} \ll x_{Cu} \cdot ER_{Al}$
Solutions:
- Elevated substrate temperature ($>$150°C)
- Increased BCl₃ fraction
- Post-etch treatments
7. Numerical Methods
7.1 Level Set Discretization
Upwind Finite Differences
Using Hamilton-Jacobi ENO (Essentially Non-Oscillatory) schemes:
$$
\phi_i^{n+1} = \phi_i^n - \Delta t \cdot H(\phi_x^-, \phi_x^+, \phi_y^-, \phi_y^+)
$$
One-sided derivatives:
$$
\phi_x^- = \frac{\phi_i - \phi_{i-1}}{\Delta x}, \quad \phi_x^+ = \frac{\phi_{i+1} - \phi_i}{\Delta x}
$$
Godunov flux for $H = V_n |\nabla\phi|$:
$$
H^{Godunov} =
\begin{cases}
V_n \sqrt{\max(\phi_x^{-,+},0)^2 + \max(\phi_y^{-,+},0)^2} & \text{if } V_n > 0 \\
V_n \sqrt{\max(\phi_x^{+,-},0)^2 + \max(\phi_y^{+,-},0)^2} & \text{if } V_n < 0
\end{cases}
$$
Reinitialization
Maintain $|\nabla\phi| = 1$ using:
$$
\frac{\partial \phi}{\partial \tau} = \text{sign}(\phi_0)(1 - |\nabla\phi|)
$$
Iterate in pseudo-time $\tau$ until convergence.
7.2 Monte Carlo Feature-Scale Simulation
Algorithm:
1. INITIALIZE surface mesh
2. FOR each time step:
a. FOR i = 1 to N_particles:
- Sample particle from IEDF, IADF
- Launch from plasma boundary
- TRACE trajectory until surface hit
- APPLY reaction probability:
* Etch (remove cell) with probability P_etch
* Reflect with probability P_reflect
* Deposit with probability P_deposit
b. UPDATE surface mesh
c. CHECK for convergence
3. OUTPUT final profile
Variance reduction techniques:
- Importance sampling: Weight particles toward features of interest
- Particle splitting: Increase statistics in critical regions
- Russian roulette: Terminate low-weight particles probabilistically
7.3 Coupled Multi-Scale Modeling
| Scale | Domain | Method | Outputs |
|-------|--------|--------|---------|
| Reactor | m | Fluid/hybrid plasma | $n_e$, $T_e$, species densities |
| Sheath | mm | PIC or fluid | IEDF, IADF, fluxes |
| Feature | nm-μm | Level set / Monte Carlo | Profile evolution |
| Atomistic | Å | MD / DFT | Yields, sticking coefficients |
Coupling strategy:
$$
\text{Reactor} \xrightarrow{\Gamma_i, f(E), f(\theta)} \text{Feature} \xrightarrow{ER(\vec{r})} \text{Reactor}
$$
7.4 Plasma Solver Discretization
Finite element for Poisson's equation:
$$
\nabla \cdot (\epsilon \nabla V) = -\rho
$$
Weak form:
$$
\int_\Omega \epsilon \nabla V \cdot \nabla w \, d\Omega = \int_\Omega \rho \, w \, d\Omega
$$
Finite volume for transport:
$$
\frac{d(n_i V_j)}{dt} = -\sum_{faces} \Gamma_i \cdot \hat{n} \cdot A + S_i V_j
$$
8. Process Window and Optimization
8.1 Response Surface Modeling
Quadratic response surface:
$$
ER = \beta_0 + \sum_{i=1}^{k} \beta_i x_i + \sum_{i=1}^{k} \beta_{ii} x_i^2 + \sum_{i
Use aluminum wire.
Power domain that stays on.
Amazon Q is AWS AI assistant. Coding, AWS expertise.
AI seamlessly integrated into environment.
Coupled electron-hole diffusion.
Airborne Molecular Contamination monitors detect trace organic and acid vapors.
Integrated material transport.
AmoebaNet uses regularized evolution for neural architecture search demonstrating that simple aging-based regularization improves discovered architectures.
Heavy implant turns crystalline silicon amorphous.
Disordered silicon deposited at lower temperatures.
AMSAA model provides statistical framework for reliability growth analysis.
Army reliability growth model.
Analogical prompting uses related examples from different domains to guide reasoning.
Guide model to use analogies for problem-solving.
Apply solutions from similar problems.
Analytical critical area computation uses geometric algorithms to precisely calculate defect-sensitive regions.
Track AI feature usage: queries, latency, success rate, user satisfaction. Data-driven improvement.
Different magnifications in X and Y directions.
Resolve forward and backward references.
Resolve pronouns to their antecedents.
Approximate Nearest Neighbor Negative Contrastive Estimation improves dense retrieval training.
Stochastic diffusion sampling.
Stochastic sampling following original process.
High-precision rules explaining predictions.
Andon systems provide visual signals indicating production status and requesting assistance.
Vary angle of incidence for CD measurement.
Depth profiling with XPS.
Angular prototypical loss improves speaker embedding discriminability through angular distance optimization.
Neural network potential for organic molecules.
Generate anime-style artwork.
Conducts in Z-direction only.
Vertical etch with minimal lateral etching creates straight sidewalls.
Orientation-dependent etch.
Fast algorithms for finding similar vectors without exhaustive search.
Use schedule of noise levels.