default,full stack ai,ai stack,ai infrastructure,ai build,vertical integration,frontier ai,ai systems,ai development
# The Full Stack AI Build: A Comprehensive Analysis
## Overview
The 5-Layer AI Stack represents the complete vertical integration required to build frontier AI systems:
$$
\text{Energy} \rightarrow \text{Chips} \rightarrow \text{Infrastructure} \rightarrow \text{Models} \rightarrow \text{Applications}
$$
## Layer 1: Energy (Electricity)
The foundational constraint upon which all other layers depend.
### Key Metrics
- **Training Energy Consumption**: A frontier LLM requires approximately $50-100+ \text{ GWh}$
- **Power Usage Effectiveness (PUE)**:
$$
\text{PUE} = \frac{\text{Total Facility Energy}}{\text{IT Equipment Energy}}
$$
- **Target PUE**: $\text{PUE} \leq 1.2$ for modern AI data centers
### Critical Concerns
- Reliability and uptime requirements: $99.999\%$ availability
- Cost optimization: USD per kWh directly impacts training costs
- Carbon footprint: $\text{kg CO}_2/\text{kWh}$ varies by source
- Geographic availability constraints
### Energy Cost Model
$$
C_{\text{energy}} = P_{\text{peak}} \times T_{\text{training}} \times \text{PUE} \times \text{Cost}_{\text{kWh}}
$$
Where:
- $P_{\text{peak}}$ = Peak power consumption (MW)
- $T_{\text{training}}$ = Training duration (hours)
- $\text{Cost}_{\text{kWh}}$ = Energy cost per kilowatt-hour
## Layer 2: Chips
The computational substrate transforming electricity into useful operations.
### 2.1 Design Chips
#### Architecture Decisions
- **GPU vs TPU vs Custom ASIC**: Trade-offs in flexibility vs efficiency
- **Core compute unit**: Matrix multiplication engines
$$
C = A \times B \quad \text{where } A \in \mathbb{R}^{m \times k}, B \in \mathbb{R}^{k \times n}
$$
- **Operations count**:
$$
\text{FLOPs}_{\text{matmul}} = 2 \times m \times n \times k
$$
#### Memory Bandwidth Optimization
The real bottleneck for transformer models:
$$
\text{Arithmetic Intensity} = \frac{\text{FLOPs}}{\text{Bytes Accessed}}
$$
For transformers:
$$
\text{AI}_{\text{attention}} = \frac{2 \times n^2 \times d}{n^2 + 2nd} \approx O(d) \text{ (memory bound)}
$$
#### Numerical Precision Trade-offs
| Precision | Bits | Dynamic Range | Use Case |
|-----------|------|---------------|----------|
| FP32 | 32 | $\pm 3.4 \times 10^{38}$ | Reference |
| FP16 | 16 | $\pm 65504$ | Training |
| BF16 | 16 | $\pm 3.4 \times 10^{38}$ | Training |
| FP8 | 8 | $\pm 448$ (E4M3) | Inference |
| INT8 | 8 | $[-128, 127]$ | Quantized inference |
| INT4 | 4 | $[-8, 7]$ | Extreme quantization |
Quantization error bound:
$$
\|W - W_q\|_F \leq \frac{\Delta}{2}\sqrt{n}
$$
Where $\Delta$ is the quantization step size.
#### Power Efficiency
$$
\text{Efficiency} = \frac{\text{FLOPS}}{\text{Watt}} \quad [\text{FLOPS/W}]
$$
Modern targets:
- Training: $> 300 \text{ TFLOPS/chip}$ at $< 700\text{W}$
- Inference: $> 1000 \text{ TOPS/W}$ (INT8)
### 2.2 Wafer Fabrication
#### Process Technology
- **Transistor density**:
$$
D = \frac{N_{\text{transistors}}}{A_{\text{die}}} \quad [\text{transistors/mm}^2]
$$
- **Node progression**: $7\text{nm} \rightarrow 5\text{nm} \rightarrow 3\text{nm} \rightarrow 2\text{nm}$
#### Yield Optimization
Defect density model (Poisson):
$$
Y = e^{-D_0 \times A}
$$
Where:
- $Y$ = Yield (probability of good die)
- $D_0$ = Defect density (defects/cm²)
- $A$ = Die area (cm²)
#### Advanced Packaging
- **CoWoS** (Chip-on-Wafer-on-Substrate)
- **Chiplets**: Disaggregated design
- **3D Stacking**: HBM memory integration
Bandwidth scaling:
$$
\text{BW}_{\text{HBM3}} = N_{\text{stacks}} \times \text{BW}_{\text{per\_stack}} \approx 6 \times 819 = 4.9 \text{ TB/s}
$$
## Layer 3: Infrastructure
Systems layer orchestrating chips into usable compute.
### 3.1 Build AI Infrastructure
#### Cluster Architecture
- **Nodes per cluster**: $N_{\text{nodes}} = 1000-10000+$
- **GPUs per node**: $G_{\text{per\_node}} = 8$ (typical)
- **Total GPUs**:
$$
G_{\text{total}} = N_{\text{nodes}} \times G_{\text{per\_node}}
$$
#### Network Topology
**Fat-tree bandwidth**:
$$
\text{Bisection BW} = \frac{N \times \text{BW}_{\text{link}}}{2}
$$
**All-reduce communication cost**:
$$
T_{\text{all-reduce}} = 2(n-1) \times \frac{M}{n \times \text{BW}} + 2(n-1) \times \alpha
$$
Where:
- $M$ = Message size
- $n$ = Number of participants
- $\alpha$ = Latency per hop
#### Storage Requirements
Training data storage:
$$
S_{\text{data}} = N_{\text{tokens}} \times \text{bytes\_per\_token} \times \text{redundancy}
$$
For 10T tokens:
$$
S \approx 10^{13} \times 2 \times 3 = 60 \text{ PB}
$$
#### Reliability Engineering
**Checkpointing overhead**:
$$
\text{Overhead} = \frac{T_{\text{checkpoint}}}{T_{\text{checkpoint\_interval}}}
$$
**Mean Time Between Failures (MTBF)** for cluster:
$$
\text{MTBF}_{\text{cluster}} = \frac{\text{MTBF}_{\text{component}}}{N_{\text{components}}}
$$
## Layer 4: Models (LLMs)
Where core AI capability emerges.
### 4.1 Build Large Language Models
#### Transformer Architecture
**Self-attention mechanism**:
$$
\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V
$$
Where:
- $Q = XW_Q \in \mathbb{R}^{n \times d_k}$ (Queries)
- $K = XW_K \in \mathbb{R}^{n \times d_k}$ (Keys)
- $V = XW_V \in \mathbb{R}^{n \times d_v}$ (Values)
**Multi-Head Attention (MHA)**:
$$
\text{MHA}(X) = \text{Concat}(\text{head}_1, ..., \text{head}_h)W_O
$$
$$
\text{head}_i = \text{Attention}(XW_Q^i, XW_K^i, XW_V^i)
$$
**Grouped Query Attention (GQA)**:
Reduces KV cache by factor $g$:
$$
\text{KV\_cache} = 2 \times L \times n \times d \times \frac{h}{g} \times \text{bytes}
$$
#### Feed-Forward Network
$$
\text{FFN}(x) = \text{GELU}(xW_1 + b_1)W_2 + b_2
$$
SwiGLU variant:
$$
\text{SwiGLU}(x) = (\text{Swish}(xW_1) \odot xW_3)W_2
$$
#### Model Parameter Count
For decoder-only transformer:
$$
P = 12 \times L \times d^2 + V \times d
$$
Where:
- $L$ = Number of layers
- $d$ = Model dimension
- $V$ = Vocabulary size
#### Mixture of Experts (MoE)
$$
y = \sum_{i=1}^{N} G(x)_i \cdot E_i(x)
$$
Where $G(x)$ is the gating function:
$$
G(x) = \text{TopK}(\text{softmax}(xW_g))
$$
### 4.2 Pre-training
#### Training Objective
**Next-token prediction (autoregressive)**:
$$
\mathcal{L} = -\sum_{t=1}^{T} \log P(x_t | x_{