← Back to AI Factory Chat

AI Factory Glossary

1,005 technical terms and definitions

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Showing page 21 of 21 (1,005 entries)

cyclegan,generative models

Unpaired image translation using cycle consistency.

cyclic stress test, reliability

Repeated stress cycles.

cyclomatic complexity, code ai

Measure code complexity via paths.

czochralski,crystal growth,silicon ingot,pure silicon

# Mathematics of the Czochralski Process ## 1. Introduction The **Czochralski (CZ) method** is the dominant technique for growing single-crystal semiconductors, responsible for approximately 90% of silicon wafers used in integrated circuits. The mathematical modeling of this process involves: - **Multi-phase heat transfer** with moving boundaries - **Turbulent melt convection** driven by buoyancy and rotation - **Capillary phenomena** controlling crystal shape - **Mass transport** of dopants and impurities - **Phase transition thermodynamics** This document presents the key mathematical frameworks governing the CZ process. ## 2. Heat Transfer: The Stefan Problem ### 2.1 Overview The CZ process is fundamentally a **moving boundary problem** where the solid-liquid interface position must be determined as part of the solution. ### 2.2 Governing Heat Equation For both solid (crystal) and liquid (melt) regions: $$ \rho c_p \frac{\partial T}{\partial t} + \rho c_p (\mathbf{u} \cdot \nabla T) = \nabla \cdot (k \nabla T) + Q $$ **Where:** - $\rho$ — density [kg/m³] - $c_p$ — specific heat capacity [J/(kg·K)] - $T$ — temperature [K] - $\mathbf{u}$ — velocity field [m/s] - $k$ — thermal conductivity [W/(m·K)] - $Q$ — volumetric heat source [W/m³] ### 2.3 Stefan Condition at the Interface At the **solid-liquid interface**, the Stefan condition balances latent heat release with conductive heat flux: $$ \rho L v_n = k_s \left( \frac{\partial T}{\partial n} \right)_s - k_l \left( \frac{\partial T}{\partial n} \right)_l $$ **Where:** - $L$ — latent heat of fusion [J/kg] - $v_n$ — interface velocity (normal direction) [m/s] - $k_s$, $k_l$ — thermal conductivity of solid and liquid [W/(m·K)] - $n$ — unit normal vector pointing into the solid ### 2.4 Boundary Conditions | Location | Condition | Equation | |----------|-----------|----------| | Crystal surface | Radiation + convection | $-k\frac{\partial T}{\partial n} = h(T - T_{\infty}) + \varepsilon \sigma (T^4 - T_{amb}^4)$ | | Melt free surface | Radiation + evaporation | $-k\frac{\partial T}{\partial n} = \varepsilon \sigma T^4 + q_{evap}$ | | Crucible wall | Specified temperature | $T = T_{crucible}(z)$ | | Solid-liquid interface | Melting point | $T = T_m$ | ### 2.5 Enthalpy Formulation For numerical implementation, the **enthalpy method** avoids explicit interface tracking: $$ \frac{\partial H}{\partial t} + \nabla \cdot (\mathbf{u} H) = \nabla \cdot (k \nabla T) $$ **With enthalpy defined as:** $$ H(T) = \begin{cases} \rho_s c_{p,s} T & T < T_m \\ \rho_s c_{p,s} T_m + \rho L f_l & T = T_m \\ \rho_l c_{p,l} T + \rho L & T > T_m \end{cases} $$ Where $f_l \in [0,1]$ is the liquid fraction. ## 3. Fluid Dynamics: Navier-Stokes Equations ### 3.1 Governing Equations The melt flow is governed by the **incompressible Navier-Stokes equations** with the **Boussinesq approximation** for buoyancy: **Continuity (mass conservation):** $$ \nabla \cdot \mathbf{u} = 0 $$ **Momentum conservation:** $$ \rho_0 \left( \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} \right) = -\nabla p + \mu \nabla^2 \mathbf{u} + \rho_0 \beta (T - T_0) \mathbf{g} + \mathbf{F}_{ext} $$ **Where:** - $\rho_0$ — reference density [kg/m³] - $p$ — pressure [Pa] - $\mu$ — dynamic viscosity [Pa·s] - $\beta$ — thermal expansion coefficient [K⁻¹] - $T_0$ — reference temperature [K] - $\mathbf{g}$ — gravitational acceleration [m/s²] - $\mathbf{F}_{ext}$ — external forces (rotation, magnetic) [N/m³] ### 3.2 Boussinesq Approximation The density variation is linearized: $$ \rho(T) \approx \rho_0 [1 - \beta(T - T_0)] $$ **Validity condition:** $$ \frac{\Delta \rho}{\rho_0} = \beta \Delta T \ll 1 $$ ### 3.3 Rotational Effects For rotating crystal (angular velocity $\Omega_c$) and crucible ($\Omega_{cr}$): **Coriolis force:** $$ \mathbf{F}_{Cor} = -2\rho_0 (\boldsymbol{\Omega} \times \mathbf{u}) $$ **Centrifugal force:** $$ \mathbf{F}_{cent} = -\rho_0 \boldsymbol{\Omega} \times (\boldsymbol{\Omega} \times \mathbf{r}) $$ ### 3.4 Marangoni (Thermocapillary) Convection At the free surface, temperature-dependent surface tension drives flow: $$ \mu \frac{\partial u_t}{\partial n} = \frac{\partial \gamma}{\partial T} \frac{\partial T}{\partial t} $$ **Where:** - $\gamma$ — surface tension [N/m] - $\frac{\partial \gamma}{\partial T}$ — temperature coefficient of surface tension [N/(m·K)] ### 3.5 Dimensionless Numbers | Number | Definition | Physical Meaning | |--------|------------|------------------| | **Reynolds** | $Re = \frac{\rho U L}{\mu}$ | Inertia / Viscous forces | | **Grashof** | $Gr = \frac{g \beta \Delta T L^3}{\nu^2}$ | Buoyancy / Viscous forces | | **Prandtl** | $Pr = \frac{\nu}{\alpha} = \frac{\mu c_p}{k}$ | Momentum / Thermal diffusivity | | **Rayleigh** | $Ra = Gr \cdot Pr$ | Convection strength | | **Marangoni** | $Ma = \frac{\left|\frac{\partial \gamma}{\partial T}\right| \Delta T L}{\mu \alpha}$ | Surface tension / Viscous forces | **For silicon CZ growth:** - $Ra \sim 10^8 - 10^{10}$ (turbulent regime) - $Pr \approx 0.01$ (liquid metals) ## 4. Capillarity: Young-Laplace Equation ### 4.1 Meniscus Shape The melt meniscus connecting the crystal to the melt surface is governed by the **Young-Laplace equation**: $$ \Delta P = \gamma \left( \frac{1}{R_1} + \frac{1}{R_2} \right) $$ **Where:** - $\Delta P$ — pressure difference across interface [Pa] - $\gamma$ — surface tension [N/m] - $R_1$, $R_2$ — principal radii of curvature [m] ### 4.2 Axisymmetric Formulation For axisymmetric geometry with meniscus profile $z = z(r)$: $$ \gamma \left[ \frac{z''}{(1 + z'^2)^{3/2}} + \frac{z'}{r(1 + z'^2)^{1/2}} \right] = \rho g z $$ **Where:** - $z'$ = $\frac{dz}{dr}$ - $z''$ = $\frac{d^2z}{dr^2}$ ### 4.3 Arc-Length Parameterization Using arc-length $s$ for numerical stability: $$ \frac{dr}{ds} = \cos\phi $$ $$ \frac{dz}{ds} = \sin\phi $$ $$ \frac{d\phi}{ds} = \frac{\rho g z}{\gamma} - \frac{\sin\phi}{r} $$ **Where $\phi$ is the tangent angle to the meniscus.** ### 4.4 Growth Angle Condition At the **triple point** (crystal-melt-gas junction): $$ \phi_{triple} = \alpha_{gr} $$ **Where $\alpha_{gr}$ is the characteristic growth angle:** | Material | Growth Angle $\alpha_{gr}$ | |----------|---------------------------| | Silicon | 11° | | Germanium | 13° | | GaAs | 17° | | Sapphire | 35° | ### 4.5 Crystal Radius Evolution The crystal radius changes according to: $$ \frac{dr_c}{dt} = v_p \tan(\alpha_{gr} - \theta) $$ **Where:** - $r_c$ — crystal radius [m] - $v_p$ — pulling velocity [m/s] - $\theta$ — current meniscus angle at triple point **Stability conditions:** - $\theta < \alpha_{gr}$ → Crystal radius **increases** - $\theta = \alpha_{gr}$ → Crystal radius **constant** (steady state) - $\theta > \alpha_{gr}$ → Crystal radius **decreases** ### 4.6 Capillary Constant The capillary length scale: $$ a = \sqrt{\frac{2\gamma}{\rho g}} $$ **For silicon:** $a \approx 7.6$ mm ## 5. Crystal Growth Rate ### 5.1 Interface Energy Balance The local growth velocity is determined by heat flux balance: $$ v_g = \frac{1}{\rho L} \left[ k_s \left( \frac{\partial T}{\partial n} \right)_s - k_l \left( \frac{\partial T}{\partial n} \right)_l \right] $$ ### 5.2 Simplified Growth Rate Model $$ G = \frac{dL}{dt} = v_p \cdot \frac{T_m - T_i}{T_m - T_s} $$ **Where:** - $G$ — crystal growth rate [m/s] - $L$ — crystal length [m] - $v_p$ — pulling rate [m/s] - $T_m$ — melting temperature [K] - $T_i$ — interface temperature [K] - $T_s$ — seed temperature [K] ### 5.3 Maximum Pull Rate The maximum pull rate is limited by heat transfer: $$ v_{p,max} = \frac{k_s G_s}{\rho L} $$ **Where $G_s = \left( \frac{\partial T}{\partial z} \right)_s$ is the axial temperature gradient in the crystal.** ## 6. Dopant Distribution: Scheil Equation ### 6.1 Segregation Coefficient The **equilibrium segregation coefficient** is defined as: $$ k_0 = \frac{C_s}{C_l} $$ **Where:** - $C_s$ — solute concentration in solid at interface [atoms/cm³] - $C_l$ — solute concentration in liquid at interface [atoms/cm³] **Typical values for silicon:** | Dopant | $k_0$ | |--------|-------| | Boron (B) | 0.80 | | Phosphorus (P) | 0.35 | | Arsenic (As) | 0.30 | | Antimony (Sb) | 0.023 | | Oxygen (O) | 1.25 | ### 6.2 Scheil-Gulliver Equation For a well-mixed melt with no solid-state diffusion: **Liquid concentration:** $$ C_L = C_0 (1 - f_s)^{k_0 - 1} $$ **Solid concentration:** $$ C_s = k_0 C_0 (1 - f_s)^{k_0 - 1} $$ **Where:** - $C_0$ — initial concentration in melt [atoms/cm³] - $f_s$ — solidified fraction $(= V_s / V_{total})$ ### 6.3 Effective Segregation Coefficient The **Burton-Prim-Slichter (BPS) equation** accounts for diffusion boundary layer: $$ k_{eff} = \frac{k_0}{k_0 + (1 - k_0) \exp\left( -\frac{v_g \delta}{D} \right)} $$ **Where:** - $\delta$ — boundary layer thickness [m] - $D$ — diffusion coefficient in liquid [m²/s] - $v_g$ — growth velocity [m/s] ### 6.4 Boundary Layer Thickness For rotating crystal (Cochran model): $$ \delta = 1.6 D^{1/3} \nu^{1/6} \Omega^{-1/2} $$ **Where:** - $\nu$ — kinematic viscosity [m²/s] - $\Omega$ — crystal rotation rate [rad/s] ### 6.5 Lambert W Function Solution For complex segregation problems, the Scheil equation leads to transcendental equations: $$ \left( \frac{C_s}{C_L} \right) \ln(1 - f_s) \cdot e^{\left( \frac{C_s}{C_L} \ln(1-f_s) \right)} = \left( \frac{C_s}{C_0} \right) (1 - f_s) \ln(1 - f_s) $$ **Solution via Lambert W function:** $$ x \cdot e^x = y \implies x = W(y) $$ ## 7. Oxygen Transport ### 7.1 Convection-Diffusion Equation Oxygen concentration in the melt follows: $$ \frac{\partial C}{\partial t} + \mathbf{u} \cdot \nabla C = D_O \nabla^2 C $$ **Where:** - $C$ — oxygen concentration [atoms/cm³] - $D_O$ — oxygen diffusivity in silicon melt ≈ 5×10⁻⁸ m²/s ### 7.2 Boundary Conditions **Crucible wall (dissolution):** $$ C_{wall} = A \exp\left( -\frac{E_a}{RT} \right) $$ **Common models:** - **Matsuo et al.:** $C_{wall} = 3.99 \times 10^{25} \exp\left( -\frac{1.2 \text{ eV}}{k_B T} \right)$ atoms/cm³ **Free surface (evaporation):** $$ -D_O \frac{\partial C}{\partial n} = k_{evap} (C - C_{eq}) $$ **Crystal interface (segregation):** $$ D_O \frac{\partial C}{\partial n}\bigg|_{melt} = D_{O,s} \frac{\partial C}{\partial n}\bigg|_{crystal} + (1 - k_O) v_g C_{interface} $$ ### 7.3 Oxygen Transport Mechanisms ``` - ┌──────────────────────────────────────────────────────────────┐ │ OXYGEN TRANSPORT │ ├──────────────────────────────────────────────────────────────┤ │ │ │ SiO₂ Crucible ──→ Dissolution ──→ Si Melt │ │ │ │ │ ├──→ Evaporation │ │ │ (as SiO) │ │ │ │ │ └──→ Crystal │ │ (segregation) │ │ │ └──────────────────────────────────────────────────────────────┘ ``` ## 8. Magnetohydrodynamics (MHD) ### 8.1 Lorentz Force Applied magnetic fields $\mathbf{B}$ modify melt flow through the Lorentz force: $$ \mathbf{F}_L = \mathbf{J} \times \mathbf{B} $$ **Where $\mathbf{J}$ is the current density:** $$ \mathbf{J} = \sigma (\mathbf{E} + \mathbf{u} \times \mathbf{B}) $$ ### 8.2 Maxwell's Equations $$ \nabla \times \mathbf{B} = \mu_0 \mathbf{J} $$ $$ \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} $$ $$ \nabla \cdot \mathbf{B} = 0 $$ ### 8.3 Magnetic Reynolds Number $$ Re_m = \mu_0 \sigma U L $$ For silicon melts: $Re_m \ll 1$, so **induced fields are negligible** (quasi-static approximation). ### 8.4 Hartmann Number The ratio of electromagnetic to viscous forces: $$ Ha = B L \sqrt{\frac{\sigma}{\mu}} $$ **Effects of magnetic field:** - $Ha > 10$: Significant flow suppression - $Ha > 100$: Quasi-two-dimensional flow ### 8.5 Common Magnetic Field Configurations | Configuration | Field Direction | Primary Effect | |---------------|-----------------|----------------| | **Axial (VMCZ)** | Parallel to pull axis | Suppresses meridional convection | | **Transverse (HMCZ)** | Perpendicular to axis | Creates asymmetric flow | | **Cusp (CMCZ)** | Combined radial/axial | Controls flow at specific heights | ## 9. Integrated Thermal-Capillary Model ### 9.1 Coupled System The complete CZ model couples multiple physics: **Heat transfer:** $$ \rho c_p \left( \frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T \right) = \nabla \cdot (k \nabla T) $$ **Momentum (in melt):** $$ \rho_0 \left( \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} \right) = -\nabla p + \mu \nabla^2 \mathbf{u} + \rho_0 \beta (T - T_0) \mathbf{g} $$ **Species transport:** $$ \frac{\partial C}{\partial t} + \mathbf{u} \cdot \nabla C = D \nabla^2 C $$ **Interface position (Stefan condition):** $$ \rho L v_n = [k \nabla T]_{jump} $$ **Meniscus shape (Young-Laplace):** $$ \gamma \kappa = \rho g z $$ ### 9.2 Radiation Heat Transfer **Surface-to-surface radiation:** $$ q_i = \varepsilon_i \sigma T_i^4 - \sum_{j=1}^{N} F_{ij} \varepsilon_j \sigma T_j^4 $$ **Where $F_{ij}$ is the view factor from surface $i$ to surface $j$.** **View factor calculation:** $$ F_{ij} = \frac{1}{A_i} \int_{A_i} \int_{A_j} \frac{\cos\theta_i \cos\theta_j}{\pi r^2} dA_j dA_i $$ ### 9.3 Quasi-Steady State Assumption For slowly varying processes, time derivatives are neglected: $$ \frac{\partial}{\partial t} \approx 0 $$ **This is valid when:** $$ \frac{v_p L_{thermal}}{\alpha} \ll 1 $$ ## 10. Numerical Methods ### 10.1 Discretization Techniques | Method | Application | Advantages | |--------|-------------|------------| | **Finite Element Method (FEM)** | Complex geometries, coupled physics | Handles irregular boundaries | | **Finite Volume Method (FVM)** | Fluid dynamics, conservation laws | Conservative discretization | | **Finite Difference Method (FDM)** | Simple geometries, structured grids | Computational efficiency | ### 10.2 Interface Tracking Methods **Front-tracking:** - Explicit interface representation - High accuracy at interface - Topology changes require special handling **Phase-field:** $$ \frac{\partial \phi}{\partial t} = M \left[ \varepsilon^2 \nabla^2 \phi - f'(\phi) + \lambda g'(\phi)(T - T_m) \right] $$ **Level-set:** $$ \frac{\partial \psi}{\partial t} + \mathbf{u} \cdot \nabla \psi = 0 $$ ### 10.3 Turbulence Models For high Rayleigh number flows: **k-ε model:** $$ \frac{\partial k}{\partial t} + \mathbf{u} \cdot \nabla k = \nabla \cdot \left( \frac{\nu_t}{\sigma_k} \nabla k \right) + P_k - \varepsilon $$ $$ \frac{\partial \varepsilon}{\partial t} + \mathbf{u} \cdot \nabla \varepsilon = \nabla \cdot \left( \frac{\nu_t}{\sigma_\varepsilon} \nabla \varepsilon \right) + C_1 \frac{\varepsilon}{k} P_k - C_2 \frac{\varepsilon^2}{k} $$ **Turbulent viscosity:** $$ \nu_t = C_\mu \frac{k^2}{\varepsilon} $$ ### 10.4 Newton-Raphson Iteration For coupled nonlinear systems: $$ \mathbf{x}^{(n+1)} = \mathbf{x}^{(n)} - \mathbf{J}^{-1} \mathbf{F}(\mathbf{x}^{(n)}) $$ **Where $\mathbf{J}$ is the Jacobian matrix:** $$ J_{ij} = \frac{\partial F_i}{\partial x_j} $$ ## 11. Physical | Physical Phenomenon | Mathematical Framework | Key Equation | |---------------------|------------------------|--------------| | Phase change | Stefan problem | $\rho L v_n = k_s \nabla T_s - k_l \nabla T_l$ | | Melt convection | Navier-Stokes + Boussinesq | $\rho_0 \frac{D\mathbf{u}}{Dt} = -\nabla p + \mu \nabla^2 \mathbf{u} + \rho_0 \beta \Delta T \mathbf{g}$ | | Meniscus shape | Young-Laplace | $\Delta P = \gamma \left( \frac{1}{R_1} + \frac{1}{R_2} \right)$ | | Dopant distribution | Scheil equation | $C_s = k_0 C_0 (1 - f_s)^{k_0 - 1}$ | | Mass transport | Convection-diffusion | $\frac{\partial C}{\partial t} + \mathbf{u} \cdot \nabla C = D \nabla^2 C$ | | Radiation | Stefan-Boltzmann | $q = \varepsilon \sigma T^4$ | | MHD | Maxwell + Navier-Stokes | $\mathbf{F} = \mathbf{J} \times \mathbf{B}$ | ## Symbol Glossary | Symbol | Description | SI Unit | |--------|-------------|---------| | $T$ | Temperature | K | | $\rho$ | Density | kg/m³ | | $c_p$ | Specific heat capacity | J/(kg*K) | | $k$ | Thermal conductivity | W/(m*K) | | $L$ | Latent heat of fusion | J/kg | | $\mu$ | Dynamic viscosity | Pa*s | | $\nu$ | Kinematic viscosity | m²/s | | $\alpha$ | Thermal diffusivity | m²/s | | $\beta$ | Thermal expansion coefficient | K⁻¹ | | $\gamma$ | Surface tension | N/m | | $\sigma$ | Electrical conductivity | S/m | | $D$ | Diffusion coefficient | m²/s | | $k_0$ | Segregation coefficient | — | | $\Omega$ | Angular velocity | rad/s | | $\mathbf{B}$ | Magnetic field | T |

czochralski,crystal growth,silicon ingot,pure silicon

# Mathematics of the Czochralski Process ## 1. Introduction The **Czochralski (CZ) method** is the dominant technique for growing single-crystal semiconductors, responsible for approximately 90% of silicon wafers used in integrated circuits. The mathematical modeling of this process involves: - **Multi-phase heat transfer** with moving boundaries - **Turbulent melt convection** driven by buoyancy and rotation - **Capillary phenomena** controlling crystal shape - **Mass transport** of dopants and impurities - **Phase transition thermodynamics** This document presents the key mathematical frameworks governing the CZ process. ## 2. Heat Transfer: The Stefan Problem ### 2.1 Overview The CZ process is fundamentally a **moving boundary problem** where the solid-liquid interface position must be determined as part of the solution. ### 2.2 Governing Heat Equation For both solid (crystal) and liquid (melt) regions: $$ \rho c_p \frac{\partial T}{\partial t} + \rho c_p (\mathbf{u} \cdot \nabla T) = \nabla \cdot (k \nabla T) + Q $$ **Where:** - $\rho$ — density [kg/m³] - $c_p$ — specific heat capacity [J/(kg·K)] - $T$ — temperature [K] - $\mathbf{u}$ — velocity field [m/s] - $k$ — thermal conductivity [W/(m·K)] - $Q$ — volumetric heat source [W/m³] ### 2.3 Stefan Condition at the Interface At the **solid-liquid interface**, the Stefan condition balances latent heat release with conductive heat flux: $$ \rho L v_n = k_s \left( \frac{\partial T}{\partial n} \right)_s - k_l \left( \frac{\partial T}{\partial n} \right)_l $$ **Where:** - $L$ — latent heat of fusion [J/kg] - $v_n$ — interface velocity (normal direction) [m/s] - $k_s$, $k_l$ — thermal conductivity of solid and liquid [W/(m·K)] - $n$ — unit normal vector pointing into the solid ### 2.4 Boundary Conditions | Location | Condition | Equation | |----------|-----------|----------| | Crystal surface | Radiation + convection | $-k\frac{\partial T}{\partial n} = h(T - T_{\infty}) + \varepsilon \sigma (T^4 - T_{amb}^4)$ | | Melt free surface | Radiation + evaporation | $-k\frac{\partial T}{\partial n} = \varepsilon \sigma T^4 + q_{evap}$ | | Crucible wall | Specified temperature | $T = T_{crucible}(z)$ | | Solid-liquid interface | Melting point | $T = T_m$ | ### 2.5 Enthalpy Formulation For numerical implementation, the **enthalpy method** avoids explicit interface tracking: $$ \frac{\partial H}{\partial t} + \nabla \cdot (\mathbf{u} H) = \nabla \cdot (k \nabla T) $$ **With enthalpy defined as:** $$ H(T) = \begin{cases} \rho_s c_{p,s} T & T < T_m \\ \rho_s c_{p,s} T_m + \rho L f_l & T = T_m \\ \rho_l c_{p,l} T + \rho L & T > T_m \end{cases} $$ Where $f_l \in [0,1]$ is the liquid fraction. ## 3. Fluid Dynamics: Navier-Stokes Equations ### 3.1 Governing Equations The melt flow is governed by the **incompressible Navier-Stokes equations** with the **Boussinesq approximation** for buoyancy: **Continuity (mass conservation):** $$ \nabla \cdot \mathbf{u} = 0 $$ **Momentum conservation:** $$ \rho_0 \left( \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} \right) = -\nabla p + \mu \nabla^2 \mathbf{u} + \rho_0 \beta (T - T_0) \mathbf{g} + \mathbf{F}_{ext} $$ **Where:** - $\rho_0$ — reference density [kg/m³] - $p$ — pressure [Pa] - $\mu$ — dynamic viscosity [Pa·s] - $\beta$ — thermal expansion coefficient [K⁻¹] - $T_0$ — reference temperature [K] - $\mathbf{g}$ — gravitational acceleration [m/s²] - $\mathbf{F}_{ext}$ — external forces (rotation, magnetic) [N/m³] ### 3.2 Boussinesq Approximation The density variation is linearized: $$ \rho(T) \approx \rho_0 [1 - \beta(T - T_0)] $$ **Validity condition:** $$ \frac{\Delta \rho}{\rho_0} = \beta \Delta T \ll 1 $$ ### 3.3 Rotational Effects For rotating crystal (angular velocity $\Omega_c$) and crucible ($\Omega_{cr}$): **Coriolis force:** $$ \mathbf{F}_{Cor} = -2\rho_0 (\boldsymbol{\Omega} \times \mathbf{u}) $$ **Centrifugal force:** $$ \mathbf{F}_{cent} = -\rho_0 \boldsymbol{\Omega} \times (\boldsymbol{\Omega} \times \mathbf{r}) $$ ### 3.4 Marangoni (Thermocapillary) Convection At the free surface, temperature-dependent surface tension drives flow: $$ \mu \frac{\partial u_t}{\partial n} = \frac{\partial \gamma}{\partial T} \frac{\partial T}{\partial t} $$ **Where:** - $\gamma$ — surface tension [N/m] - $\frac{\partial \gamma}{\partial T}$ — temperature coefficient of surface tension [N/(m·K)] ### 3.5 Dimensionless Numbers | Number | Definition | Physical Meaning | |--------|------------|------------------| | **Reynolds** | $Re = \frac{\rho U L}{\mu}$ | Inertia / Viscous forces | | **Grashof** | $Gr = \frac{g \beta \Delta T L^3}{\nu^2}$ | Buoyancy / Viscous forces | | **Prandtl** | $Pr = \frac{\nu}{\alpha} = \frac{\mu c_p}{k}$ | Momentum / Thermal diffusivity | | **Rayleigh** | $Ra = Gr \cdot Pr$ | Convection strength | | **Marangoni** | $Ma = \frac{\left|\frac{\partial \gamma}{\partial T}\right| \Delta T L}{\mu \alpha}$ | Surface tension / Viscous forces | **For silicon CZ growth:** - $Ra \sim 10^8 - 10^{10}$ (turbulent regime) - $Pr \approx 0.01$ (liquid metals) ## 4. Capillarity: Young-Laplace Equation ### 4.1 Meniscus Shape The melt meniscus connecting the crystal to the melt surface is governed by the **Young-Laplace equation**: $$ \Delta P = \gamma \left( \frac{1}{R_1} + \frac{1}{R_2} \right) $$ **Where:** - $\Delta P$ — pressure difference across interface [Pa] - $\gamma$ — surface tension [N/m] - $R_1$, $R_2$ — principal radii of curvature [m] ### 4.2 Axisymmetric Formulation For axisymmetric geometry with meniscus profile $z = z(r)$: $$ \gamma \left[ \frac{z''}{(1 + z'^2)^{3/2}} + \frac{z'}{r(1 + z'^2)^{1/2}} \right] = \rho g z $$ **Where:** - $z'$ = $\frac{dz}{dr}$ - $z''$ = $\frac{d^2z}{dr^2}$ ### 4.3 Arc-Length Parameterization Using arc-length $s$ for numerical stability: $$ \frac{dr}{ds} = \cos\phi $$ $$ \frac{dz}{ds} = \sin\phi $$ $$ \frac{d\phi}{ds} = \frac{\rho g z}{\gamma} - \frac{\sin\phi}{r} $$ **Where $\phi$ is the tangent angle to the meniscus.** ### 4.4 Growth Angle Condition At the **triple point** (crystal-melt-gas junction): $$ \phi_{triple} = \alpha_{gr} $$ **Where $\alpha_{gr}$ is the characteristic growth angle:** | Material | Growth Angle $\alpha_{gr}$ | |----------|---------------------------| | Silicon | 11° | | Germanium | 13° | | GaAs | 17° | | Sapphire | 35° | ### 4.5 Crystal Radius Evolution The crystal radius changes according to: $$ \frac{dr_c}{dt} = v_p \tan(\alpha_{gr} - \theta) $$ **Where:** - $r_c$ — crystal radius [m] - $v_p$ — pulling velocity [m/s] - $\theta$ — current meniscus angle at triple point **Stability conditions:** - $\theta < \alpha_{gr}$ → Crystal radius **increases** - $\theta = \alpha_{gr}$ → Crystal radius **constant** (steady state) - $\theta > \alpha_{gr}$ → Crystal radius **decreases** ### 4.6 Capillary Constant The capillary length scale: $$ a = \sqrt{\frac{2\gamma}{\rho g}} $$ **For silicon:** $a \approx 7.6$ mm ## 5. Crystal Growth Rate ### 5.1 Interface Energy Balance The local growth velocity is determined by heat flux balance: $$ v_g = \frac{1}{\rho L} \left[ k_s \left( \frac{\partial T}{\partial n} \right)_s - k_l \left( \frac{\partial T}{\partial n} \right)_l \right] $$ ### 5.2 Simplified Growth Rate Model $$ G = \frac{dL}{dt} = v_p \cdot \frac{T_m - T_i}{T_m - T_s} $$ **Where:** - $G$ — crystal growth rate [m/s] - $L$ — crystal length [m] - $v_p$ — pulling rate [m/s] - $T_m$ — melting temperature [K] - $T_i$ — interface temperature [K] - $T_s$ — seed temperature [K] ### 5.3 Maximum Pull Rate The maximum pull rate is limited by heat transfer: $$ v_{p,max} = \frac{k_s G_s}{\rho L} $$ **Where $G_s = \left( \frac{\partial T}{\partial z} \right)_s$ is the axial temperature gradient in the crystal.** ## 6. Dopant Distribution: Scheil Equation ### 6.1 Segregation Coefficient The **equilibrium segregation coefficient** is defined as: $$ k_0 = \frac{C_s}{C_l} $$ **Where:** - $C_s$ — solute concentration in solid at interface [atoms/cm³] - $C_l$ — solute concentration in liquid at interface [atoms/cm³] **Typical values for silicon:** | Dopant | $k_0$ | |--------|-------| | Boron (B) | 0.80 | | Phosphorus (P) | 0.35 | | Arsenic (As) | 0.30 | | Antimony (Sb) | 0.023 | | Oxygen (O) | 1.25 | ### 6.2 Scheil-Gulliver Equation For a well-mixed melt with no solid-state diffusion: **Liquid concentration:** $$ C_L = C_0 (1 - f_s)^{k_0 - 1} $$ **Solid concentration:** $$ C_s = k_0 C_0 (1 - f_s)^{k_0 - 1} $$ **Where:** - $C_0$ — initial concentration in melt [atoms/cm³] - $f_s$ — solidified fraction $(= V_s / V_{total})$ ### 6.3 Effective Segregation Coefficient The **Burton-Prim-Slichter (BPS) equation** accounts for diffusion boundary layer: $$ k_{eff} = \frac{k_0}{k_0 + (1 - k_0) \exp\left( -\frac{v_g \delta}{D} \right)} $$ **Where:** - $\delta$ — boundary layer thickness [m] - $D$ — diffusion coefficient in liquid [m²/s] - $v_g$ — growth velocity [m/s] ### 6.4 Boundary Layer Thickness For rotating crystal (Cochran model): $$ \delta = 1.6 D^{1/3} \nu^{1/6} \Omega^{-1/2} $$ **Where:** - $\nu$ — kinematic viscosity [m²/s] - $\Omega$ — crystal rotation rate [rad/s] ### 6.5 Lambert W Function Solution For complex segregation problems, the Scheil equation leads to transcendental equations: $$ \left( \frac{C_s}{C_L} \right) \ln(1 - f_s) \cdot e^{\left( \frac{C_s}{C_L} \ln(1-f_s) \right)} = \left( \frac{C_s}{C_0} \right) (1 - f_s) \ln(1 - f_s) $$ **Solution via Lambert W function:** $$ x \cdot e^x = y \implies x = W(y) $$ ## 7. Oxygen Transport ### 7.1 Convection-Diffusion Equation Oxygen concentration in the melt follows: $$ \frac{\partial C}{\partial t} + \mathbf{u} \cdot \nabla C = D_O \nabla^2 C $$ **Where:** - $C$ — oxygen concentration [atoms/cm³] - $D_O$ — oxygen diffusivity in silicon melt ≈ 5×10⁻⁸ m²/s ### 7.2 Boundary Conditions **Crucible wall (dissolution):** $$ C_{wall} = A \exp\left( -\frac{E_a}{RT} \right) $$ **Common models:** - **Matsuo et al.:** $C_{wall} = 3.99 \times 10^{25} \exp\left( -\frac{1.2 \text{ eV}}{k_B T} \right)$ atoms/cm³ **Free surface (evaporation):** $$ -D_O \frac{\partial C}{\partial n} = k_{evap} (C - C_{eq}) $$ **Crystal interface (segregation):** $$ D_O \frac{\partial C}{\partial n}\bigg|_{melt} = D_{O,s} \frac{\partial C}{\partial n}\bigg|_{crystal} + (1 - k_O) v_g C_{interface} $$ ### 7.3 Oxygen Transport Mechanisms ``` - ┌──────────────────────────────────────────────────────────────┐ │ OXYGEN TRANSPORT │ ├──────────────────────────────────────────────────────────────┤ │ │ │ SiO₂ Crucible ──→ Dissolution ──→ Si Melt │ │ │ │ │ ├──→ Evaporation │ │ │ (as SiO) │ │ │ │ │ └──→ Crystal │ │ (segregation) │ │ │ └──────────────────────────────────────────────────────────────┘ ``` ## 8. Magnetohydrodynamics (MHD) ### 8.1 Lorentz Force Applied magnetic fields $\mathbf{B}$ modify melt flow through the Lorentz force: $$ \mathbf{F}_L = \mathbf{J} \times \mathbf{B} $$ **Where $\mathbf{J}$ is the current density:** $$ \mathbf{J} = \sigma (\mathbf{E} + \mathbf{u} \times \mathbf{B}) $$ ### 8.2 Maxwell's Equations $$ \nabla \times \mathbf{B} = \mu_0 \mathbf{J} $$ $$ \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} $$ $$ \nabla \cdot \mathbf{B} = 0 $$ ### 8.3 Magnetic Reynolds Number $$ Re_m = \mu_0 \sigma U L $$ For silicon melts: $Re_m \ll 1$, so **induced fields are negligible** (quasi-static approximation). ### 8.4 Hartmann Number The ratio of electromagnetic to viscous forces: $$ Ha = B L \sqrt{\frac{\sigma}{\mu}} $$ **Effects of magnetic field:** - $Ha > 10$: Significant flow suppression - $Ha > 100$: Quasi-two-dimensional flow ### 8.5 Common Magnetic Field Configurations | Configuration | Field Direction | Primary Effect | |---------------|-----------------|----------------| | **Axial (VMCZ)** | Parallel to pull axis | Suppresses meridional convection | | **Transverse (HMCZ)** | Perpendicular to axis | Creates asymmetric flow | | **Cusp (CMCZ)** | Combined radial/axial | Controls flow at specific heights | ## 9. Integrated Thermal-Capillary Model ### 9.1 Coupled System The complete CZ model couples multiple physics: **Heat transfer:** $$ \rho c_p \left( \frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T \right) = \nabla \cdot (k \nabla T) $$ **Momentum (in melt):** $$ \rho_0 \left( \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} \right) = -\nabla p + \mu \nabla^2 \mathbf{u} + \rho_0 \beta (T - T_0) \mathbf{g} $$ **Species transport:** $$ \frac{\partial C}{\partial t} + \mathbf{u} \cdot \nabla C = D \nabla^2 C $$ **Interface position (Stefan condition):** $$ \rho L v_n = [k \nabla T]_{jump} $$ **Meniscus shape (Young-Laplace):** $$ \gamma \kappa = \rho g z $$ ### 9.2 Radiation Heat Transfer **Surface-to-surface radiation:** $$ q_i = \varepsilon_i \sigma T_i^4 - \sum_{j=1}^{N} F_{ij} \varepsilon_j \sigma T_j^4 $$ **Where $F_{ij}$ is the view factor from surface $i$ to surface $j$.** **View factor calculation:** $$ F_{ij} = \frac{1}{A_i} \int_{A_i} \int_{A_j} \frac{\cos\theta_i \cos\theta_j}{\pi r^2} dA_j dA_i $$ ### 9.3 Quasi-Steady State Assumption For slowly varying processes, time derivatives are neglected: $$ \frac{\partial}{\partial t} \approx 0 $$ **This is valid when:** $$ \frac{v_p L_{thermal}}{\alpha} \ll 1 $$ ## 10. Numerical Methods ### 10.1 Discretization Techniques | Method | Application | Advantages | |--------|-------------|------------| | **Finite Element Method (FEM)** | Complex geometries, coupled physics | Handles irregular boundaries | | **Finite Volume Method (FVM)** | Fluid dynamics, conservation laws | Conservative discretization | | **Finite Difference Method (FDM)** | Simple geometries, structured grids | Computational efficiency | ### 10.2 Interface Tracking Methods **Front-tracking:** - Explicit interface representation - High accuracy at interface - Topology changes require special handling **Phase-field:** $$ \frac{\partial \phi}{\partial t} = M \left[ \varepsilon^2 \nabla^2 \phi - f'(\phi) + \lambda g'(\phi)(T - T_m) \right] $$ **Level-set:** $$ \frac{\partial \psi}{\partial t} + \mathbf{u} \cdot \nabla \psi = 0 $$ ### 10.3 Turbulence Models For high Rayleigh number flows: **k-ε model:** $$ \frac{\partial k}{\partial t} + \mathbf{u} \cdot \nabla k = \nabla \cdot \left( \frac{\nu_t}{\sigma_k} \nabla k \right) + P_k - \varepsilon $$ $$ \frac{\partial \varepsilon}{\partial t} + \mathbf{u} \cdot \nabla \varepsilon = \nabla \cdot \left( \frac{\nu_t}{\sigma_\varepsilon} \nabla \varepsilon \right) + C_1 \frac{\varepsilon}{k} P_k - C_2 \frac{\varepsilon^2}{k} $$ **Turbulent viscosity:** $$ \nu_t = C_\mu \frac{k^2}{\varepsilon} $$ ### 10.4 Newton-Raphson Iteration For coupled nonlinear systems: $$ \mathbf{x}^{(n+1)} = \mathbf{x}^{(n)} - \mathbf{J}^{-1} \mathbf{F}(\mathbf{x}^{(n)}) $$ **Where $\mathbf{J}$ is the Jacobian matrix:** $$ J_{ij} = \frac{\partial F_i}{\partial x_j} $$ ## 11. Physical | Physical Phenomenon | Mathematical Framework | Key Equation | |---------------------|------------------------|--------------| | Phase change | Stefan problem | $\rho L v_n = k_s \nabla T_s - k_l \nabla T_l$ | | Melt convection | Navier-Stokes + Boussinesq | $\rho_0 \frac{D\mathbf{u}}{Dt} = -\nabla p + \mu \nabla^2 \mathbf{u} + \rho_0 \beta \Delta T \mathbf{g}$ | | Meniscus shape | Young-Laplace | $\Delta P = \gamma \left( \frac{1}{R_1} + \frac{1}{R_2} \right)$ | | Dopant distribution | Scheil equation | $C_s = k_0 C_0 (1 - f_s)^{k_0 - 1}$ | | Mass transport | Convection-diffusion | $\frac{\partial C}{\partial t} + \mathbf{u} \cdot \nabla C = D \nabla^2 C$ | | Radiation | Stefan-Boltzmann | $q = \varepsilon \sigma T^4$ | | MHD | Maxwell + Navier-Stokes | $\mathbf{F} = \mathbf{J} \times \mathbf{B}$ | ## Symbol Glossary | Symbol | Description | SI Unit | |--------|-------------|---------| | $T$ | Temperature | K | | $\rho$ | Density | kg/m³ | | $c_p$ | Specific heat capacity | J/(kg*K) | | $k$ | Thermal conductivity | W/(m*K) | | $L$ | Latent heat of fusion | J/kg | | $\mu$ | Dynamic viscosity | Pa*s | | $\nu$ | Kinematic viscosity | m²/s | | $\alpha$ | Thermal diffusivity | m²/s | | $\beta$ | Thermal expansion coefficient | K⁻¹ | | $\gamma$ | Surface tension | N/m | | $\sigma$ | Electrical conductivity | S/m | | $D$ | Diffusion coefficient | m²/s | | $k_0$ | Segregation coefficient | — | | $\Omega$ | Angular velocity | rad/s | | $\mathbf{B}$ | Magnetic field | T |