← Back to AI Factory Chat

AI Factory Glossary

9,967 technical terms and definitions

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Showing page 77 of 200 (9,967 entries)

hbm3, hbm3, advanced packaging

Third generation with higher bandwidth.

hdp cvd, hdp, process integration

High-Density Plasma CVD combines deposition with ion bombardment achieving gap fill of high-aspect-ratio structures with good uniformity.

hdpcvd (high-density plasma cvd),hdpcvd,high-density plasma cvd,cvd

High-density plasma for excellent gap fill.

he initialization, optimization

Xavier for ReLU activations.

head-in-pillow, quality

Ball and pad don't fuse.

headline generation,content creation

Create catchy headlines.

health check,liveness,readiness

Health endpoints report if service is alive and ready. Kubernetes uses these for restarts and traffic routing.

health monitoring, reliability

Track device condition.

heat exchanger, manufacturing equipment

Heat exchangers transfer thermal energy between fluids for temperature control.

heat exchanger,facility

Device transferring heat between fluids for temperature control.

heat pipe, thermal management

Heat pipes transport heat through evaporation and condensation cycles in sealed tubes enabling efficient thermal management over distances.

heat recovery, environmental & sustainability

Heat recovery systems capture waste heat from process tools and HVAC for space heating or power generation improving energy efficiency.

heat sink, thermal management

Heat sinks increase surface area through fins or pins enhancing convective heat transfer from packages to ambient air.

heat spreader, thermal

Component distributing heat.

heat spreader, thermal management

Heat spreaders are thermally conductive plates attached to die distributing heat over larger areas for more effective thermal management.

heat wheel, environmental & sustainability

Heat wheels transfer thermal energy between exhaust and supply air streams through rotating matrix.

heat-spreader-to-heat-sink tim, thermal

TIM2 layer.

heater element, manufacturing equipment

Heater elements provide thermal energy for temperature control.

heavy metal contamination, contamination

Transition metals causing deep levels.

heel crack, failure analysis

Crack at bond heel.

height gauge,metrology

Measure vertical dimensions.

heijunka, manufacturing operations

Heijunka levels production volume and variety smoothing demand on upstream processes.

helicone,observability,logging

Helicone logs and analyzes LLM requests. Cost tracking, latency monitoring.

helium leak detection, manufacturing operations

Helium leak detection uses tracer gas to locate vacuum leaks.

hellaswag, evaluation

Commonsense natural language inference.

hellaswag, evaluation

HellaSwag evaluates commonsense reasoning through sentence completion.

hellaswag,evaluation

Common sense reasoning benchmark.

hello,hi,hey

Hello! How can I help you today?

helm, helm, evaluation

Comprehensive model evaluation.

helm,kubernetes manifest,deploy

Helm charts package Kubernetes manifests. Template values for different environments. Simplify k8s deployments.

help,assist,support

I can help with AI chips, LLMs, training, inference, and related topics. Just ask!

hepa filter (high-efficiency particulate air),hepa filter,high-efficiency particulate air,facility

Filter that removes 99.97% of particles 0.3 microns and larger.

hermetic sealing, packaging

Create airtight seal.

heterogeneous graph neural networks,graph neural networks

GNNs for graphs with different node/edge types.

heterogeneous graph, graph neural networks

Heterogeneous graphs contain multiple node types and edge types requiring specialized message passing for different relation semantics.

heterogeneous info net, recommendation systems

Heterogeneous information networks integrate multiple entity types and relations for unified recommendation frameworks.

heterogeneous integration, advanced packaging

Combine different technologies in one package.

heterogeneous integration, business & strategy

Heterogeneous integration combines different technologies materials or functions in single package.

heterogeneous integration,advanced packaging

Combine dies from different technologies or materials in one package.

heterogeneous skip-gram, graph neural networks

Heterogeneous skip-gram predicts context nodes of different types given target nodes.

hetsann, graph neural networks

Heterogeneous Self-Attention Neural Network adaptively learns importance of different metapaths and neighbors.

heun method sampling, generative models

Second-order ODE solver.

heuristic quality metrics, data quality

Simple quality indicators.

hf dip,clean tech

Hydrofluoric acid to remove native oxide and etch oxide.

hgt, heterogeneous graph transformer, graph neural networks, gnn, heterogeneous graphs, transformer, attention mechanism

# Heterogeneous Graph Transformer (HGT) ## HGT Graph Neural Networks **HGT (Heterogeneous Graph Transformer)** is a graph neural network architecture designed specifically for **heterogeneous graphs** — graphs where nodes and edges can have different types. It was introduced by Hu et al. in 2020. ## 1. Problem Setting ### 1.1 Heterogeneous Graph Definition A heterogeneous graph is defined as: $$ G = (V, E, \tau, \phi) $$ Where: - $V$ — Set of nodes - $E$ — Set of edges - $\tau: V \rightarrow \mathcal{T}$ — Node type mapping function - $\phi: E \rightarrow \mathcal{R}$ — Edge type mapping function - $\mathcal{T}$ — Set of node types - $\mathcal{R}$ — Set of edge/relation types ### 1.2 Real-World Examples - **Academic Networks**: - Node types: `Paper`, `Author`, `Venue`, `Institution` - Edge types: `writes`, `cites`, `published_in`, `affiliated_with` - **E-commerce Graphs**: - Node types: `User`, `Product`, `Brand`, `Category` - Edge types: `purchases`, `reviews`, `belongs_to`, `manufactures` - **Knowledge Graphs**: - Node types: `Person`, `Organization`, `Location`, `Event` - Edge types: `works_at`, `located_in`, `participated_in` ## 2. HGT Architecture ### 2.1 Core Components The HGT layer consists of three main operations: 1. **Heterogeneous Mutual Attention** 2. **Heterogeneous Message Passing** 3. **Target-Specific Aggregation** ### 2.2 Type-Dependent Linear Projections For each node type $\tau \in \mathcal{T}$, HGT defines separate projection matrices: $$ Q_{\tau}^{(i)} \in \mathbb{R}^{d \times \frac{d}{h}}, \quad K_{\tau}^{(i)} \in \mathbb{R}^{d \times \frac{d}{h}}, \quad V_{\tau}^{(i)} \in \mathbb{R}^{d \times \frac{d}{h}} $$ Where: - $d$ — Hidden dimension - $h$ — Number of attention heads - $i$ — Attention head index $(i = 1, 2, \ldots, h)$ ## 3. Mathematical Formulation ### 3.1 Attention Mechanism For a source node $s$ and target node $t$ connected by edge $e$: #### Step 1: Compute Query and Key $$ \text{Query}^{(i)}(t) = Q_{\tau(t)}^{(i)} \cdot H^{(l-1)}[t] $$ $$ \text{Key}^{(i)}(s) = K_{\tau(s)}^{(i)} \cdot H^{(l-1)}[s] $$ #### Step 2: Compute Attention Score $$ \text{ATT-head}^{(i)}(s, e, t) = \left( \text{Key}^{(i)}(s) \cdot W_{\phi(e)}^{\text{ATT}} \cdot \text{Query}^{(i)}(t)^T \right) \cdot \frac{\mu_{\langle \tau(s), \phi(e), \tau(t) \rangle}}{\sqrt{d}} $$ Where: - $W_{\phi(e)}^{\text{ATT}} \in \mathbb{R}^{\frac{d}{h} \times \frac{d}{h}}$ — Edge-type-specific attention matrix - $\mu_{\langle \tau(s), \phi(e), \tau(t) \rangle}$ — Prior importance of meta-relation (learnable scalar) #### Step 3: Softmax Normalization $$ \text{Attention}(s, e, t) = \text{softmax}_{s \in \mathcal{N}(t)} \left( \text{ATT-head}^{(i)}(s, e, t) \right) $$ ### 3.2 Message Computation $$ \text{Message}^{(i)}(s, e, t) = V_{\tau(s)}^{(i)} \cdot H^{(l-1)}[s] \cdot W_{\phi(e)}^{\text{MSG}} $$ Where: - $W_{\phi(e)}^{\text{MSG}} \in \mathbb{R}^{\frac{d}{h} \times \frac{d}{h}}$ — Edge-type-specific message matrix ### 3.3 Multi-Head Aggregation $$ \tilde{H}^{(l)}[t] = \bigoplus_{i=1}^{h} \left( \sum_{s \in \mathcal{N}(t)} \text{Attention}^{(i)}(s, e, t) \cdot \text{Message}^{(i)}(s, e, t) \right) $$ Where $\bigoplus$ denotes concatenation across heads. ### 3.4 Final Output with Residual Connection $$ H^{(l)}[t] = \sigma \left( W_{\tau(t)}^{\text{OUT}} \cdot \tilde{H}^{(l)}[t] + H^{(l-1)}[t] \right) $$ Where: - $W_{\tau(t)}^{\text{OUT}} \in \mathbb{R}^{d \times d}$ — Target-type-specific output projection - $\sigma$ — Activation function (e.g., ReLU, GELU) ## 4. Relative Temporal Encoding (RTE) For temporal/dynamic graphs, HGT incorporates time information: $$ \text{RTE}(\Delta t) = \text{Linear}\left( \text{T2V}(\Delta t) \right) $$ Where $\Delta t = t_{\text{target}} - t_{\text{source}}$ is the time difference. ### Time2Vec Encoding $$ \text{T2V}(\Delta t)[i] = \begin{cases} \omega_i \cdot \Delta t + \varphi_i & \text{if } i = 0 \\ \sin(\omega_i \cdot \Delta t + \varphi_i) & \text{if } i > 0 \end{cases} $$ The temporal attention becomes: $$ \text{ATT-head}^{(i)}(s, e, t) = \left( \text{Key}^{(i)}(s) + \text{RTE}(\Delta t) \right) \cdot W_{\phi(e)}^{\text{ATT}} \cdot \text{Query}^{(i)}(t)^T $$ ## 5. Comparison | Method | Heterogeneity Handling | Metapaths Required | Parameter Efficiency | |--------|----------------------|-------------------|---------------------| | **GCN** | ❌ Homogeneous only | N/A | ✅ High | | **GAT** | ❌ Homogeneous only | N/A | ✅ High | | **R-GCN** | ✅ Yes | ❌ No | ❌ Low (separate weights per relation) | | **HAN** | ✅ Yes | ✅ Yes (manual design) | ⚠️ Medium | | **HGT** | ✅ Yes | ❌ No (automatic) | ✅ High (decomposition) | ## 6. Implementation ### 6.1 PyTorch Geometric Implementation ```python import torch import torch.nn as nn from torch_geometric.nn import HGTConv, Linear class HGT(nn.Module): def __init__(self, metadata, hidden_channels, out_channels, num_heads, num_layers): super().__init__() self.node_types = metadata[0] self.edge_types = metadata[1] # Linear projections for each node type self.lin_dict = nn.ModuleDict() for node_type in self.node_types: self.lin_dict[node_type] = Linear(-1, hidden_channels) # HGT convolutional layers self.convs = nn.ModuleList() for _ in range(num_layers): conv = HGTConv( in_channels=hidden_channels, out_channels=hidden_channels, metadata=metadata, heads=num_heads, group='sum' ) self.convs.append(conv) # Output projection self.out_lin = Linear(hidden_channels, out_channels) def forward(self, x_dict, edge_index_dict): # Initial projection x_dict = { node_type: self.lin_dict[node_type](x).relu() for node_type, x in x_dict.items() } # HGT layers for conv in self.convs: x_dict = conv(x_dict, edge_index_dict) return x_dict ``` ### 6.2 Usage Example ```python # Define metadata metadata = ( ['paper', 'author', 'venue'], # Node types [ ('author', 'writes', 'paper'), ('paper', 'cites', 'paper'), ('paper', 'published_in', 'venue'), ] # Edge types as (src, relation, dst) ) # Initialize model model = HGT( metadata=metadata, hidden_channels=64, out_channels=16, num_heads=4, num_layers=2 ) # Forward pass out_dict = model(x_dict, edge_index_dict) ``` ## 7. Training Objective ### 7.1 Node Classification $$ \mathcal{L}_{\text{node}} = -\sum_{v \in V_{\text{labeled}}} \sum_{c=1}^{C} y_{v,c} \log(\hat{y}_{v,c}) $$ Where: - $y_{v,c}$ — Ground truth label (one-hot) - $\hat{y}_{v,c} = \text{softmax}(H^{(L)}[v])_c$ — Predicted probability ### 7.2 Link Prediction $$ \mathcal{L}_{\text{link}} = -\sum_{(s,e,t) \in E} \log \sigma(H^{(L)}[s]^T \cdot W_{\phi(e)} \cdot H^{(L)}[t]) - \sum_{(s,e,t') \in E^{-}} \log \sigma(-H^{(L)}[s]^T \cdot W_{\phi(e)} \cdot H^{(L)}[t']) $$ Where: - $E^{-}$ — Negative edge samples - $\sigma$ — Sigmoid function ## 8. Complexity Analysis ### 8.1 Time Complexity $$ O\left( |E| \cdot d^2 / h + |V| \cdot d^2 \right) $$ Where: - $|E|$ — Number of edges - $|V|$ — Number of nodes - $d$ — Hidden dimension - $h$ — Number of heads ### 8.2 Space Complexity (Parameters) $$ O\left( |\mathcal{T}| \cdot d^2 + |\mathcal{R}| \cdot d^2 / h \right) $$ This is more efficient than R-GCN which requires $O(|\mathcal{R}| \cdot d^2)$. ## 9. Key Advantages - **No Manual Metapath Design**: Unlike HAN, HGT automatically learns the importance of different meta-relations - **Parameter Efficient**: Uses decomposition to avoid parameter explosion with many relation types - **Unified Framework**: Handles any heterogeneous graph schema - **Temporal Support**: Can incorporate relative time encoding for dynamic graphs - **Interpretable**: Attention weights reveal learned importance of different relations ## 10. Limitations - **Computational Overhead**: More complex than homogeneous GNNs - **Data Requirements**: Needs sufficient examples per node/edge type - **Memory Usage**: Multi-head attention increases memory consumption - **Hyperparameter Sensitivity**: Performance depends on number of heads, layers, hidden dimensions ## 12. Reference | Symbol | Description | |--------|-------------| | $G = (V, E, \tau, \phi)$ | Heterogeneous graph | | $\tau(v)$ | Type of node $v$ | | $\phi(e)$ | Type of edge $e$ | | $H^{(l)}[v]$ | Node $v$ representation at layer $l$ | | $\mathcal{N}(t)$ | Neighbors of target node $t$ | | $Q, K, V$ | Query, Key, Value projections | | $W^{\text{ATT}}, W^{\text{MSG}}$ | Attention and Message weight matrices | | $\mu$ | Learnable meta-relation prior |

hi,hello,hey,greet

Hello! How can I help you today?

hidden factory, production

Rework not visible in metrics.

hidden factory, quality & reliability

Hidden factory represents rework and waste consumed fixing defects reducing effective capacity.

hidden loss, manufacturing operations

Hidden losses are inefficiencies not immediately apparent requiring detailed analysis.

hierarchical all-reduce, distributed training

Multi-level aggregation.