data poisoning,training,malicious
Data poisoning injects malicious samples into training data. Degrades or manipulates model behavior.
656 technical terms and definitions
Data poisoning injects malicious samples into training data. Degrades or manipulates model behavior.
Distributed data transformation.
Ratio of different data types.
Data quality checks: schema validation, distribution monitoring, anomaly detection. Bad data = bad models.
Revisit earlier training data.
Data retention policies specify how long data is stored before deletion.
I can discuss data-model-compute scaling ratios and help you plan realistic training runs given your resources.
Document dataset characteristics.
Randomize order across distributed system.
GDPR rights to access modify or delete data.
Limited by available data.
Initialize based on data statistics.
Distill without access to original data.
Generate natural language from structured data.
Retrieve structured data.
Databricks provides lakehouse platform. MLflow integrated. Spark-based ML at scale.
Systematic biases in training data.
Split datasets across nodes.
Track dataset versions.
LLM quality depends heavily on data: diverse, large, deduplicated, filtered, and domain-relevant corpora produce stronger and more robust models.
Datasets library loads and processes datasets. Streaming, memory mapping. Hugging Face.
Datasheets for datasets document collection, composition, recommended uses. Transparency.
Manufacturing date marking.
Temporal reasoning about dates.
Daily fluctuations.
Dynamic Bayesian Network click model captures sequential examination with satisfaction-dependent continuation.
Density-Based Spatial Clustering identifies clusters of varying shapes handling noise.
dbt transforms data in warehouse. Analytics engineering. SQL-based pipelines.
DC parametric tests measure static electrical characteristics like threshold voltage saturation current and leakage.
Use DC voltage to sputter conductive targets.
Test static electrical characteristics.
Deterministic sampling for diffusion.
Deterministic diffusion sampling.
# Semiconductor Manufacturing: Dielectric Deposition Process (DDP) Modeling ## Overview **DDP (Dielectric Deposition Process)** refers to the set of techniques used to deposit insulating films in semiconductor fabrication. Dielectric materials serve critical functions: - **Gate dielectrics** — $\text{SiO}_2$, high-$\kappa$ materials like $\text{HfO}_2$ - **Interlayer dielectrics (ILD)** — isolating metal interconnect layers - **Spacer dielectrics** — defining transistor gate dimensions - **Passivation layers** — protecting finished devices - **Hard masks** — etch selectivity during patterning ## Dielectric Deposition Methods ### Primary Techniques | Method | Full Name | Temperature Range | Typical Applications | |--------|-----------|-------------------|---------------------| | **PECVD** | Plasma-Enhanced CVD | $200-400°C$ | $\text{SiO}_2$, $\text{SiN}_x$ for ILD, passivation | | **LPCVD** | Low-Pressure CVD | $400-800°C$ | High-quality $\text{Si}_3\text{N}_4$, poly-Si | | **HDPCVD** | High-Density Plasma CVD | $300-450°C$ | Gap-fill for trenches and vias | | **ALD** | Atomic Layer Deposition | $150-350°C$ | Ultra-thin gate dielectrics ($\text{HfO}_2$, $\text{Al}_2\text{O}_3$) | | **Thermal Oxidation** | — | $800-1200°C$ | Gate oxide ($\text{SiO}_2$) | | **Spin-on** | SOG/SOD | $100-400°C$ | Planarization layers | ### Selection Criteria - **Conformality requirements** — ALD > LPCVD > PECVD - **Thermal budget** — PECVD/ALD for low-$T$, thermal oxidation for high-quality - **Throughput** — CVD methods faster than ALD - **Film quality** — Thermal > LPCVD > PECVD generally ## Physics of Dielectric Deposition Modeling ### Fundamental Transport Equations Modeling dielectric deposition requires solving coupled partial differential equations for mass, momentum, and energy transport. #### Mass Transport (Species Concentration) $$ \frac{\partial C}{\partial t} + \nabla \cdot (\mathbf{v}C) = D\nabla^2 C + R $$ Where: - $C$ — species concentration $[\text{mol/m}^3]$ - $\mathbf{v}$ — velocity field $[\text{m/s}]$ - $D$ — diffusion coefficient $[\text{m}^2/\text{s}]$ - $R$ — reaction rate $[\text{mol/m}^3 \cdot \text{s}]$ #### Energy Balance $$ \rho C_p \left(\frac{\partial T}{\partial t} + \mathbf{v} \cdot \nabla T\right) = k\nabla^2 T + Q $$ Where: - $\rho$ — density $[\text{kg/m}^3]$ - $C_p$ — specific heat capacity $[\text{J/kg} \cdot \text{K}]$ - $k$ — thermal conductivity $[\text{W/m} \cdot \text{K}]$ - $Q$ — heat generation rate $[\text{W/m}^3]$ #### Momentum Balance (Navier-Stokes) $$ \rho\left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v}\right) = -\nabla p + \mu \nabla^2 \mathbf{v} + \rho \mathbf{g} $$ Where: - $p$ — pressure $[\text{Pa}]$ - $\mu$ — dynamic viscosity $[\text{Pa} \cdot \text{s}]$ - $\mathbf{g}$ — gravitational acceleration $[\text{m/s}^2]$ ### Surface Reaction Kinetics #### Arrhenius Rate Expression $$ k = A \exp\left(-\frac{E_a}{RT}\right) $$ Where: - $k$ — rate constant - $A$ — pre-exponential factor - $E_a$ — activation energy $[\text{J/mol}]$ - $R$ — gas constant $= 8.314 \, \text{J/mol} \cdot \text{K}$ - $T$ — temperature $[\text{K}]$ #### Langmuir Adsorption Isotherm (for ALD) $$ \theta = \frac{K \cdot p}{1 + K \cdot p} $$ Where: - $\theta$ — fractional surface coverage $(0 \leq \theta \leq 1)$ - $K$ — equilibrium adsorption constant - $p$ — partial pressure of adsorbate #### Sticking Coefficient $$ S = S_0 \cdot (1 - \theta)^n \cdot \exp\left(-\frac{E_a}{RT}\right) $$ Where: - $S$ — sticking coefficient (probability of adsorption) - $S_0$ — initial sticking coefficient - $n$ — reaction order ### Plasma Modeling (PECVD/HDPCVD) #### Electron Energy Distribution Function (EEDF) For non-Maxwellian plasmas, the Druyvesteyn distribution: $$ f(\varepsilon) = C \cdot \varepsilon^{1/2} \exp\left(-\left(\frac{\varepsilon}{\bar{\varepsilon}}\right)^2\right) $$ Where: - $\varepsilon$ — electron energy $[\text{eV}]$ - $\bar{\varepsilon}$ — mean electron energy - $C$ — normalization constant #### Ion Bombardment Energy $$ E_{ion} = e \cdot V_{sheath} + \frac{1}{2}m_{ion}v_{Bohm}^2 $$ Where: - $V_{sheath}$ — plasma sheath voltage - $v_{Bohm} = \sqrt{\frac{k_B T_e}{m_{ion}}}$ — Bohm velocity #### Radical Generation Rate $$ R_{radical} = n_e \cdot n_{gas} \cdot \langle \sigma v \rangle $$ Where: - $n_e$ — electron density $[\text{m}^{-3}]$ - $n_{gas}$ — neutral gas density - $\langle \sigma v \rangle$ — rate coefficient (energy-averaged cross-section × velocity) ## Feature-Scale Modeling ### Critical Phenomena in High Aspect Ratio Structures Modern semiconductor devices require filling trenches and vias with aspect ratios (AR) exceeding 50:1. #### Knudsen Number $$ Kn = \frac{\lambda}{d} $$ Where: - $\lambda$ — mean free path of gas molecules - $d$ — characteristic feature dimension | Regime | Knudsen Number | Transport Type | |--------|---------------|----------------| | Continuum | $Kn < 0.01$ | Viscous flow | | Slip | $0.01 < Kn < 0.1$ | Transition | | Transition | $0.1 < Kn < 10$ | Mixed | | Free molecular | $Kn > 10$ | Ballistic/Knudsen | #### Mean Free Path Calculation $$ \lambda = \frac{k_B T}{\sqrt{2} \pi d_m^2 p} $$ Where: - $d_m$ — molecular diameter $[\text{m}]$ - $p$ — pressure $[\text{Pa}]$ ### Step Coverage Model $$ SC = \frac{t_{sidewall}}{t_{top}} \times 100\% $$ For diffusion-limited deposition: $$ SC \approx \frac{1}{\sqrt{1 + AR^2}} $$ For reaction-limited deposition: $$ SC \approx 1 - \frac{S \cdot AR}{2} $$ Where: - $S$ — sticking coefficient - $AR$ — aspect ratio = depth/width ### Void Formation Criterion Void formation occurs when: $$ \frac{d(thickness_{sidewall})}{dz} > \frac{w(z)}{2 \cdot t_{total}} $$ Where: - $w(z)$ — feature width at depth $z$ - $t_{total}$ — total deposition time ## Film Properties to Model ### Structural Properties - **Thickness uniformity**: $$ U = \frac{t_{max} - t_{min}}{t_{max} + t_{min}} \times 100\% $$ - **Film stress** (Stoney equation): $$ \sigma_f = \frac{E_s t_s^2}{6(1-\nu_s)t_f} \cdot \frac{1}{R} $$ Where: - $E_s$, $\nu_s$ — substrate Young's modulus and Poisson ratio - $t_s$, $t_f$ — substrate and film thickness - $R$ — radius of curvature - **Density from refractive index** (Lorentz-Lorenz): $$ \frac{n^2 - 1}{n^2 + 2} = \frac{4\pi}{3} N \alpha $$ Where $N$ is molecular density and $\alpha$ is polarizability ### Electrical Properties - **Dielectric constant** (capacitance method): $$ \kappa = \frac{C \cdot t}{\varepsilon_0 \cdot A} $$ - **Breakdown field**: $$ E_{BD} = \frac{V_{BD}}{t} $$ - **Leakage current density** (Fowler-Nordheim tunneling): $$ J = \frac{q^3 E^2}{8\pi h \phi_B} \exp\left(-\frac{8\pi\sqrt{2m^*}\phi_B^{3/2}}{3qhE}\right) $$ Where: - $E$ — electric field - $\phi_B$ — barrier height - $m^*$ — effective electron mass ## Multiscale Modeling Hierarchy ### Scale Linking Framework ``` ┌─────────────────────────────────────────────────────────────────────┐ │ ATOMISTIC (Å-nm) MESOSCALE (nm-μm) CONTINUUM │ │ ───────────────── ────────────────── (μm-mm) │ │ ────────── │ │ • DFT calculations • Kinetic Monte Carlo • CFD │ │ • Molecular Dynamics • Level-set methods • FEM │ │ • Ab initio MD • Cellular automata • TCAD │ │ │ │ Outputs: Outputs: Outputs: │ │ • Binding energies • Film morphology • Flow │ │ • Reaction barriers • Growth rate • T, C │ │ • Diffusion coefficients • Surface roughness • Profiles │ └─────────────────────────────────────────────────────────────────────┘ ``` ### DFT Calculations Solve the Kohn-Sham equations: $$ \left[-\frac{\hbar^2}{2m}\nabla^2 + V_{eff}(\mathbf{r})\right]\psi_i(\mathbf{r}) = \varepsilon_i \psi_i(\mathbf{r}) $$ Where: $$ V_{eff} = V_{ext} + V_H + V_{xc} $$ - $V_{ext}$ — external potential (nuclei) - $V_H$ — Hartree potential (electron-electron) - $V_{xc}$ — exchange-correlation potential ### Kinetic Monte Carlo (kMC) Event selection probability: $$ P_i = \frac{k_i}{\sum_j k_j} $$ Time advancement: $$ \Delta t = -\frac{\ln(r)}{\sum_j k_j} $$ Where $r$ is a random number $\in (0,1]$ ## Specific Process Examples ### PECVD $\text{SiO}_2$ from TEOS #### Overall Reaction $$ \text{Si(OC}_2\text{H}_5\text{)}_4 + 12\text{O}^* \xrightarrow{\text{plasma}} \text{SiO}_2 + 8\text{CO}_2 + 10\text{H}_2\text{O} $$ #### Key Process Parameters | Parameter | Typical Range | Effect | |-----------|--------------|--------| | RF Power | $100-1000 \, \text{W}$ | ↑ Power → ↑ Density, ↓ Dep rate | | Pressure | $0.5-5 \, \text{Torr}$ | ↑ Pressure → ↑ Dep rate, ↓ Conformality | | Temperature | $300-400°C$ | ↑ Temp → ↑ Density, ↓ H content | | TEOS:O₂ ratio | $1:5$ to $1:20$ | Affects stoichiometry, quality | #### Deposition Rate Model $$ R_{dep} = k_0 \cdot p_{TEOS}^a \cdot p_{O_2}^b \cdot \exp\left(-\frac{E_a}{RT}\right) $$ Typical values: $a \approx 0.5$, $b \approx 0.3$, $E_a \approx 0.3 \, \text{eV}$ ### ALD High-$\kappa$ Dielectrics ($\text{HfO}_2$) #### Half-Reactions **Cycle A (Metal precursor):** $$ \text{Hf(N(CH}_3\text{)}_2\text{)}_4\text{(g)} + \text{*-OH} \rightarrow \text{*-O-Hf(N(CH}_3\text{)}_2\text{)}_3 + \text{HN(CH}_3\text{)}_2 $$ **Cycle B (Oxidizer):** $$ \text{*-O-Hf(N(CH}_3\text{)}_2\text{)}_3 + 2\text{H}_2\text{O} \rightarrow \text{*-O-Hf(OH)}_3 + 3\text{HN(CH}_3\text{)}_2 $$ #### Growth Per Cycle (GPC) $$ \text{GPC} = \frac{\theta_{sat} \cdot \rho_{site} \cdot M_{HfO_2}}{\rho_{HfO_2} \cdot N_A} $$ Typical GPC for $\text{HfO}_2$: $0.8-1.2 \, \text{Å/cycle}$ #### ALD Window ``` ┌────────────────────────────┐ GPC │ ┌──────────────┐ │ (Å/ │ /│ │\ │ cycle) │ / │ ALD │ \ │ │ / │ WINDOW │ \ │ │ / │ │ \ │ │/ │ │ \ │ └─────┴──────────────┴─────┴─┘ T_min T_max Temperature (°C) ``` Below $T_{min}$: Condensation, incomplete reactions Above $T_{max}$: Precursor decomposition, CVD-like behavior ### HDPCVD Gap Fill #### Deposition-Etch Competition Net deposition rate: $$ R_{net}(z) = R_{dep}(\theta) - R_{etch}(E_{ion}, \theta) $$ Where: - $R_{dep}(\theta)$ — angular-dependent deposition rate - $R_{etch}$ — ion-enhanced etch rate - $\theta$ — angle from surface normal #### Sputter Yield (Yamamura Formula) $$ Y(E, \theta) = Y_0(E) \cdot f(\theta) $$ Where: $$ f(\theta) = \cos^{-f}\theta \cdot \exp\left[-\Sigma(\cos^{-1}\theta - 1)\right] $$ ## Machine Learning Applications ### Virtual Metrology **Objective:** Predict film properties from in-situ sensor data without destructive measurement. $$ \hat{y} = f_{ML}(\mathbf{x}_{sensors}, \mathbf{x}_{recipe}) $$ Where: - $\hat{y}$ — predicted property (thickness, stress, etc.) - $\mathbf{x}_{sensors}$ — OES, pressure, RF power signals - $\mathbf{x}_{recipe}$ — setpoints and timing ### Gaussian Process Regression $$ y(\mathbf{x}) \sim \mathcal{GP}\left(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}')\right) $$ Posterior mean prediction: $$ \mu(\mathbf{x}^*) = \mathbf{k}^T(\mathbf{K} + \sigma_n^2\mathbf{I})^{-1}\mathbf{y} $$ Uncertainty quantification: $$ \sigma^2(\mathbf{x}^*) = k(\mathbf{x}^*, \mathbf{x}^*) - \mathbf{k}^T(\mathbf{K} + \sigma_n^2\mathbf{I})^{-1}\mathbf{k} $$ ### Bayesian Optimization for Recipe Development **Acquisition function** (Expected Improvement): $$ \text{EI}(\mathbf{x}) = \mathbb{E}\left[\max(f(\mathbf{x}) - f^+, 0)\right] $$ Where $f^+$ is the best observed value. ## Advanced Node Challenges (Sub-5nm) ### Critical Challenges | Challenge | Technical Details | Modeling Complexity | |-----------|------------------|---------------------| | **Ultra-high AR** | 3D NAND: 100+ layers, AR > 50:1 | Knudsen transport, ballistic modeling | | **Atomic precision** | Gate dielectrics: 1-2 nm | Monolayer-level control, quantum effects | | **Low-$\kappa$ integration** | $\kappa < 2.5$ porous films | Mechanical integrity, plasma damage | | **Selective deposition** | Area-selective ALD | Nucleation control, surface chemistry | | **Thermal budget** | BEOL: $< 400°C$ | Kinetic limitations, precursor chemistry | ### Equivalent Oxide Thickness (EOT) For high-$\kappa$ gate stacks: $$ \text{EOT} = t_{IL} + \frac{\kappa_{SiO_2}}{\kappa_{high-k}} \cdot t_{high-k} $$ Where: - $t_{IL}$ — interfacial layer thickness - $\kappa_{SiO_2} = 3.9$ - Typical high-$\kappa$: $\kappa_{HfO_2} \approx 20-25$ ### Low-$\kappa$ Dielectric Design Effective dielectric constant: $$ \kappa_{eff} = \kappa_{matrix} \cdot (1 - p) + \kappa_{air} \cdot p $$ Where $p$ is porosity fraction. Target for advanced nodes: $\kappa_{eff} < 2.0$ ## Tools and Software ### Commercial TCAD - **Synopsys Sentaurus Process** — full process simulation - **Silvaco Victory Process** — alternative TCAD suite - **Lam Research SEMulator3D** — 3D topography simulation ### Multiphysics Platforms - **COMSOL Multiphysics** — coupled PDE solving - **Ansys Fluent** — CFD for reactor design - **Ansys CFX** — alternative CFD solver ### Specialized Tools - **CHEMKIN** (Ansys) — gas-phase reaction kinetics - **Reaction Design** — combustion and plasma chemistry - **Custom Monte Carlo codes** — feature-scale simulation ### Open Source Options - **OpenFOAM** — CFD framework - **LAMMPS** — molecular dynamics - **Quantum ESPRESSO** — DFT calculations - **SPARTA** — DSMC for rarefied gas dynamics ## Summary Dielectric deposition modeling in semiconductor manufacturing integrates: 1. **Transport phenomena** — mass, momentum, energy conservation 2. **Reaction kinetics** — surface and gas-phase chemistry 3. **Plasma physics** — for PECVD/HDPCVD processes 4. **Feature-scale physics** — conformality, void formation 5. **Multiscale approaches** — atomistic to continuum 6. **Machine learning** — for optimization and virtual metrology The goal is predicting and optimizing film properties based on process parameters while accounting for the extreme topography of modern semiconductor devices.
Continuous action actor-critic.
Deep Deterministic Policy Gradient is a model-free off-policy algorithm that combines Q-learning with policy gradients for continuous action spaces.
Original diffusion formulation.
Design novel drug candidates from scratch.
De-emphasis reduces low-frequency power while maintaining high frequencies for improved link performance.
Find unused code.
Dead code elimination removes unused operations from computation graphs.
Remove unused operations.
Analyze debate structure and claims.
AIs debate to find truth.
AI debate has models argue opposing positions enabling human judgment of complex questions.
Disentangled attention and enhanced decoding.
Remove unfair biases.
Methods to remove bias.
Methods to reduce unwanted biases (data augmentation INLP CDA).
Debiasing reduces unfair biases in training data or model predictions.