← Back to AI Factory Chat

AI Factory Glossary

1,005 technical terms and definitions

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Showing page 20 of 21 (1,005 entries)

cudnn,hardware

NVIDIA's GPU-accelerated library for deep learning.

cull, packaging

Excess compound in pot.

cumulative failure distribution, reliability

Fraction failed vs time.

cumulative yield, production

Yield after multiple steps.

cupertino,apple,apple park

# Cupertino ## 1. Geographic Information - **Location**: Santa Clara County, California, USA - **Region**: Silicon Valley, San Francisco Bay Area - **Coordinates**: $37.3230° \text{ N}, 122.0322° \text{ W}$ - **Elevation**: Approximately $72 \text{ m}$ ($236 \text{ ft}$) above sea level - **Area**: - Total: $11.26 \text{ mi}^2$ ($29.16 \text{ km}^2$) - Land: $11.22 \text{ mi}^2$ ($29.06 \text{ km}^2$) - Water: $0.04 \text{ mi}^2$ ($0.10 \text{ km}^2$) ### Geographic Formula - Distance Calculation The distance between two points using the Haversine formula: $$ d = 2r \arcsin\left(\sqrt{\sin^2\left(\frac{\phi_2 - \phi_1}{2}\right) + \cos(\phi_1)\cos(\phi_2)\sin^2\left(\frac{\lambda_2 - \lambda_1}{2}\right)}\right) $$ Where: - $r$ = Earth's radius ($6371 \text{ km}$) - $\phi_1, \phi_2$ = latitudes in radians - $\lambda_1, \lambda_2$ = longitudes in radians ## 2. Demographics - **Population** (2020 Census): $\approx 60,170$ - **Population Density**: $\frac{60,170}{11.22} \approx 5,362 \text{ people/mi}^2$ - **Median Household Income**: $\approx 171{,}000\,\text{ USD}$ - **Median Home Price**: $\approx 2.5 \times 10^6\,\text{ USD}$ ### Ethnic Composition | Ethnicity | Percentage | |-----------|------------| | Asian | $\approx 65\%$ | | White | $\approx 25\%$ | | Hispanic/Latino | $\approx 4\%$ | | Other | $\approx 6\%$ | ### Population Growth Model Exponential growth formula: $$ P(t) = P_0 \cdot e^{rt} $$ Where: - $P(t)$ = population at time $t$ - $P_0$ = initial population - $r$ = growth rate - $t$ = time in years ## 3. Apple Inc. Headquarters ### Apple Park ("The Spaceship") - **Opened**: April 2017 - **Address**: One Apple Park Way, Cupertino, CA 95014 - **Campus Size**: $175 \text{ acres}$ ($71 \text{ ha}$) - **Main Building**: - Circumference: $\approx 1.6 \text{ km}$ ($1 \text{ mi}$) - Floor Area: $2,800,000 \text{ ft}^2$ ($260,000 \text{ m}^2$) - Stories: 4 above ground, 3 below ground - **Employee Capacity**: $\approx 12,000$ employees - **Construction Cost**: $\approx 5 \times 10^9\,\text{ USD}$ ### Ring Building Dimensions The main ring building's area can be calculated as: $$ A_{\text{ring}} = \pi(R^2 - r^2) $$ Where: - $R$ = outer radius $\approx 230 \text{ m}$ - $r$ = inner radius $\approx 170 \text{ m}$ $$ A_{\text{ring}} = \pi(230^2 - 170^2) = \pi(52900 - 28900) = 24000\pi \approx 75,398 \text{ m}^2 $$ ### Key Features - **Steve Jobs Theater**: - Seating capacity: $1,000$ - Roof diameter: $47 \text{ m}$ ($155 \text{ ft}$) - Roof weight: $\approx 80 \text{ tons}$ - **Energy Systems**: - Solar panels: $17 \text{ MW}$ capacity - Natural ventilation for $\approx 75\%$ of the year - $100\%$ renewable energy powered ## 4. Etymology & History ### Origin of Name - **Named After**: Arroyo San José de Cupertino (creek) - **Named By**: Juan Bautista de Anza (1776) - **Saint**: Joseph of Cupertino (1603–1663) - Italian Franciscan friar - Patron saint of aviators and astronauts - Known for alleged levitation during prayer ### Historical Timeline - **1776**: Named by Spanish explorers - **1848**: California Gold Rush begins - **1904**: Cupertino Wine Company established - **1955**: Incorporated as a city - **1976**: Apple Computer founded (nearby) - **1977**: Apple moves operations to Cupertino - **2017**: Apple Park opens ## 5. The Cupertino Effect ### Definition The **Cupertino Effect** refers to spellcheck-induced errors where incorrect word substitutions slip into published documents. ### Origin Early spellcheckers did not recognize: - "cooperation" (unhyphenated) - "co-operation" (hyphenated was accepted) The suggested replacement: **"Cupertino"** ### Notable Examples - NATO documents - European Union official texts - Academic papers - News articles ### Levenshtein Distance The similarity between words can be measured using Levenshtein distance: $$ \text{lev}(a, b) = \begin{cases} |a| & \text{if } |b| = 0 \\ |b| & \text{if } |a| = 0 \\ \text{lev}(\text{tail}(a), \text{tail}(b)) & \text{if } a[0] = b[0] \\ 1 + \min \begin{cases} \text{lev}(\text{tail}(a), b) \\ \text{lev}(a, \text{tail}(b)) \\ \text{lev}(\text{tail}(a), \text{tail}(b)) \end{cases} & \text{otherwise} \end{cases} $$ For "cooperation" vs "Cupertino": $$ \text{lev}(\text{"cooperation"}, \text{"Cupertino"}) = 7 $$ ## 6. Education ### Notable Schools - **Monta Vista High School** - Ranking: Top $1\%$ nationally - API Score: $\approx 956/1000$ - **Cupertino High School** - Ranking: Top $5\%$ nationally - **De Anza College** - Community college - Enrollment: $\approx 22,000$ students ### Education Statistics - High school graduation rate: $> 95\%$ - Bachelor's degree or higher: $\approx 78\%$ - Graduate/professional degree: $\approx 35\%$ ## 7. Economy ### Economic Indicators - **GDP Contribution**: Part of Silicon Valley's $275 \times 10^9\,\text{ USD}$ annual GDP - **Major Employers**: - Apple Inc. - Seagate Technology - Trend Micro - **Unemployment Rate**: $\approx 3.5\%$ (below national average) ### Cost of Living Index $$ \text{CLI} = \frac{\text{Cost in Cupertino}}{\text{National Average}} \times 100 $$ - Housing: $\approx 350$ (national avg = 100) - Overall: $\approx 225$ ### Compound Annual Growth Rate (CAGR) For economic growth calculations: $$ \text{CAGR} = \left(\frac{V_{\text{final}}}{V_{\text{initial}}}\right)^{\frac{1}{t}} - 1 $$ ## 8. Climate ### Weather Statistics | Parameter | Value | |-----------|-------| | Avg High (Summer) | $28°\text{C}$ ($82°\text{F}$) | | Avg Low (Winter) | $5°\text{C}$ ($41°\text{F}$) | | Annual Rainfall | $381 \text{ mm}$ ($15 \text{ in}$) | | Sunny Days | $\approx 260$ days/year | ### Climate Classification - **Köppen-Geiger**: $Csb$ (Mediterranean climate) - Warm, dry summers - Mild, wet winters ### Temperature Conversion $$ T_{\text{Celsius}} = \frac{5}{9}(T_{\text{Fahrenheit}} - 32) $$ $$ T_{\text{Fahrenheit}} = \frac{9}{5}T_{\text{Celsius}} + 32 $$ ## 9. Examples ### Inline Math Examples - Area of circle: $A = \pi r^2$ - Quadratic formula: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ - Euler's identity: $e^{i\pi} + 1 = 0$ - Population density: $\rho = \frac{N}{A}$ where $N$ = population, $A$ = area ### Block Math Examples Gaussian distribution (relevant for statistical analysis): $$ f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} $$ Matrix representation (for data modeling): $$ \mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} $$ Summation (for aggregate calculations): $$ \sum_{i=1}^{n} x_i = x_1 + x_2 + \cdots + x_n $$ ## 10. Statistics $$ \begin{aligned} \text{Area} &= 11.26 \text{ mi}^2 \\ \text{Population} &\approx 60{,}000 \\ \text{Density} &\approx 5{,}362 \text{ people/mi}^2 \\ \text{Median Income} &\approx 171{,}000 \text{ USD} \\ \text{Founded} &= 1955 \\ \text{Notable Company} &= \text{Apple Inc.} \end{aligned} $$

cure time, packaging

Time to harden compound.

curiosity-driven learning, reinforcement learning

Explore based on prediction error.

curiosity,learning,growth mindset

Stay curious. AI evolves rapidly. Growth mindset: always learning, adapting, improving.

current density equations, device physics

Relate current to field and gradients.

current density imaging, failure analysis advanced

Current density imaging maps current distribution using magnetic field or thermal measurements.

current density limit, signal & power integrity

Current density limits specify maximum safe current per unit width to prevent electromigration failures.

curriculum in pre-training, training

Order training data by difficulty.

curriculum learning for vision, computer vision

Easy samples first harder later.

curriculum learning, advanced training

Curriculum learning trains models on progressively harder examples mimicking human learning to improve convergence and generalization.

curriculum learning,easy to hard

Curriculum learning trains on easy examples first, then harder. Can improve convergence and final quality.

curriculum learning,model training

Train on easier examples first then gradually increase difficulty.

curriculum masking, nlp

Start easy gradually increase difficulty.

curriculum pseudo-labeling, semi-supervised learning

Gradually use harder examples.

cursor,ide,ai

Cursor is AI-first code editor. Built-in chat, code generation.

curve tracer, failure analysis advanced

Curve tracers display current-voltage characteristics of devices revealing shorts leakage and parametric failures during board-level analysis.

curvilinear masks,lithography

Non-Manhattan mask shapes for better lithography.

custom cuda kernels, optimization

Hand-written optimized kernels.

custom diffusion, multimodal ai

Custom Diffusion efficiently fine-tunes models on concepts by updating cross-attention weights.

custom mode,persona,configure assistant

Describe how you want me to behave (tone, depth, focus) and I will treat that as your custom persona for our session.

custom model training, generative models

Train models on specific domains.

custom operator,extension,pytorch

Custom operators extend framework. Write CUDA/C++ kernels, bind to Python. For specialized operations.

custom silicon,hardware

Purpose-built chips for AI (Cerebras Graphcore Groq).

customer acceptance, production

Final approval by user.

customer returns, business

Units returned by customers.

cusum chart, cusum, spc

Detect small sustained shifts.

cusum chart,spc

Cumulative sum chart for detecting small shifts.

cusum, cusum, time series models

Cumulative Sum control charts detect shifts in mean by accumulating deviations from target value.

cutmix for vit, computer vision

Mix patches from different images.

cutmix, data augmentation

Replace regions with patches from other images.

cutmix,combine,augment

CutMix combines cutout with mixup. Better augmentation.

cutout, data augmentation

Randomly mask rectangular regions.

cutout,mask,regularize

Cutout masks random patches in images. Regularization technique.

cutting-plane training, structured prediction

Cutting-plane training for structured SVMs iteratively adds violated constraints to optimize over exponentially large output spaces.

cvat,video,annotation

CVAT is Intel open source video annotation. Object tracking.

cvd chamber,cvd

Enclosed reactor where chemical vapor deposition occurs.

cvd equipment modeling, cvd equipment, cvd reactor, lpcvd, pecvd, mocvd, cvd chamber modeling, cvd process modeling, chemical vapor deposition equipment, cvd reactor design

# Mathematical Modeling of CVD Equipment in Semiconductor Manufacturing ## 1. Overview of CVD in Semiconductor Fabrication Chemical Vapor Deposition (CVD) is a fundamental process in semiconductor manufacturing that deposits thin films onto wafer substrates through gas-phase and surface chemical reactions. ### 1.1 Types of Deposited Films - **Dielectrics**: $\text{SiO}_2$, $\text{Si}_3\text{N}_4$, low-$\kappa$ materials - **Conductors**: W (tungsten), TiN, Cu seed layers - **Barrier Layers**: TaN, TiN diffusion barriers - **Semiconductors**: Epitaxial Si, polysilicon, SiGe ### 1.2 CVD Process Variants | Process Type | Abbreviation | Operating Conditions | Key Characteristics | |:-------------|:-------------|:---------------------|:--------------------| | Low Pressure CVD | LPCVD | 0.1–10 Torr | Excellent uniformity, batch processing | | Plasma Enhanced CVD | PECVD | 0.1–10 Torr with plasma | Lower temperature deposition | | Atmospheric Pressure CVD | APCVD | ~760 Torr | High deposition rates | | Metal-Organic CVD | MOCVD | Variable | Organometallic precursors | | Atomic Layer Deposition | ALD | 0.1–10 Torr | Self-limiting, atomic-scale control | ## 2. Governing Equations: Transport Phenomena CVD modeling requires solving coupled partial differential equations for mass, momentum, and energy transport. ### 2.1 Mass Transport (Species Conservation) The species conservation equation describes the transport and reaction of chemical species: $$ \frac{\partial C_i}{\partial t} + \nabla \cdot (C_i \mathbf{v}) = \nabla \cdot (D_i \nabla C_i) + R_i $$ **Where:** - $C_i$ — Molar concentration of species $i$ $[\text{mol/m}^3]$ - $\mathbf{v}$ — Velocity vector field $[\text{m/s}]$ - $D_i$ — Diffusion coefficient of species $i$ $[\text{m}^2/\text{s}]$ - $R_i$ — Net volumetric production rate $[\text{mol/m}^3 \cdot \text{s}]$ #### Stefan-Maxwell Equations for Multicomponent Diffusion For multicomponent gas mixtures, the Stefan-Maxwell equations apply: $$ \nabla x_i = \sum_{j \neq i} \frac{x_i x_j}{D_{ij}} (\mathbf{v}_j - \mathbf{v}_i) $$ **Where:** - $x_i$ — Mole fraction of species $i$ - $D_{ij}$ — Binary diffusion coefficient $[\text{m}^2/\text{s}]$ #### Chapman-Enskog Diffusion Coefficient Binary diffusion coefficients can be estimated using Chapman-Enskog theory: $$ D_{ij} = \frac{3}{16} \sqrt{\frac{2\pi k_B^3 T^3}{m_{ij}}} \cdot \frac{1}{P \pi \sigma_{ij}^2 \Omega_D} $$ **Where:** - $m_{ij} = \frac{m_i m_j}{m_i + m_j}$ — Reduced mass - $\sigma_{ij}$ — Collision diameter $[\text{m}]$ - $\Omega_D$ — Collision integral (dimensionless) ### 2.2 Momentum Transport (Navier-Stokes Equations) The Navier-Stokes equations govern fluid flow in the reactor: $$ \rho \left( \frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = -\nabla p + \nabla \cdot \boldsymbol{\tau} + \rho \mathbf{g} $$ **Where:** - $\rho$ — Gas density $[\text{kg/m}^3]$ - $p$ — Pressure $[\text{Pa}]$ - $\boldsymbol{\tau}$ — Viscous stress tensor $[\text{Pa}]$ - $\mathbf{g}$ — Gravitational acceleration $[\text{m/s}^2]$ #### Newtonian Stress Tensor For Newtonian fluids: $$ \boldsymbol{\tau} = \mu \left( \nabla \mathbf{v} + (\nabla \mathbf{v})^T \right) - \frac{2}{3} \mu (\nabla \cdot \mathbf{v}) \mathbf{I} $$ #### Slip Boundary Conditions At low pressures where Knudsen number $Kn > 0.01$, slip boundary conditions are required: $$ v_{slip} = \frac{2 - \sigma_v}{\sigma_v} \lambda \left( \frac{\partial v}{\partial n} \right)_{wall} $$ **Where:** - $\sigma_v$ — Tangential momentum accommodation coefficient - $\lambda$ — Mean free path $[\text{m}]$ - $n$ — Wall-normal direction #### Mean Free Path $$ \lambda = \frac{k_B T}{\sqrt{2} \pi d^2 P} $$ ### 2.3 Energy Transport The energy equation accounts for convection, conduction, and heat generation: $$ \rho c_p \left( \frac{\partial T}{\partial t} + \mathbf{v} \cdot \nabla T \right) = \nabla \cdot (k \nabla T) + Q_{rxn} + Q_{rad} $$ **Where:** - $c_p$ — Specific heat capacity $[\text{J/kg} \cdot \text{K}]$ - $k$ — Thermal conductivity $[\text{W/m} \cdot \text{K}]$ - $Q_{rxn}$ — Heat from chemical reactions $[\text{W/m}^3]$ - $Q_{rad}$ — Radiative heat transfer $[\text{W/m}^3]$ #### Radiative Heat Transfer (Rosseland Approximation) For optically thick media: $$ Q_{rad} = \nabla \cdot \left( \frac{4\sigma_{SB}}{3\kappa_R} \nabla T^4 \right) $$ **Where:** - $\sigma_{SB} = 5.67 \times 10^{-8}$ W/m²·K⁴ — Stefan-Boltzmann constant - $\kappa_R$ — Rosseland mean absorption coefficient $[\text{m}^{-1}]$ ## 3. Chemical Kinetics ### 3.1 Gas-Phase Reactions Gas-phase reactions decompose precursor molecules and generate reactive intermediates. #### Example: Silane Decomposition for Silicon Deposition **Primary decomposition:** $$ \text{SiH}_4 \xrightarrow{k_1} \text{SiH}_2 + \text{H}_2 $$ **Secondary reactions:** $$ \text{SiH}_2 + \text{SiH}_4 \xrightarrow{k_2} \text{Si}_2\text{H}_6 $$ $$ \text{SiH}_2 + \text{SiH}_2 \xrightarrow{k_3} \text{Si}_2\text{H}_4 $$ #### Arrhenius Rate Expression Rate constants follow the modified Arrhenius form: $$ k(T) = A \cdot T^n \exp\left( -\frac{E_a}{RT} \right) $$ **Where:** - $A$ — Pre-exponential factor $[\text{varies}]$ - $n$ — Temperature exponent (dimensionless) - $E_a$ — Activation energy $[\text{J/mol}]$ - $R = 8.314$ J/(mol·K) — Universal gas constant #### Species Source Term The net production rate for species $i$: $$ R_i = \sum_{r=1}^{N_r} \nu_{i,r} \cdot k_r \prod_{j=1}^{N_s} C_j^{\alpha_{j,r}} $$ **Where:** - $\nu_{i,r}$ — Stoichiometric coefficient of species $i$ in reaction $r$ - $\alpha_{j,r}$ — Reaction order of species $j$ in reaction $r$ - $N_r$ — Total number of reactions - $N_s$ — Total number of species ### 3.2 Surface Reaction Kinetics Surface reactions determine the actual film deposition. #### Langmuir-Hinshelwood Mechanism For bimolecular surface reactions: $$ R_s = \frac{k_s K_A K_B C_A C_B}{(1 + K_A C_A + K_B C_B)^2} $$ **Where:** - $k_s$ — Surface reaction rate constant $[\text{m}^2/\text{mol} \cdot \text{s}]$ - $K_A, K_B$ — Adsorption equilibrium constants $[\text{m}^3/\text{mol}]$ - $C_A, C_B$ — Gas-phase concentrations at surface $[\text{mol/m}^3]$ #### Eley-Rideal Mechanism For reactions between adsorbed and gas-phase species: $$ R_s = k_s \theta_A C_B $$ #### Sticking Coefficient Model (Kinetic Theory) The adsorption flux based on kinetic theory: $$ J_{ads} = \frac{s \cdot p}{\sqrt{2\pi m k_B T}} $$ **Where:** - $s$ — Sticking probability (dimensionless, $0 < s \leq 1$) - $p$ — Partial pressure of adsorbing species $[\text{Pa}]$ - $m$ — Molecular mass $[\text{kg}]$ - $k_B = 1.38 \times 10^{-23}$ J/K — Boltzmann constant #### Surface Site Balance Dynamic surface coverage evolution: $$ \frac{d\theta_i}{dt} = k_{ads,i} C_i (1 - \theta_{total}) - k_{des,i} \theta_i - k_{rxn} \theta_i \theta_j $$ **Where:** - $\theta_i$ — Surface coverage fraction of species $i$ - $\theta_{total} = \sum_i \theta_i$ — Total surface coverage - $k_{ads,i}$ — Adsorption rate constant - $k_{des,i}$ — Desorption rate constant - $k_{rxn}$ — Surface reaction rate constant ## 4. Film Growth and Deposition Rate ### 4.1 Local Deposition Rate The film thickness growth rate: $$ \frac{dh}{dt} = \frac{M_w}{\rho_{film}} \cdot R_s $$ **Where:** - $h$ — Film thickness $[\text{m}]$ - $M_w$ — Molecular weight of deposited material $[\text{kg/mol}]$ - $\rho_{film}$ — Film density $[\text{kg/m}^3]$ - $R_s$ — Surface reaction rate $[\text{mol/m}^2 \cdot \text{s}]$ ### 4.2 Boundary Layer Analysis #### Rotating Disk Reactor (Classical Solution) Boundary layer thickness: $$ \delta = \sqrt{\frac{\nu}{\Omega}} $$ **Where:** - $\nu$ — Kinematic viscosity $[\text{m}^2/\text{s}]$ - $\Omega$ — Angular rotation speed $[\text{rad/s}]$ #### Sherwood Number Correlation For mass transfer in laminar flow: $$ Sh = 0.62 \cdot Re^{1/2} \cdot Sc^{1/3} $$ **Where:** - $Sh = \frac{k_m L}{D}$ — Sherwood number - $Re = \frac{\rho v L}{\mu}$ — Reynolds number - $Sc = \frac{\mu}{\rho D}$ — Schmidt number #### Mass Transfer Coefficient $$ k_m = \frac{Sh \cdot D}{L} $$ ### 4.3 Deposition Rate Regimes The overall deposition process can be limited by different mechanisms: **Regime 1: Surface Reaction Limited** ($Da \ll 1$) $$ R_{dep} \approx k_s C_{bulk} $$ **Regime 2: Mass Transfer Limited** ($Da \gg 1$) $$ R_{dep} \approx k_m C_{bulk} $$ **General Case:** $$ \frac{1}{R_{dep}} = \frac{1}{k_s C_{bulk}} + \frac{1}{k_m C_{bulk}} $$ ## 5. Step Coverage and Feature-Scale Modeling ### 5.1 Thiele Modulus Analysis The Thiele modulus determines whether deposition is reaction or diffusion limited within features: $$ \phi = L \sqrt{\frac{k_s}{D_{Kn}}} $$ **Where:** - $L$ — Feature depth $[\text{m}]$ - $k_s$ — Surface reaction rate constant $[\text{m/s}]$ - $D_{Kn}$ — Knudsen diffusion coefficient $[\text{m}^2/\text{s}]$ **Interpretation:** | Thiele Modulus | Regime | Step Coverage | |:---------------|:-------|:--------------| | $\phi \ll 1$ | Reaction-limited | Excellent (conformal) | | $\phi \approx 1$ | Transition | Moderate | | $\phi \gg 1$ | Diffusion-limited | Poor (non-conformal) | #### Knudsen Diffusion in Features For high aspect ratio features where $Kn > 1$: $$ D_{Kn} = \frac{d}{3} \sqrt{\frac{8RT}{\pi M}} $$ **Where:** - $d$ — Feature diameter/width $[\text{m}]$ - $M$ — Molecular weight $[\text{kg/mol}]$ ### 5.2 Level-Set Method for Surface Evolution The level-set equation tracks the evolving surface: $$ \frac{\partial \phi}{\partial t} + V_n |\nabla \phi| = 0 $$ **Where:** - $\phi(\mathbf{x}, t)$ — Level-set function (surface at $\phi = 0$) - $V_n$ — Local normal velocity $[\text{m/s}]$ #### Reinitialization Equation To maintain $|\nabla \phi| = 1$: $$ \frac{\partial \phi}{\partial \tau} = \text{sign}(\phi_0)(1 - |\nabla \phi|) $$ ### 5.3 Ballistic Transport (Monte Carlo) For molecular flow in high-aspect-ratio features, the flux at a surface point: $$ \Gamma(\mathbf{r}) = \frac{1}{\pi} \int_{\Omega_{visible}} \Gamma_0 \cos\theta \, d\Omega $$ **Where:** - $\Gamma_0$ — Incident flux at feature opening $[\text{mol/m}^2 \cdot \text{s}]$ - $\theta$ — Angle from surface normal - $\Omega_{visible}$ — Visible solid angle from point $\mathbf{r}$ #### View Factor Calculation The view factor from surface element $i$ to $j$: $$ F_{i \rightarrow j} = \frac{1}{\pi A_i} \int_{A_i} \int_{A_j} \frac{\cos\theta_i \cos\theta_j}{r^2} \, dA_j \, dA_i $$ ## 6. Reactor-Scale Modeling ### 6.1 Showerhead Gas Distribution #### Pressure Drop Through Holes $$ \Delta P = \frac{1}{2} \rho v^2 \left( \frac{1}{C_d^2} \right) $$ **Where:** - $C_d$ — Discharge coefficient (typically 0.6–0.8) - $v$ — Gas velocity through hole $[\text{m/s}]$ #### Flow Rate Through Individual Holes $$ Q_i = C_d A_i \sqrt{\frac{2\Delta P}{\rho}} $$ #### Uniformity Index $$ UI = 1 - \frac{\sigma_Q}{\bar{Q}} $$ ### 6.2 Wafer Temperature Uniformity Combined convection-radiation heat transfer to wafer: $$ q = h_{conv}(T_{susceptor} - T_{wafer}) + \epsilon \sigma_{SB} (T_{susceptor}^4 - T_{wafer}^4) $$ **Where:** - $h_{conv}$ — Convective heat transfer coefficient $[\text{W/m}^2 \cdot \text{K}]$ - $\epsilon$ — Emissivity (dimensionless) #### Edge Effect Modeling Radiative view factor at wafer edge: $$ F_{edge} = \frac{1}{2}\left(1 - \frac{1}{\sqrt{1 + (R/H)^2}}\right) $$ ### 6.3 Precursor Depletion Along the flow direction: $$ \frac{dC}{dx} = -\frac{k_s W}{Q} C $$ **Solution:** $$ C(x) = C_0 \exp\left(-\frac{k_s W x}{Q}\right) $$ **Where:** - $W$ — Wafer width $[\text{m}]$ - $Q$ — Volumetric flow rate $[\text{m}^3/\text{s}]$ ## 7. PECVD: Plasma Modeling ### 7.1 Electron Kinetics #### Boltzmann Equation The electron energy distribution function (EEDF): $$ \frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla_r f + \frac{e\mathbf{E}}{m_e} \cdot \nabla_v f = \left( \frac{\partial f}{\partial t} \right)_{coll} $$ **Where:** - $f(\mathbf{r}, \mathbf{v}, t)$ — Electron distribution function - $\mathbf{E}$ — Electric field $[\text{V/m}]$ - $m_e = 9.109 \times 10^{-31}$ kg — Electron mass #### Two-Term Spherical Harmonic Expansion $$ f(\varepsilon, \mathbf{r}, t) = f_0(\varepsilon) + f_1(\varepsilon) \cos\theta $$ ### 7.2 Plasma Chemistry #### Electron Impact Dissociation $$ e + \text{SiH}_4 \xrightarrow{k_e} \text{SiH}_3 + \text{H} + e $$ #### Electron Impact Ionization $$ e + \text{SiH}_4 \xrightarrow{k_i} \text{SiH}_3^+ + \text{H} + 2e $$ #### Rate Coefficient Calculation $$ k_e = \int_0^\infty \sigma(\varepsilon) \sqrt{\frac{2\varepsilon}{m_e}} f(\varepsilon) \, d\varepsilon $$ **Where:** - $\sigma(\varepsilon)$ — Energy-dependent cross-section $[\text{m}^2]$ - $\varepsilon$ — Electron energy $[\text{eV}]$ ### 7.3 Sheath Physics #### Floating Potential $$ V_f = -\frac{T_e}{2e} \ln\left( \frac{m_i}{2\pi m_e} \right) $$ #### Bohm Velocity $$ v_B = \sqrt{\frac{k_B T_e}{m_i}} $$ #### Ion Flux to Surface $$ \Gamma_i = n_s v_B = n_s \sqrt{\frac{k_B T_e}{m_i}} $$ #### Child-Langmuir Law (Collisionless Sheath) Ion current density: $$ J_i = \frac{4\epsilon_0}{9} \sqrt{\frac{2e}{m_i}} \frac{V_s^{3/2}}{d_s^2} $$ **Where:** - $V_s$ — Sheath voltage $[\text{V}]$ - $d_s$ — Sheath thickness $[\text{m}]$ ### 7.4 Power Deposition Ohmic heating in the bulk plasma: $$ P_{ohm} = \frac{J^2}{\sigma} = \frac{n_e e^2 \nu_m}{m_e} E^2 $$ **Where:** - $\sigma$ — Plasma conductivity $[\text{S/m}]$ - $\nu_m$ — Electron-neutral collision frequency $[\text{s}^{-1}]$ ## 8. Dimensionless Analysis ### 8.1 Key Dimensionless Numbers | Number | Definition | Physical Meaning | |:-------|:-----------|:-----------------| | Damköhler | $Da = \dfrac{k_s L}{D}$ | Reaction rate vs. diffusion rate | | Reynolds | $Re = \dfrac{\rho v L}{\mu}$ | Inertial forces vs. viscous forces | | Péclet | $Pe = \dfrac{vL}{D}$ | Convection vs. diffusion | | Knudsen | $Kn = \dfrac{\lambda}{L}$ | Mean free path vs. characteristic length | | Grashof | $Gr = \dfrac{g\beta \Delta T L^3}{\nu^2}$ | Buoyancy vs. viscous forces | | Prandtl | $Pr = \dfrac{\mu c_p}{k}$ | Momentum diffusivity vs. thermal diffusivity | | Schmidt | $Sc = \dfrac{\mu}{\rho D}$ | Momentum diffusivity vs. mass diffusivity | | Thiele | $\phi = L\sqrt{\dfrac{k_s}{D}}$ | Surface reaction vs. pore diffusion | ### 8.2 Temperature Sensitivity Analysis The sensitivity of deposition rate to temperature: $$ \frac{\delta R}{R} = \frac{E_a}{RT^2} \delta T $$ **Example Calculation:** For $E_a = 1.5$ eV = $144.7$ kJ/mol at $T = 973$ K (700°C): $$ \frac{\delta R}{R} = \frac{144700}{8.314 \times 973^2} \cdot 1 \text{ K} \approx 0.018 = 1.8\% $$ **Implication:** A 1°C temperature variation causes ~1.8% deposition rate change. ### 8.3 Flow Regime Classification Based on Knudsen number: | Knudsen Number | Flow Regime | Applicable Equations | |:---------------|:------------|:---------------------| | $Kn < 0.01$ | Continuum | Navier-Stokes | | $0.01 < Kn < 0.1$ | Slip flow | N-S with slip BC | | $0.1 < Kn < 10$ | Transition | DSMC or Boltzmann | | $Kn > 10$ | Free molecular | Kinetic theory | ## 9. Multiscale Modeling Framework ### 9.1 Modeling Hierarchy ``` ┌─────────────────────────────────────────────────────────────────┐ │ QUANTUM SCALE (DFT) │ │ • Reaction mechanisms and transition states │ │ • Activation energies and rate constants │ │ • Length: ~1 nm, Time: ~fs │ ├─────────────────────────────────────────────────────────────────┤ │ MOLECULAR DYNAMICS │ │ • Surface diffusion coefficients │ │ • Nucleation and island formation │ │ • Length: ~10 nm, Time: ~ns │ ├─────────────────────────────────────────────────────────────────┤ │ KINETIC MONTE CARLO │ │ • Film microstructure evolution │ │ • Surface roughness development │ │ • Length: ~100 nm, Time: ~μs–ms │ ├─────────────────────────────────────────────────────────────────┤ │ FEATURE-SCALE (Continuum) │ │ • Topography evolution in trenches/vias │ │ • Step coverage prediction │ │ • Length: ~1 μm, Time: ~s │ ├─────────────────────────────────────────────────────────────────┤ │ REACTOR-SCALE (CFD) │ │ • Gas flow and temperature fields │ │ • Species concentration distributions │ │ • Length: ~0.1 m, Time: ~min │ ├─────────────────────────────────────────────────────────────────┤ │ EQUIPMENT/FAB SCALE │ │ • Wafer-to-wafer variation │ │ • Throughput and scheduling │ │ • Length: ~1 m, Time: ~hours │ └─────────────────────────────────────────────────────────────────┘ ``` ### 9.2 Scale Bridging Approaches **Bottom-Up Parameterization:** - DFT → Rate constants for higher scales - MD → Diffusion coefficients, sticking probabilities - kMC → Effective growth rates, roughness correlations **Top-Down Validation:** - Reactor experiments → Validate CFD predictions - SEM/TEM → Validate feature-scale models - Surface analysis → Validate kinetic models ## 10. ALD-Specific Modeling ### 10.1 Self-Limiting Surface Reactions ALD relies on self-limiting half-reactions: **Half-Reaction A (e.g., TMA pulse for Al₂O₃):** $$ \theta_A(t) = \theta_{sat} \left( 1 - e^{-k_{ads} p_A t} \right) $$ **Half-Reaction B (e.g., H₂O pulse):** $$ \theta_B(t) = (1 - \theta_A) \left( 1 - e^{-k_B p_B t} \right) $$ ### 10.2 Growth Per Cycle (GPC) $$ GPC = \theta_{sat} \cdot \Gamma_{sites} \cdot \frac{M_w}{\rho N_A} $$ **Where:** - $\theta_{sat}$ — Saturation coverage (dimensionless) - $\Gamma_{sites}$ — Surface site density $[\text{sites/m}^2]$ - $N_A = 6.022 \times 10^{23}$ mol⁻¹ — Avogadro's number **Typical values for Al₂O₃ ALD:** - $GPC \approx 0.1$ nm/cycle - $\Gamma_{sites} \approx 10^{19}$ sites/m² ### 10.3 Saturation Dose The dose required for saturation: $$ D_{sat} \propto \frac{1}{s} \sqrt{\frac{m k_B T}{2\pi}} $$ **Where:** - $s$ — Reactive sticking coefficient - Lower sticking coefficient → Higher saturation dose required ### 10.4 Nucleation Delay Modeling For non-ideal ALD on different substrates: $$ h(n) = GPC \cdot (n - n_0) \quad \text{for } n > n_0 $$ **Where:** - $n$ — Cycle number - $n_0$ — Nucleation delay (cycles) ## 11. Computational Tools and Methods ### 11.1 Reactor-Scale CFD | Software | Capabilities | Applications | |:---------|:-------------|:-------------| | ANSYS Fluent | General CFD + species transport | Reactor flow modeling | | COMSOL Multiphysics | Coupled multiphysics | Heat/mass transfer | | OpenFOAM | Open-source CFD | Custom reactor models | **Typical mesh requirements:** - $10^5 - 10^7$ cells for 3D reactor - Boundary layer refinement near wafer - Adaptive meshing for reacting flows ### 11.2 Chemical Kinetics | Software | Capabilities | |:---------|:-------------| | Chemkin-Pro | Detailed gas-phase kinetics | | Cantera | Open-source kinetics | | SURFACE CHEMKIN | Surface reaction modeling | ### 11.3 Feature-Scale Simulation | Method | Advantages | Limitations | |:-------|:-----------|:------------| | Level-Set | Handles topology changes | Diffusive interface | | Volume of Fluid | Mass conserving | Interface reconstruction | | Monte Carlo | Physical accuracy | Computationally intensive | | String Method | Efficient for 2D | Limited to simple geometries | ### 11.4 Process/TCAD Integration | Software | Vendor | Applications | |:---------|:-------|:-------------| | Sentaurus Process | Synopsys | Full process simulation | | Victory Process | Silvaco | Deposition, etch, implant | | FLOOPS | Florida | Academic/research | ## 12. Machine Learning Integration ### 12.1 Physics-Informed Neural Networks (PINNs) Loss function combining data and physics: $$ \mathcal{L} = \mathcal{L}_{data} + \lambda \mathcal{L}_{physics} $$ **Where:** $$ \mathcal{L}_{physics} = \frac{1}{N_f} \sum_{i=1}^{N_f} \left| \mathcal{F}[\hat{u}(\mathbf{x}_i)] \right|^2 $$ - $\mathcal{F}$ — Differential operator (governing PDE) - $\hat{u}$ — Neural network approximation - $\lambda$ — Weighting parameter ### 12.2 Surrogate Modeling **Gaussian Process Regression:** $$ f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}')) $$ **Where:** - $m(\mathbf{x})$ — Mean function - $k(\mathbf{x}, \mathbf{x}')$ — Covariance kernel (e.g., RBF) **Applications:** - Real-time process control - Recipe optimization - Virtual metrology ### 12.3 Deep Learning Applications | Application | Method | Input → Output | |:------------|:-------|:---------------| | Uniformity prediction | CNN | Wafer map → Uniformity metrics | | Recipe optimization | RL | Process parameters → Film properties | | Defect detection | CNN | SEM images → Defect classification | | Endpoint detection | RNN/LSTM | OES time series → Process state | ## 13. Key Modeling Challenges ### 13.1 Stiff Chemistry - Reaction timescales vary by orders of magnitude ($10^{-12}$ to $10^0$ s) - Requires implicit time integration or operator splitting - Chemical mechanism reduction techniques ### 13.2 Surface Reaction Parameters - Limited experimental data for many chemistries - Temperature and surface-dependent sticking coefficients - Complex multi-step mechanisms ### 13.3 Multiscale Coupling - Feature-scale depletion affects reactor-scale concentrations - Reactor non-uniformity impacts feature-scale profiles - Requires iterative or concurrent coupling schemes ### 13.4 Plasma Complexity - Non-Maxwellian electron distributions - Transient sheath dynamics in RF plasmas - Ion energy and angular distributions ### 13.5 Advanced Device Architectures - 3D NAND with extreme aspect ratios (AR > 100:1) - Gate-All-Around (GAA) transistors - Complex multi-material stacks ## Summary CVD equipment modeling requires solving coupled nonlinear PDEs for momentum, heat, and mass transport with complex gas-phase and surface chemistry. The mathematical framework encompasses: - **Continuum mechanics**: Navier-Stokes, convection-diffusion - **Chemical kinetics**: Arrhenius, Langmuir-Hinshelwood, Eley-Rideal - **Surface science**: Sticking coefficients, site balances, nucleation - **Plasma physics**: Boltzmann equation, sheath dynamics - **Numerical methods**: FEM, FVM, Monte Carlo, level-set The ultimate goal is predictive capability for film thickness, uniformity, composition, and microstructure—enabling virtual process development and optimization for advanced semiconductor manufacturing.

cvd modeling, chemical vapor deposition, cvd process, lpcvd, pecvd, hdp-cvd, mocvd, ald, thin film deposition, cvd equipment, cvd simulation

# CVD Modeling in Semiconductor Manufacturing ## 1. Introduction Chemical Vapor Deposition (CVD) is a critical thin-film deposition technique in semiconductor manufacturing. Gaseous precursors are introduced into a reaction chamber where they undergo chemical reactions to deposit solid films on heated substrates. ### 1.1 Key Process Steps - **Transport** of reactants from bulk gas to the substrate surface - **Gas-phase chemistry** including precursor decomposition and intermediate formation - **Surface reactions** involving adsorption, surface diffusion, and reaction - **Film nucleation and growth** with specific microstructure evolution - **Byproduct desorption** and transport away from the surface ### 1.2 Common CVD Types - **APCVD** — Atmospheric Pressure CVD - **LPCVD** — Low Pressure CVD (0.1–10 Torr) - **PECVD** — Plasma Enhanced CVD - **MOCVD** — Metal-Organic CVD - **ALD** — Atomic Layer Deposition - **HDPCVD** — High Density Plasma CVD ## 2. Governing Equations ### 2.1 Continuity Equation (Mass Conservation) $$ \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0 $$ Where: - $\rho$ — gas density $\left[\text{kg/m}^3\right]$ - $\mathbf{u}$ — velocity vector $\left[\text{m/s}\right]$ - $t$ — time $\left[\text{s}\right]$ ### 2.2 Momentum Equation (Navier-Stokes) $$ \rho \left( \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) = -\nabla p + \mu \nabla^2 \mathbf{u} + \rho \mathbf{g} $$ Where: - $p$ — pressure $\left[\text{Pa}\right]$ - $\mu$ — dynamic viscosity $\left[\text{Pa} \cdot \text{s}\right]$ - $\mathbf{g}$ — gravitational acceleration $\left[\text{m/s}^2\right]$ ### 2.3 Species Conservation Equation $$ \frac{\partial (\rho Y_i)}{\partial t} + \nabla \cdot (\rho \mathbf{u} Y_i) = \nabla \cdot (\rho D_i \nabla Y_i) + R_i $$ Where: - $Y_i$ — mass fraction of species $i$ $\left[\text{dimensionless}\right]$ - $D_i$ — diffusion coefficient of species $i$ $\left[\text{m}^2/\text{s}\right]$ - $R_i$ — net production rate from reactions $\left[\text{kg/m}^3 \cdot \text{s}\right]$ ### 2.4 Energy Conservation Equation $$ \rho c_p \left( \frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T \right) = \nabla \cdot (k \nabla T) + Q $$ Where: - $c_p$ — specific heat capacity $\left[\text{J/kg} \cdot \text{K}\right]$ - $T$ — temperature $\left[\text{K}\right]$ - $k$ — thermal conductivity $\left[\text{W/m} \cdot \text{K}\right]$ - $Q$ — volumetric heat source $\left[\text{W/m}^3\right]$ ### 2.5 Key Dimensionless Numbers | Number | Definition | Physical Meaning | |--------|------------|------------------| | Reynolds | $Re = \frac{\rho u L}{\mu}$ | Inertial vs. viscous forces | | Péclet | $Pe = \frac{u L}{D}$ | Convection vs. diffusion | | Damköhler | $Da = \frac{k_s L}{D}$ | Reaction rate vs. transport rate | | Knudsen | $Kn = \frac{\lambda}{L}$ | Mean free path vs. length scale | Where: - $L$ — characteristic length $\left[\text{m}\right]$ - $\lambda$ — mean free path $\left[\text{m}\right]$ - $k_s$ — surface reaction rate constant $\left[\text{m/s}\right]$ ## 3. Chemical Kinetics ### 3.1 Arrhenius Equation The temperature dependence of reaction rate constants follows: $$ k = A \exp\left(-\frac{E_a}{R T}\right) $$ Where: - $k$ — rate constant $\left[\text{varies}\right]$ - $A$ — pre-exponential factor $\left[\text{same as } k\right]$ - $E_a$ — activation energy $\left[\text{J/mol}\right]$ - $R$ — universal gas constant $= 8.314 \, \text{J/mol} \cdot \text{K}$ ### 3.2 Gas-Phase Reactions **Example: Silane Pyrolysis** $$ \text{SiH}_4 \xrightarrow{k_1} \text{SiH}_2 + \text{H}_2 $$ $$ \text{SiH}_2 + \text{SiH}_4 \xrightarrow{k_2} \text{Si}_2\text{H}_6 $$ **General reaction rate expression:** $$ r_j = k_j \prod_{i} C_i^{\nu_{ij}} $$ Where: - $r_j$ — rate of reaction $j$ $\left[\text{mol/m}^3 \cdot \text{s}\right]$ - $C_i$ — concentration of species $i$ $\left[\text{mol/m}^3\right]$ - $\nu_{ij}$ — stoichiometric coefficient of species $i$ in reaction $j$ ### 3.3 Surface Reaction Kinetics #### 3.3.1 Hertz-Knudsen Impingement Flux $$ J = \frac{p}{\sqrt{2 \pi m k_B T}} $$ Where: - $J$ — molecular flux $\left[\text{molecules/m}^2 \cdot \text{s}\right]$ - $p$ — partial pressure $\left[\text{Pa}\right]$ - $m$ — molecular mass $\left[\text{kg}\right]$ - $k_B$ — Boltzmann constant $= 1.381 \times 10^{-23} \, \text{J/K}$ #### 3.3.2 Surface Reaction Rate $$ R_s = s \cdot J = s \cdot \frac{p}{\sqrt{2 \pi m k_B T}} $$ Where: - $s$ — sticking coefficient $\left[0 \leq s \leq 1\right]$ #### 3.3.3 Langmuir-Hinshelwood Kinetics For surface reaction between two adsorbed species: $$ r = \frac{k \, K_A \, K_B \, p_A \, p_B}{(1 + K_A p_A + K_B p_B)^2} $$ Where: - $K_A, K_B$ — adsorption equilibrium constants $\left[\text{Pa}^{-1}\right]$ - $p_A, p_B$ — partial pressures of reactants A and B $\left[\text{Pa}\right]$ #### 3.3.4 Eley-Rideal Mechanism For reaction between adsorbed species and gas-phase species: $$ r = \frac{k \, K_A \, p_A \, p_B}{1 + K_A p_A} $$ ### 3.4 Common CVD Reaction Systems - **Silicon from Silane:** - $\text{SiH}_4 \rightarrow \text{Si}_{(s)} + 2\text{H}_2$ - **Silicon Dioxide from TEOS:** - $\text{Si(OC}_2\text{H}_5\text{)}_4 + 12\text{O}_2 \rightarrow \text{SiO}_2 + 8\text{CO}_2 + 10\text{H}_2\text{O}$ - **Silicon Nitride from DCS:** - $3\text{SiH}_2\text{Cl}_2 + 4\text{NH}_3 \rightarrow \text{Si}_3\text{N}_4 + 6\text{HCl} + 6\text{H}_2$ - **Tungsten from WF₆:** - $\text{WF}_6 + 3\text{H}_2 \rightarrow \text{W}_{(s)} + 6\text{HF}$ ## 4. Process Regimes ### 4.1 Transport-Limited Regime **Characteristics:** - High Damköhler number: $Da \gg 1$ - Surface reactions are fast - Deposition rate controlled by mass transport - Sensitive to: - Flow patterns - Temperature gradients - Reactor geometry **Deposition rate expression:** $$ R_{dep} \approx \frac{D \cdot C_{\infty}}{\delta} $$ Where: - $C_{\infty}$ — bulk gas concentration $\left[\text{mol/m}^3\right]$ - $\delta$ — boundary layer thickness $\left[\text{m}\right]$ ### 4.2 Reaction-Limited Regime **Characteristics:** - Low Damköhler number: $Da \ll 1$ - Plenty of reactants at surface - Rate controlled by surface kinetics - Strong Arrhenius temperature dependence - Better step coverage in features **Deposition rate expression:** $$ R_{dep} \approx k_s \cdot C_s \approx k_s \cdot C_{\infty} $$ Where: - $k_s$ — surface reaction rate constant $\left[\text{m/s}\right]$ - $C_s$ — surface concentration $\approx C_{\infty}$ $\left[\text{mol/m}^3\right]$ ### 4.3 Regime Transition The transition occurs when: $$ Da = \frac{k_s \delta}{D} \approx 1 $$ **Practical implications:** - **Transport-limited:** Optimize flow, temperature uniformity - **Reaction-limited:** Optimize temperature, precursor chemistry - **Mixed regime:** Most complex to control and model ## 5. Multiscale Modeling ### 5.1 Scale Hierarchy | Scale | Length | Time | Methods | |-------|--------|------|---------| | Reactor | cm – m | s – min | CFD, FEM | | Feature | nm – μm | ms – s | Level set, Monte Carlo | | Surface | nm | μs – ms | KMC | | Atomistic | Å | fs – ps | MD, DFT | ### 5.2 Reactor-Scale Modeling **Governing physics:** - Coupled Navier-Stokes + species + energy equations - Multicomponent diffusion (Stefan-Maxwell) - Chemical source terms **Stefan-Maxwell diffusion:** $$ \nabla x_i = \sum_{j \neq i} \frac{x_i x_j}{D_{ij}} (\mathbf{u}_j - \mathbf{u}_i) $$ Where: - $x_i$ — mole fraction of species $i$ - $D_{ij}$ — binary diffusion coefficient $\left[\text{m}^2/\text{s}\right]$ **Common software:** - ANSYS Fluent - COMSOL Multiphysics - OpenFOAM (open-source) - Silvaco Victory Process - Synopsys Sentaurus ### 5.3 Feature-Scale Modeling **Key phenomena:** - Knudsen diffusion in high-aspect-ratio features - Molecular re-emission and reflection - Surface reaction probability - Film profile evolution **Knudsen diffusion coefficient:** $$ D_K = \frac{d}{3} \sqrt{\frac{8 k_B T}{\pi m}} $$ Where: - $d$ — feature width $\left[\text{m}\right]$ **Effective diffusivity (transition regime):** $$ \frac{1}{D_{eff}} = \frac{1}{D_{mol}} + \frac{1}{D_K} $$ **Level set method for surface tracking:** $$ \frac{\partial \phi}{\partial t} + v_n |\nabla \phi| = 0 $$ Where: - $\phi$ — level set function (zero at surface) - $v_n$ — surface normal velocity (deposition rate) ### 5.4 Atomistic Modeling **Density Functional Theory (DFT):** - Calculate binding energies - Determine activation barriers - Predict reaction pathways **Kinetic Monte Carlo (KMC):** - Stochastic surface evolution - Event rates from Arrhenius: $$ \Gamma_i = \nu_0 \exp\left(-\frac{E_i}{k_B T}\right) $$ Where: - $\Gamma_i$ — rate of event $i$ $\left[\text{s}^{-1}\right]$ - $\nu_0$ — attempt frequency $\sim 10^{12} - 10^{13} \, \text{s}^{-1}$ - $E_i$ — activation energy for event $i$ $\left[\text{eV}\right]$ ## 6. CVD Process Variants ### 6.1 LPCVD (Low Pressure CVD) **Operating conditions:** - Pressure: $0.1 - 10 \, \text{Torr}$ - Temperature: $400 - 900 \, °\text{C}$ - Hot-wall reactor design **Advantages:** - Better uniformity (longer mean free path) - Good step coverage - High purity films **Applications:** - Polysilicon gates - Silicon nitride (Si₃N₄) - Thermal oxides ### 6.2 PECVD (Plasma Enhanced CVD) **Additional physics:** - Electron impact reactions - Ion bombardment - Radical chemistry - Plasma sheath dynamics **Electron density equation:** $$ \frac{\partial n_e}{\partial t} + \nabla \cdot \boldsymbol{\Gamma}_e = S_e $$ Where: - $n_e$ — electron density $\left[\text{m}^{-3}\right]$ - $\boldsymbol{\Gamma}_e$ — electron flux $\left[\text{m}^{-2} \cdot \text{s}^{-1}\right]$ - $S_e$ — electron source term (ionization - recombination) **Electron energy distribution:** Often non-Maxwellian, requiring solution of Boltzmann equation or two-temperature models. **Advantages:** - Lower deposition temperatures ($200 - 400 \, °\text{C}$) - Higher deposition rates - Tunable film stress ### 6.3 ALD (Atomic Layer Deposition) **Process characteristics:** - Self-limiting surface reactions - Sequential precursor pulses - Sub-monolayer control **Growth per cycle:** $$ \text{GPC} = \frac{\Delta t}{\text{cycle}} $$ Typically: $\text{GPC} \approx 0.5 - 2 \, \text{Å/cycle}$ **Surface coverage model:** $$ \theta = \theta_{sat} \left(1 - e^{-\sigma J t}\right) $$ Where: - $\theta$ — surface coverage $\left[0 \leq \theta \leq 1\right]$ - $\theta_{sat}$ — saturation coverage - $\sigma$ — reaction cross-section $\left[\text{m}^2\right]$ - $t$ — exposure time $\left[\text{s}\right]$ **Applications:** - High-k gate dielectrics (HfO₂, ZrO₂) - Barrier layers (TaN, TiN) - Conformal coatings in 3D structures ### 6.4 MOCVD (Metal-Organic CVD) **Precursors:** - Metal-organic compounds (e.g., TMGa, TMAl, TMIn) - Hydrides (AsH₃, PH₃, NH₃) **Key challenges:** - Parasitic gas-phase reactions - Particle formation - Precise composition control **Applications:** - III-V semiconductors (GaAs, InP, GaN) - LEDs and laser diodes - High-electron-mobility transistors (HEMTs) ## 7. Step Coverage Modeling ### 7.1 Definition **Step coverage (SC):** $$ SC = \frac{t_{bottom}}{t_{top}} \times 100\% $$ Where: - $t_{bottom}$ — film thickness at feature bottom - $t_{top}$ — film thickness at feature top **Aspect ratio (AR):** $$ AR = \frac{H}{W} $$ Where: - $H$ — feature depth - $W$ — feature width ### 7.2 Ballistic Transport Model For molecular flow in features ($Kn > 1$): **View factor approach:** $$ F_{i \rightarrow j} = \frac{A_j \cos\theta_i \cos\theta_j}{\pi r_{ij}^2} $$ **Flux balance at surface element:** $$ J_i = J_{direct} + \sum_j (1-s) J_j F_{j \rightarrow i} $$ Where: - $s$ — sticking coefficient - $(1-s)$ — re-emission probability ### 7.3 Step Coverage Dependencies **Sticking coefficient effect:** $$ SC \approx \frac{1}{1 + \frac{s \cdot AR}{2}} $$ **Key observations:** - Low $s$ → better step coverage - High AR → poorer step coverage - ALD achieves ~100% SC due to self-limiting chemistry ### 7.4 Aspect Ratio Dependent Deposition (ARDD) **Local loading effect:** - Reactant depletion in features - Aspect ratio dependent etch (ARDE) analog **Modeling approach:** $$ R_{dep}(z) = R_0 \cdot \frac{C(z)}{C_0} $$ Where: - $z$ — depth into feature - $C(z)$ — local concentration (decreases with depth) ## 8. Thermal Modeling ### 8.1 Heat Transfer Mechanisms **Conduction (Fourier's law):** $$ \mathbf{q}_{cond} = -k \nabla T $$ **Convection:** $$ q_{conv} = h (T_s - T_{\infty}) $$ Where: - $h$ — heat transfer coefficient $\left[\text{W/m}^2 \cdot \text{K}\right]$ **Radiation (Stefan-Boltzmann):** $$ q_{rad} = \varepsilon \sigma (T_s^4 - T_{surr}^4) $$ Where: - $\varepsilon$ — emissivity $\left[0 \leq \varepsilon \leq 1\right]$ - $\sigma$ — Stefan-Boltzmann constant $= 5.67 \times 10^{-8} \, \text{W/m}^2 \cdot \text{K}^4$ ### 8.2 Wafer Temperature Uniformity **Temperature non-uniformity impact:** For reaction-limited regime: $$ \frac{\Delta R}{R} \approx \frac{E_a}{R T^2} \Delta T $$ **Example calculation:** For $E_a = 1.5 \, \text{eV}$, $T = 900 \, \text{K}$, $\Delta T = 5 \, \text{K}$: $$ \frac{\Delta R}{R} \approx \frac{1.5 \times 1.6 \times 10^{-19}}{1.38 \times 10^{-23} \times (900)^2} \times 5 \approx 10.7\% $$ ### 8.3 Susceptor Design Considerations - **Material:** SiC, graphite, quartz - **Heating:** Resistive, inductive, lamp (RTP) - **Rotation:** Improves azimuthal uniformity - **Edge effects:** Guard rings, pocket design ## 9. Validation and Calibration ### 9.1 Experimental Characterization Techniques | Technique | Measurement | Resolution | |-----------|-------------|------------| | Ellipsometry | Thickness, optical constants | ~0.1 nm | | XRF | Composition, thickness | ~1% | | RBS | Composition, depth profile | ~10 nm | | SIMS | Trace impurities | ppb | | AFM | Surface morphology | ~0.1 nm (z) | | SEM/TEM | Cross-section profile | ~1 nm | | XRD | Crystallinity, stress | — | ### 9.2 Model Calibration Approach **Parameter estimation:** Minimize objective function: $$ \chi^2 = \sum_i \left( \frac{y_i^{exp} - y_i^{model}}{\sigma_i} \right)^2 $$ Where: - $y_i^{exp}$ — experimental measurement - $y_i^{model}$ — model prediction - $\sigma_i$ — measurement uncertainty **Sensitivity analysis:** $$ S_{ij} = \frac{\partial y_i}{\partial p_j} \cdot \frac{p_j}{y_i} $$ Where: - $S_{ij}$ — normalized sensitivity of output $i$ to parameter $j$ - $p_j$ — model parameter ### 9.3 Uncertainty Quantification **Parameter uncertainty propagation:** $$ \text{Var}(y) = \sum_j \left( \frac{\partial y}{\partial p_j} \right)^2 \text{Var}(p_j) $$ **Monte Carlo approach:** - Sample parameter distributions - Run multiple model evaluations - Statistical analysis of outputs ## 10. Modern Developments ### 10.1 Machine Learning Integration **Applications:** - **Surrogate models:** Neural networks trained on simulation data - **Process optimization:** Bayesian optimization, genetic algorithms - **Virtual metrology:** Predict film properties from process data - **Defect prediction:** Correlate conditions with yield **Neural network surrogate:** $$ \hat{y} = f_{NN}(\mathbf{x}; \mathbf{w}) $$ Where: - $\mathbf{x}$ — input process parameters - $\mathbf{w}$ — trained network weights - $\hat{y}$ — predicted output (rate, uniformity, etc.) ### 10.2 Digital Twins **Components:** - Real-time sensor data integration - Physics-based + data-driven models - Predictive capabilities **Applications:** - Chamber matching - Predictive maintenance - Run-to-run control - Virtual experiments ### 10.3 Advanced Materials **Emerging challenges:** - **High-k dielectrics:** HfO₂, ZrO₂ via ALD - **2D materials:** Graphene, MoS₂, WS₂ - **Selective deposition:** Area-selective ALD - **3D integration:** Through-silicon vias (TSV) - **New precursors:** Lower temperature, higher purity ### 10.4 Computational Advances - **GPU acceleration:** Faster CFD solvers - **Cloud computing:** Large parameter studies - **Multiscale coupling:** Seamless reactor-to-feature modeling - **Real-time simulation:** For process control ## Physical Constants | Constant | Symbol | Value | |----------|--------|-------| | Boltzmann constant | $k_B$ | $1.381 \times 10^{-23} \, \text{J/K}$ | | Universal gas constant | $R$ | $8.314 \, \text{J/mol} \cdot \text{K}$ | | Avogadro's number | $N_A$ | $6.022 \times 10^{23} \, \text{mol}^{-1}$ | | Stefan-Boltzmann constant | $\sigma$ | $5.67 \times 10^{-8} \, \text{W/m}^2 \cdot \text{K}^4$ | | Elementary charge | $e$ | $1.602 \times 10^{-19} \, \text{C}$ | ## Typical Process Parameters ### B.1 LPCVD Polysilicon - **Precursor:** SiH₄ - **Temperature:** $580 - 650 \, °\text{C}$ - **Pressure:** $0.2 - 1.0 \, \text{Torr}$ - **Deposition rate:** $5 - 20 \, \text{nm/min}$ ### B.2 PECVD Silicon Nitride - **Precursors:** SiH₄ + NH₃ or SiH₄ + N₂ - **Temperature:** $250 - 400 \, °\text{C}$ - **Pressure:** $1 - 5 \, \text{Torr}$ - **RF Power:** $0.1 - 1 \, \text{W/cm}^2$ ### B.3 ALD Hafnium Oxide - **Precursors:** HfCl₄ or TEMAH + H₂O or O₃ - **Temperature:** $200 - 350 \, °\text{C}$ - **GPC:** $\sim 1 \, \text{Å/cycle}$ - **Cycle time:** $2 - 10 \, \text{s}$

cvd process modeling, cvd deposition, cvd semiconductor, cvd thin film, chemical vapor deposition modeling

# CVD Modeling in Semiconductor Manufacturing ## 1. Introduction Chemical Vapor Deposition (CVD) is a critical thin-film deposition technique in semiconductor manufacturing. Gaseous precursors are introduced into a reaction chamber where they undergo chemical reactions to deposit solid films on heated substrates. ### 1.1 Key Process Steps - **Transport** of reactants from bulk gas to the substrate surface - **Gas-phase chemistry** including precursor decomposition and intermediate formation - **Surface reactions** involving adsorption, surface diffusion, and reaction - **Film nucleation and growth** with specific microstructure evolution - **Byproduct desorption** and transport away from the surface ### 1.2 Common CVD Types - **APCVD** — Atmospheric Pressure CVD - **LPCVD** — Low Pressure CVD (0.1–10 Torr) - **PECVD** — Plasma Enhanced CVD - **MOCVD** — Metal-Organic CVD - **ALD** — Atomic Layer Deposition - **HDPCVD** — High Density Plasma CVD ## 2. Governing Equations ### 2.1 Continuity Equation (Mass Conservation) $$ \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0 $$ Where: - $\rho$ — gas density $\left[\text{kg/m}^3\right]$ - $\mathbf{u}$ — velocity vector $\left[\text{m/s}\right]$ - $t$ — time $\left[\text{s}\right]$ ### 2.2 Momentum Equation (Navier-Stokes) $$ \rho \left( \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) = -\nabla p + \mu \nabla^2 \mathbf{u} + \rho \mathbf{g} $$ Where: - $p$ — pressure $\left[\text{Pa}\right]$ - $\mu$ — dynamic viscosity $\left[\text{Pa} \cdot \text{s}\right]$ - $\mathbf{g}$ — gravitational acceleration $\left[\text{m/s}^2\right]$ ### 2.3 Species Conservation Equation $$ \frac{\partial (\rho Y_i)}{\partial t} + \nabla \cdot (\rho \mathbf{u} Y_i) = \nabla \cdot (\rho D_i \nabla Y_i) + R_i $$ Where: - $Y_i$ — mass fraction of species $i$ $\left[\text{dimensionless}\right]$ - $D_i$ — diffusion coefficient of species $i$ $\left[\text{m}^2/\text{s}\right]$ - $R_i$ — net production rate from reactions $\left[\text{kg/m}^3 \cdot \text{s}\right]$ ### 2.4 Energy Conservation Equation $$ \rho c_p \left( \frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T \right) = \nabla \cdot (k \nabla T) + Q $$ Where: - $c_p$ — specific heat capacity $\left[\text{J/kg} \cdot \text{K}\right]$ - $T$ — temperature $\left[\text{K}\right]$ - $k$ — thermal conductivity $\left[\text{W/m} \cdot \text{K}\right]$ - $Q$ — volumetric heat source $\left[\text{W/m}^3\right]$ ### 2.5 Key Dimensionless Numbers | Number | Definition | Physical Meaning | |--------|------------|------------------| | Reynolds | $Re = \frac{\rho u L}{\mu}$ | Inertial vs. viscous forces | | Péclet | $Pe = \frac{u L}{D}$ | Convection vs. diffusion | | Damköhler | $Da = \frac{k_s L}{D}$ | Reaction rate vs. transport rate | | Knudsen | $Kn = \frac{\lambda}{L}$ | Mean free path vs. length scale | Where: - $L$ — characteristic length $\left[\text{m}\right]$ - $\lambda$ — mean free path $\left[\text{m}\right]$ - $k_s$ — surface reaction rate constant $\left[\text{m/s}\right]$ ## 3. Chemical Kinetics ### 3.1 Arrhenius Equation The temperature dependence of reaction rate constants follows: $$ k = A \exp\left(-\frac{E_a}{R T}\right) $$ Where: - $k$ — rate constant $\left[\text{varies}\right]$ - $A$ — pre-exponential factor $\left[\text{same as } k\right]$ - $E_a$ — activation energy $\left[\text{J/mol}\right]$ - $R$ — universal gas constant $= 8.314 \, \text{J/mol} \cdot \text{K}$ ### 3.2 Gas-Phase Reactions **Example: Silane Pyrolysis** $$ \text{SiH}_4 \xrightarrow{k_1} \text{SiH}_2 + \text{H}_2 $$ $$ \text{SiH}_2 + \text{SiH}_4 \xrightarrow{k_2} \text{Si}_2\text{H}_6 $$ **General reaction rate expression:** $$ r_j = k_j \prod_{i} C_i^{\nu_{ij}} $$ Where: - $r_j$ — rate of reaction $j$ $\left[\text{mol/m}^3 \cdot \text{s}\right]$ - $C_i$ — concentration of species $i$ $\left[\text{mol/m}^3\right]$ - $\nu_{ij}$ — stoichiometric coefficient of species $i$ in reaction $j$ ### 3.3 Surface Reaction Kinetics #### 3.3.1 Hertz-Knudsen Impingement Flux $$ J = \frac{p}{\sqrt{2 \pi m k_B T}} $$ Where: - $J$ — molecular flux $\left[\text{molecules/m}^2 \cdot \text{s}\right]$ - $p$ — partial pressure $\left[\text{Pa}\right]$ - $m$ — molecular mass $\left[\text{kg}\right]$ - $k_B$ — Boltzmann constant $= 1.381 \times 10^{-23} \, \text{J/K}$ #### 3.3.2 Surface Reaction Rate $$ R_s = s \cdot J = s \cdot \frac{p}{\sqrt{2 \pi m k_B T}} $$ Where: - $s$ — sticking coefficient $\left[0 \leq s \leq 1\right]$ #### 3.3.3 Langmuir-Hinshelwood Kinetics For surface reaction between two adsorbed species: $$ r = \frac{k \, K_A \, K_B \, p_A \, p_B}{(1 + K_A p_A + K_B p_B)^2} $$ Where: - $K_A, K_B$ — adsorption equilibrium constants $\left[\text{Pa}^{-1}\right]$ - $p_A, p_B$ — partial pressures of reactants A and B $\left[\text{Pa}\right]$ #### 3.3.4 Eley-Rideal Mechanism For reaction between adsorbed species and gas-phase species: $$ r = \frac{k \, K_A \, p_A \, p_B}{1 + K_A p_A} $$ ### 3.4 Common CVD Reaction Systems - **Silicon from Silane:** - $\text{SiH}_4 \rightarrow \text{Si}_{(s)} + 2\text{H}_2$ - **Silicon Dioxide from TEOS:** - $\text{Si(OC}_2\text{H}_5\text{)}_4 + 12\text{O}_2 \rightarrow \text{SiO}_2 + 8\text{CO}_2 + 10\text{H}_2\text{O}$ - **Silicon Nitride from DCS:** - $3\text{SiH}_2\text{Cl}_2 + 4\text{NH}_3 \rightarrow \text{Si}_3\text{N}_4 + 6\text{HCl} + 6\text{H}_2$ - **Tungsten from WF₆:** - $\text{WF}_6 + 3\text{H}_2 \rightarrow \text{W}_{(s)} + 6\text{HF}$ ## 4. Process Regimes ### 4.1 Transport-Limited Regime **Characteristics:** - High Damköhler number: $Da \gg 1$ - Surface reactions are fast - Deposition rate controlled by mass transport - Sensitive to: - Flow patterns - Temperature gradients - Reactor geometry **Deposition rate expression:** $$ R_{dep} \approx \frac{D \cdot C_{\infty}}{\delta} $$ Where: - $C_{\infty}$ — bulk gas concentration $\left[\text{mol/m}^3\right]$ - $\delta$ — boundary layer thickness $\left[\text{m}\right]$ ### 4.2 Reaction-Limited Regime **Characteristics:** - Low Damköhler number: $Da \ll 1$ - Plenty of reactants at surface - Rate controlled by surface kinetics - Strong Arrhenius temperature dependence - Better step coverage in features **Deposition rate expression:** $$ R_{dep} \approx k_s \cdot C_s \approx k_s \cdot C_{\infty} $$ Where: - $k_s$ — surface reaction rate constant $\left[\text{m/s}\right]$ - $C_s$ — surface concentration $\approx C_{\infty}$ $\left[\text{mol/m}^3\right]$ ### 4.3 Regime Transition The transition occurs when: $$ Da = \frac{k_s \delta}{D} \approx 1 $$ **Practical implications:** - **Transport-limited:** Optimize flow, temperature uniformity - **Reaction-limited:** Optimize temperature, precursor chemistry - **Mixed regime:** Most complex to control and model ## 5. Multiscale Modeling ### 5.1 Scale Hierarchy | Scale | Length | Time | Methods | |-------|--------|------|---------| | Reactor | cm – m | s – min | CFD, FEM | | Feature | nm – μm | ms – s | Level set, Monte Carlo | | Surface | nm | μs – ms | KMC | | Atomistic | Å | fs – ps | MD, DFT | ### 5.2 Reactor-Scale Modeling **Governing physics:** - Coupled Navier-Stokes + species + energy equations - Multicomponent diffusion (Stefan-Maxwell) - Chemical source terms **Stefan-Maxwell diffusion:** $$ \nabla x_i = \sum_{j \neq i} \frac{x_i x_j}{D_{ij}} (\mathbf{u}_j - \mathbf{u}_i) $$ Where: - $x_i$ — mole fraction of species $i$ - $D_{ij}$ — binary diffusion coefficient $\left[\text{m}^2/\text{s}\right]$ **Common software:** - ANSYS Fluent - COMSOL Multiphysics - OpenFOAM (open-source) - Silvaco Victory Process - Synopsys Sentaurus ### 5.3 Feature-Scale Modeling **Key phenomena:** - Knudsen diffusion in high-aspect-ratio features - Molecular re-emission and reflection - Surface reaction probability - Film profile evolution **Knudsen diffusion coefficient:** $$ D_K = \frac{d}{3} \sqrt{\frac{8 k_B T}{\pi m}} $$ Where: - $d$ — feature width $\left[\text{m}\right]$ **Effective diffusivity (transition regime):** $$ \frac{1}{D_{eff}} = \frac{1}{D_{mol}} + \frac{1}{D_K} $$ **Level set method for surface tracking:** $$ \frac{\partial \phi}{\partial t} + v_n |\nabla \phi| = 0 $$ Where: - $\phi$ — level set function (zero at surface) - $v_n$ — surface normal velocity (deposition rate) ### 5.4 Atomistic Modeling **Density Functional Theory (DFT):** - Calculate binding energies - Determine activation barriers - Predict reaction pathways **Kinetic Monte Carlo (KMC):** - Stochastic surface evolution - Event rates from Arrhenius: $$ \Gamma_i = \nu_0 \exp\left(-\frac{E_i}{k_B T}\right) $$ Where: - $\Gamma_i$ — rate of event $i$ $\left[\text{s}^{-1}\right]$ - $\nu_0$ — attempt frequency $\sim 10^{12} - 10^{13} \, \text{s}^{-1}$ - $E_i$ — activation energy for event $i$ $\left[\text{eV}\right]$ ## 6. CVD Process Variants ### 6.1 LPCVD (Low Pressure CVD) **Operating conditions:** - Pressure: $0.1 - 10 \, \text{Torr}$ - Temperature: $400 - 900 \, °\text{C}$ - Hot-wall reactor design **Advantages:** - Better uniformity (longer mean free path) - Good step coverage - High purity films **Applications:** - Polysilicon gates - Silicon nitride (Si₃N₄) - Thermal oxides ### 6.2 PECVD (Plasma Enhanced CVD) **Additional physics:** - Electron impact reactions - Ion bombardment - Radical chemistry - Plasma sheath dynamics **Electron density equation:** $$ \frac{\partial n_e}{\partial t} + \nabla \cdot \boldsymbol{\Gamma}_e = S_e $$ Where: - $n_e$ — electron density $\left[\text{m}^{-3}\right]$ - $\boldsymbol{\Gamma}_e$ — electron flux $\left[\text{m}^{-2} \cdot \text{s}^{-1}\right]$ - $S_e$ — electron source term (ionization - recombination) **Electron energy distribution:** Often non-Maxwellian, requiring solution of Boltzmann equation or two-temperature models. **Advantages:** - Lower deposition temperatures ($200 - 400 \, °\text{C}$) - Higher deposition rates - Tunable film stress ### 6.3 ALD (Atomic Layer Deposition) **Process characteristics:** - Self-limiting surface reactions - Sequential precursor pulses - Sub-monolayer control **Growth per cycle:** $$ \text{GPC} = \frac{\Delta t}{\text{cycle}} $$ Typically: $\text{GPC} \approx 0.5 - 2 \, \text{Å/cycle}$ **Surface coverage model:** $$ \theta = \theta_{sat} \left(1 - e^{-\sigma J t}\right) $$ Where: - $\theta$ — surface coverage $\left[0 \leq \theta \leq 1\right]$ - $\theta_{sat}$ — saturation coverage - $\sigma$ — reaction cross-section $\left[\text{m}^2\right]$ - $t$ — exposure time $\left[\text{s}\right]$ **Applications:** - High-k gate dielectrics (HfO₂, ZrO₂) - Barrier layers (TaN, TiN) - Conformal coatings in 3D structures ### 6.4 MOCVD (Metal-Organic CVD) **Precursors:** - Metal-organic compounds (e.g., TMGa, TMAl, TMIn) - Hydrides (AsH₃, PH₃, NH₃) **Key challenges:** - Parasitic gas-phase reactions - Particle formation - Precise composition control **Applications:** - III-V semiconductors (GaAs, InP, GaN) - LEDs and laser diodes - High-electron-mobility transistors (HEMTs) ## 7. Step Coverage Modeling ### 7.1 Definition **Step coverage (SC):** $$ SC = \frac{t_{bottom}}{t_{top}} \times 100\% $$ Where: - $t_{bottom}$ — film thickness at feature bottom - $t_{top}$ — film thickness at feature top **Aspect ratio (AR):** $$ AR = \frac{H}{W} $$ Where: - $H$ — feature depth - $W$ — feature width ### 7.2 Ballistic Transport Model For molecular flow in features ($Kn > 1$): **View factor approach:** $$ F_{i \rightarrow j} = \frac{A_j \cos\theta_i \cos\theta_j}{\pi r_{ij}^2} $$ **Flux balance at surface element:** $$ J_i = J_{direct} + \sum_j (1-s) J_j F_{j \rightarrow i} $$ Where: - $s$ — sticking coefficient - $(1-s)$ — re-emission probability ### 7.3 Step Coverage Dependencies **Sticking coefficient effect:** $$ SC \approx \frac{1}{1 + \frac{s \cdot AR}{2}} $$ **Key observations:** - Low $s$ → better step coverage - High AR → poorer step coverage - ALD achieves ~100% SC due to self-limiting chemistry ### 7.4 Aspect Ratio Dependent Deposition (ARDD) **Local loading effect:** - Reactant depletion in features - Aspect ratio dependent etch (ARDE) analog **Modeling approach:** $$ R_{dep}(z) = R_0 \cdot \frac{C(z)}{C_0} $$ Where: - $z$ — depth into feature - $C(z)$ — local concentration (decreases with depth) ## 8. Thermal Modeling ### 8.1 Heat Transfer Mechanisms **Conduction (Fourier's law):** $$ \mathbf{q}_{cond} = -k \nabla T $$ **Convection:** $$ q_{conv} = h (T_s - T_{\infty}) $$ Where: - $h$ — heat transfer coefficient $\left[\text{W/m}^2 \cdot \text{K}\right]$ **Radiation (Stefan-Boltzmann):** $$ q_{rad} = \varepsilon \sigma (T_s^4 - T_{surr}^4) $$ Where: - $\varepsilon$ — emissivity $\left[0 \leq \varepsilon \leq 1\right]$ - $\sigma$ — Stefan-Boltzmann constant $= 5.67 \times 10^{-8} \, \text{W/m}^2 \cdot \text{K}^4$ ### 8.2 Wafer Temperature Uniformity **Temperature non-uniformity impact:** For reaction-limited regime: $$ \frac{\Delta R}{R} \approx \frac{E_a}{R T^2} \Delta T $$ **Example calculation:** For $E_a = 1.5 \, \text{eV}$, $T = 900 \, \text{K}$, $\Delta T = 5 \, \text{K}$: $$ \frac{\Delta R}{R} \approx \frac{1.5 \times 1.6 \times 10^{-19}}{1.38 \times 10^{-23} \times (900)^2} \times 5 \approx 10.7\% $$ ### 8.3 Susceptor Design Considerations - **Material:** SiC, graphite, quartz - **Heating:** Resistive, inductive, lamp (RTP) - **Rotation:** Improves azimuthal uniformity - **Edge effects:** Guard rings, pocket design ## 9. Validation and Calibration ### 9.1 Experimental Characterization Techniques | Technique | Measurement | Resolution | |-----------|-------------|------------| | Ellipsometry | Thickness, optical constants | ~0.1 nm | | XRF | Composition, thickness | ~1% | | RBS | Composition, depth profile | ~10 nm | | SIMS | Trace impurities | ppb | | AFM | Surface morphology | ~0.1 nm (z) | | SEM/TEM | Cross-section profile | ~1 nm | | XRD | Crystallinity, stress | — | ### 9.2 Model Calibration Approach **Parameter estimation:** Minimize objective function: $$ \chi^2 = \sum_i \left( \frac{y_i^{exp} - y_i^{model}}{\sigma_i} \right)^2 $$ Where: - $y_i^{exp}$ — experimental measurement - $y_i^{model}$ — model prediction - $\sigma_i$ — measurement uncertainty **Sensitivity analysis:** $$ S_{ij} = \frac{\partial y_i}{\partial p_j} \cdot \frac{p_j}{y_i} $$ Where: - $S_{ij}$ — normalized sensitivity of output $i$ to parameter $j$ - $p_j$ — model parameter ### 9.3 Uncertainty Quantification **Parameter uncertainty propagation:** $$ \text{Var}(y) = \sum_j \left( \frac{\partial y}{\partial p_j} \right)^2 \text{Var}(p_j) $$ **Monte Carlo approach:** - Sample parameter distributions - Run multiple model evaluations - Statistical analysis of outputs ## 10. Modern Developments ### 10.1 Machine Learning Integration **Applications:** - **Surrogate models:** Neural networks trained on simulation data - **Process optimization:** Bayesian optimization, genetic algorithms - **Virtual metrology:** Predict film properties from process data - **Defect prediction:** Correlate conditions with yield **Neural network surrogate:** $$ \hat{y} = f_{NN}(\mathbf{x}; \mathbf{w}) $$ Where: - $\mathbf{x}$ — input process parameters - $\mathbf{w}$ — trained network weights - $\hat{y}$ — predicted output (rate, uniformity, etc.) ### 10.2 Digital Twins **Components:** - Real-time sensor data integration - Physics-based + data-driven models - Predictive capabilities **Applications:** - Chamber matching - Predictive maintenance - Run-to-run control - Virtual experiments ### 10.3 Advanced Materials **Emerging challenges:** - **High-k dielectrics:** HfO₂, ZrO₂ via ALD - **2D materials:** Graphene, MoS₂, WS₂ - **Selective deposition:** Area-selective ALD - **3D integration:** Through-silicon vias (TSV) - **New precursors:** Lower temperature, higher purity ### 10.4 Computational Advances - **GPU acceleration:** Faster CFD solvers - **Cloud computing:** Large parameter studies - **Multiscale coupling:** Seamless reactor-to-feature modeling - **Real-time simulation:** For process control ## Physical Constants | Constant | Symbol | Value | |----------|--------|-------| | Boltzmann constant | $k_B$ | $1.381 \times 10^{-23} \, \text{J/K}$ | | Universal gas constant | $R$ | $8.314 \, \text{J/mol} \cdot \text{K}$ | | Avogadro's number | $N_A$ | $6.022 \times 10^{23} \, \text{mol}^{-1}$ | | Stefan-Boltzmann constant | $\sigma$ | $5.67 \times 10^{-8} \, \text{W/m}^2 \cdot \text{K}^4$ | | Elementary charge | $e$ | $1.602 \times 10^{-19} \, \text{C}$ | ## Typical Process Parameters ### B.1 LPCVD Polysilicon - **Precursor:** SiH₄ - **Temperature:** $580 - 650 \, °\text{C}$ - **Pressure:** $0.2 - 1.0 \, \text{Torr}$ - **Deposition rate:** $5 - 20 \, \text{nm/min}$ ### B.2 PECVD Silicon Nitride - **Precursors:** SiH₄ + NH₃ or SiH₄ + N₂ - **Temperature:** $250 - 400 \, °\text{C}$ - **Pressure:** $1 - 5 \, \text{Torr}$ - **RF Power:** $0.1 - 1 \, \text{W/cm}^2$ ### B.3 ALD Hafnium Oxide - **Precursors:** HfCl₄ or TEMAH + H₂O or O₃ - **Temperature:** $200 - 350 \, °\text{C}$ - **GPC:** $\sim 1 \, \text{Å/cycle}$ - **Cycle time:** $2 - 10 \, \text{s}$

cvt (convolutional vision transformer),cvt,convolutional vision transformer,computer vision

Combine convolutions with transformers.

cycle counting, supply chain & logistics

Cycle counting performs ongoing partial inventory counts verifying accuracy without full shutdowns.

cycle detection, spc

Identify periodic patterns.

cycle time management, operations

Control time through fab.

cycle time reduction, production

Minimize time per unit.

cycle time, manufacturing operations

Cycle time measures duration to complete one unit of work.

cyclegan voice, audio & speech

CycleGAN for voice conversion enables unpaired training through cycle consistency constraints.