← Back to AI Factory Chat

AI Factory Glossary

265 technical terms and definitions

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Showing page 6 of 6 (265 entries)

nuisance defects,metrology

Detected defects that don't affect yield.

null-text inversion, multimodal ai

Null-text inversion optimizes unconditional embeddings for accurate real image editing.

null-text inversion,generative models

Find embeddings for specific images.

number of diffusion steps, generative models

Sampling iterations tradeoff.

numeracy analysis, evaluation

Test numerical reasoning.

numerical aperture (na),numerical aperture,na,lithography

Measure of lens light-gathering ability affects resolution.

numerical methods, FEM FDM FVM, finite element, finite difference, conjugate gradient, monte carlo, level set, TCAD simulation, computational methods

# Semiconductor Manufacturing Process: Numerical Methods, Mathematics & Modeling A comprehensive guide covering the mathematical foundations, numerical methods, and computational modeling approaches used in semiconductor fabrication processes. ## 1. Manufacturing Processes and Their Physics Semiconductor fabrication involves sequential processes, each governed by different physics: | Process | Governing Physics | Primary Equations | |---------|-------------------|-------------------| | Lithography | Electromagnetic wave propagation, photochemistry | Maxwell's equations, diffusion, reaction kinetics | | Plasma Etching | Plasma physics, surface chemistry | Boltzmann transport, Poisson, fluid equations | | CVD/ALD | Fluid dynamics, heat/mass transfer, kinetics | Navier-Stokes, convection-diffusion, Arrhenius | | Ion Implantation | Atomic collisions, stopping theory | Binary collision approximation, transport | | Diffusion/Annealing | Solid-state diffusion, defect physics | Fick's laws, reaction-diffusion systems | | CMP | Contact mechanics, fluid-solid interaction | Preston equation, elasticity | ### 1.1 Lithography - **Optical projection** through reduction lens system - **Photoresist chemistry**: exposure, bake, development - **Resolution limit**: $R = k_1 \frac{\lambda}{NA}$ - **Depth of focus**: $DOF = k_2 \frac{\lambda}{NA^2}$ ### 1.2 Plasma Etching - **Plasma generation**: RF/microwave excitation - **Ion bombardment**: directional etching - **Chemical reactions**: isotropic component - **Selectivity**: differential etch rates between materials ### 1.3 Chemical Vapor Deposition (CVD) - **Gas-phase transport**: convection and diffusion - **Surface reactions**: adsorption, reaction, desorption - **Film conformality**: step coverage in features - **Temperature dependence**: Arrhenius kinetics ### 1.4 Ion Implantation - **Ion acceleration**: keV to MeV energies - **Stopping mechanisms**: electronic and nuclear - **Damage formation**: vacancy-interstitial pairs - **Channeling effects**: crystallographic orientation dependence ## 2. Core Mathematical Frameworks ### 2.1 Partial Differential Equations Nearly every process involves PDEs of different types: #### Parabolic (Diffusion/Heat Transport) $$ \frac{\partial C}{\partial t} = \nabla \cdot (D \nabla C) + R $$ - **Application**: Dopant diffusion, thermal processing, resist chemistry - **Characteristics**: Smoothing behavior, infinite propagation speed - **Diffusion coefficient**: $D = D_0 \exp\left(-\frac{E_a}{k_B T}\right)$ #### Elliptic (Steady-State Fields) $$ \nabla^2 \phi = -\frac{\rho}{\varepsilon} $$ - **Application**: Electrostatics, plasma sheaths, device simulation - **Boundary conditions**: Dirichlet, Neumann, or mixed - **Properties**: Maximum principle, smoothness #### Hyperbolic (Wave Propagation) $$ \nabla^2 E - \mu\varepsilon \frac{\partial^2 E}{\partial t^2} = 0 $$ - **Application**: Light propagation in lithography - **Characteristics**: Finite propagation speed - **Dispersion**: wavelength-dependent phase velocity ### 2.2 Transport Theory The **Boltzmann transport equation** underpins plasma modeling and carrier transport: $$ \frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla_\mathbf{r} f + \frac{\mathbf{F}}{m} \cdot \nabla_\mathbf{v} f = \left(\frac{\partial f}{\partial t}\right)_{\text{coll}} $$ Where: - $f(\mathbf{r}, \mathbf{v}, t)$ = distribution function (6D phase space) - $\mathbf{F}$ = external force (electric field, etc.) - RHS = collision integral **Solution approaches**: - **Moment methods**: Fluid approximations (continuity, momentum, energy) - **Monte Carlo sampling**: Stochastic particle tracking - **Deterministic discretization**: Spherical harmonics expansion ### 2.3 Reaction-Diffusion Systems Coupled species with chemical reactions: $$ \frac{\partial C_i}{\partial t} = D_i \nabla^2 C_i + \sum_j k_{ij} C_j $$ **Examples**: - **Dopant-defect interactions**: Transient enhanced diffusion - Dopants: $\frac{\partial C_D}{\partial t} = \nabla \cdot (D_D \nabla C_D) + k_{DI} C_D C_I$ - Interstitials: $\frac{\partial C_I}{\partial t} = \nabla \cdot (D_I \nabla C_I) - k_{IV} C_I C_V + G$ - Vacancies: $\frac{\partial C_V}{\partial t} = \nabla \cdot (D_V \nabla C_V) - k_{IV} C_I C_V + G$ - **Resist chemistry**: - Photoacid generation: $\frac{\partial [PAG]}{\partial t} = -C \cdot I \cdot [PAG]$ - Acid diffusion: $\frac{\partial [H^+]}{\partial t} = D_{acid} \nabla^2 [H^+]$ - Deprotection: $\frac{\partial M}{\partial t} = -k_{amp} [H^+] M$ ### 2.4 Semiconductor Device Equations The **drift-diffusion model** for carrier transport: $$ \nabla \cdot (\varepsilon \nabla \psi) = -q(p - n + N_D^+ - N_A^-) $$ $$ \frac{\partial n}{\partial t} = \frac{1}{q} \nabla \cdot \mathbf{J}_n + G - R $$ $$ \frac{\partial p}{\partial t} = -\frac{1}{q} \nabla \cdot \mathbf{J}_p + G - R $$ **Current densities**: $$ \mathbf{J}_n = q \mu_n n \mathbf{E} + q D_n \nabla n $$ $$ \mathbf{J}_p = q \mu_p p \mathbf{E} - q D_p \nabla p $$ **Einstein relation**: $D = \frac{k_B T}{q} \mu$ ## 3. Numerical Methods by Category ### 3.1 Spatial Discretization #### Finite Difference Method (FDM) **Central difference** (second derivative): $$ \frac{\partial^2 u}{\partial x^2} \approx \frac{u_{i+1} - 2u_i + u_{i-1}}{\Delta x^2} $$ **Forward difference** (first derivative): $$ \frac{\partial u}{\partial x} \approx \frac{u_{i+1} - u_i}{\Delta x} $$ **Characteristics**: - Simple implementation on regular grids - Truncation error: $O(\Delta x^2)$ for central differences - Challenges with complex geometries - Stability requires careful time step selection #### Finite Element Method (FEM) **Variational formulation** - find $u$ minimizing: $$ J[u] = \int_\Omega \left[ \frac{1}{2} |\nabla u|^2 - fu \right] dV $$ **Weak form** - find $u \in V$ such that for all $v \in V$: $$ \int_\Omega \nabla u \cdot \nabla v \, dV = \int_\Omega f v \, dV $$ **Implementation steps**: 1. **Mesh generation**: Divide domain into elements (triangles, tetrahedra) 2. **Shape functions**: Local polynomial basis $N_i(\mathbf{x})$ 3. **Assembly**: Build global stiffness matrix $\mathbf{K}$ and load vector $\mathbf{f}$ 4. **Solution**: Solve $\mathbf{K} \mathbf{u} = \mathbf{f}$ **Advantages**: - Handles complex geometries naturally - Systematic error estimation - Adaptive refinement possible #### Finite Volume Method (FVM) **Conservation form**: $$ \frac{\partial U}{\partial t} + \nabla \cdot \mathbf{F} = S $$ **Discrete form** (cell $i$): $$ \frac{dU_i}{dt} = -\frac{1}{V_i} \sum_{\text{faces}} F_f A_f + S_i $$ **Characteristics**: - Conserves quantities exactly by construction - Natural for fluid dynamics - Upwinding for convection-dominated problems ### 3.2 Time Integration #### Explicit Methods **Forward Euler**: $$ u^{n+1} = u^n + \Delta t \cdot f(u^n, t^n) $$ **Runge-Kutta 4th order (RK4)**: $$ u^{n+1} = u^n + \frac{\Delta t}{6}(k_1 + 2k_2 + 2k_3 + k_4) $$ Where: - $k_1 = f(t^n, u^n)$ - $k_2 = f(t^n + \frac{\Delta t}{2}, u^n + \frac{\Delta t}{2} k_1)$ - $k_3 = f(t^n + \frac{\Delta t}{2}, u^n + \frac{\Delta t}{2} k_2)$ - $k_4 = f(t^n + \Delta t, u^n + \Delta t \cdot k_3)$ **Stability constraint** (CFL condition for diffusion): $$ \Delta t < \frac{\Delta x^2}{2D} $$ #### Implicit Methods **Backward Euler**: $$ u^{n+1} = u^n + \Delta t \cdot f(u^{n+1}, t^{n+1}) $$ **Crank-Nicolson** (second-order accurate): $$ u^{n+1} = u^n + \frac{\Delta t}{2} \left[ f(u^n, t^n) + f(u^{n+1}, t^{n+1}) \right] $$ **BDF Methods** (Backward Differentiation Formulas): $$ \sum_{k=0}^{s} \alpha_k u^{n+1-k} = \Delta t \cdot f(u^{n+1}, t^{n+1}) $$ - BDF1: Backward Euler (1st order) - BDF2: $\frac{3}{2}u^{n+1} - 2u^n + \frac{1}{2}u^{n-1} = \Delta t \cdot f^{n+1}$ (2nd order) **Characteristics**: - Unconditionally stable (A-stable) - Requires nonlinear solver per time step - Essential for stiff systems #### Operator Splitting **Strang splitting** for $\frac{\partial u}{\partial t} = Lu + Nu$ (linear + nonlinear): $$ u^{n+1} = e^{\frac{\Delta t}{2} L} e^{\Delta t N} e^{\frac{\Delta t}{2} L} u^n $$ **Applications**: - Separate diffusion and reaction - Different time scales for different physics - Preserves second-order accuracy ### 3.3 Linear Algebra #### Direct Methods **LU Factorization**: $\mathbf{A} = \mathbf{L}\mathbf{U}$ **Sparse direct solvers**: - PARDISO (Intel MKL) - SuperLU - MUMPS - UMFPACK **Complexity**: $O(N^\alpha)$ where $\alpha \approx 1.5-2$ for 3D problems #### Iterative Methods **Conjugate Gradient (CG)** for symmetric positive definite: ```text ┌─────────────────────────────────────────────────────┐ │ r_0 = b - Ax_0 │ │ p_0 = r_0 │ │ for k = 0, 1, 2, ... │ │ α_k = (r_k^T r_k) / (p_k^T A p_k) │ │ x_{k+1} = x_k + α_k p_k │ │ r_{k+1} = r_k - α_k A p_k │ │ β_k = (r_{k+1}^T r_{k+1}) / (r_k^T r_k) │ │ p_{k+1} = r_{k+1} + β_k p_k │ └─────────────────────────────────────────────────────┘ ``` **GMRES** (Generalized Minimal Residual) for non-symmetric systems **BiCGSTAB** (Bi-Conjugate Gradient Stabilized) #### Preconditioning **Purpose**: Transform $\mathbf{A}\mathbf{x} = \mathbf{b}$ to $\mathbf{M}^{-1}\mathbf{A}\mathbf{x} = \mathbf{M}^{-1}\mathbf{b}$ **Common preconditioners**: - **ILU** (Incomplete LU): Approximate factorization - **Multigrid**: Hierarchical coarse-grid correction - **Domain decomposition**: Parallel-friendly **Multigrid V-cycle**: $$ \text{Solution} \leftarrow \text{Smooth} + \text{Coarse-grid correction} $$ ### 3.4 Monte Carlo Methods #### Particle-in-Cell (PIC) for Plasmas **Algorithm**: 1. **Push particles**: $\mathbf{x}^{n+1} = \mathbf{x}^n + \mathbf{v}^n \Delta t$ 2. **Weight to grid**: $\rho_j = \sum_p q_p W(\mathbf{x}_p - \mathbf{x}_j)$ 3. **Solve fields**: $\nabla^2 \phi = -\rho/\varepsilon_0$ 4. **Interpolate to particles**: $\mathbf{E}_p = \sum_j \mathbf{E}_j W(\mathbf{x}_p - \mathbf{x}_j)$ 5. **Accelerate**: $\mathbf{v}^{n+1} = \mathbf{v}^n + (q/m)\mathbf{E}_p \Delta t$ **Monte Carlo Collisions**: Null-collision method for efficiency #### Direct Simulation Monte Carlo (DSMC) **For rarefied gas dynamics** (high Knudsen number): $$ Kn = \frac{\lambda}{L} > 0.1 $$ **Algorithm**: 1. Move particles (ballistic) 2. Index/sort particles into cells 3. Select collision pairs probabilistically 4. Perform collisions (conserve momentum, energy) 5. Sample macroscopic properties #### Kinetic Monte Carlo (KMC) **For atomic-scale processes**: **Rate calculation**: $k_i = \nu_0 \exp\left(-\frac{E_a}{k_B T}\right)$ **Event selection** (BKL algorithm): 1. Calculate total rate: $R_{tot} = \sum_i k_i$ 2. Select event $j$ with probability $k_j / R_{tot}$ 3. Advance time: $\Delta t = -\ln(r) / R_{tot}$ where $r \in (0,1)$ 4. Execute event 5. Update rates ### 3.5 Interface Tracking #### Level Set Methods **Interface** = zero contour of $\phi(\mathbf{x}, t)$ **Evolution equation**: $$ \frac{\partial \phi}{\partial t} + v_n |\nabla \phi| = 0 $$ **Signed distance property**: $|\nabla \phi| = 1$ **Reinitialization** (maintain distance property): $$ \frac{\partial \phi}{\partial \tau} = \text{sign}(\phi_0)(1 - |\nabla \phi|) $$ **Advantages**: - Handles topological changes naturally - Curvature: $\kappa = \nabla \cdot \left( \frac{\nabla \phi}{|\nabla \phi|} \right)$ - Normal: $\mathbf{n} = \frac{\nabla \phi}{|\nabla \phi|}$ #### Fast Marching Method **For static Hamilton-Jacobi equations**: $$ |\nabla T| = \frac{1}{F} $$ **Complexity**: $O(N \log N)$ using heap data structure **Application**: Arrival time problems, distance computation ## 4. Key Application Areas ### 4.1 Lithography Simulation #### Simulation Chain ```text ┌─────────────────────────────────────────────────────┐ │ Mask (GDS) → Optical Simulation → Aerial Image → │ │ → Resist Exposure → PEB Diffusion → Development → │ │ → Final Profile │ └─────────────────────────────────────────────────────┘ ``` #### Hopkins Formulation (Partially Coherent Imaging) $$ I(x,y) = \iint\iint J(f,g) H(f,g) H^*(f',g') O(f,g) O^*(f',g') \times $$ $$ \exp[2\pi i((f-f')x + (g-g')y)] \, df \, dg \, df' \, dg' $$ Where: - $J(f,g)$ = source intensity distribution - $H(f,g)$ = pupil function - $O(f,g)$ = mask spectrum #### SOCS Decomposition **Sum of Coherent Systems**: $$ I(x,y) \approx \sum_{k=1}^{N} \lambda_k |h_k * m|^2 $$ - $\lambda_k$ = eigenvalues (decreasing) - $h_k$ = eigenkernels - Typically $N \sim 10-30$ sufficient #### Rigorous Electromagnetic Methods **RCWA** (Rigorous Coupled Wave Analysis): - Fourier expansion of fields and permittivity - Matrix eigenvalue problem per layer - S-matrix or T-matrix propagation **FDTD** (Finite Difference Time Domain): $$ \frac{\partial \mathbf{E}}{\partial t} = \frac{1}{\varepsilon} \nabla \times \mathbf{H} $$ $$ \frac{\partial \mathbf{H}}{\partial t} = -\frac{1}{\mu} \nabla \times \mathbf{E} $$ - Yee grid staggering - PML absorbing boundaries - Handles arbitrary 3D structures #### Resist Models **Dill exposure model**: $$ \frac{\partial M}{\partial t} = -I(z,t) M C $$ $$ I(z,t) = I_0 \exp\left[ -\int_0^z (AM(\zeta,t) + B) d\zeta \right] $$ **Enhanced Fujita-Doolittle development**: $$ r = r_{\max} \frac{(1-M)^n + r_{min}/r_{max}}{(1-M)^n + 1} $$ ### 4.2 Plasma Process Modeling #### Multi-Scale Framework ```text ┌─────────────────────────────────────────────────────┐ │ Reactor Scale (cm) Feature Scale (nm) │ │ ↓ ↑ │ │ Plasma Model → Flux/Distributions │ │ ↓ ↑ │ │ Surface Fluxes → Profile Evolution │ └─────────────────────────────────────────────────────┘ ``` #### Fluid Plasma Model **Continuity**: $$ \frac{\partial n_s}{\partial t} + \nabla \cdot (n_s \mathbf{u}_s) = S_s $$ **Momentum** (drift-diffusion): $$ n_s \mathbf{u}_s = \pm \mu_s n_s \mathbf{E} - D_s \nabla n_s $$ **Energy**: $$ \frac{\partial}{\partial t}\left(\frac{3}{2} n_e k_B T_e\right) + \nabla \cdot \mathbf{q}_e = \mathbf{J}_e \cdot \mathbf{E} - P_{loss} $$ **Poisson**: $$ \nabla \cdot (\varepsilon \nabla \phi) = -e(n_i - n_e) $$ #### Feature-Scale Model **Surface advancement**: $$ v_n = \Gamma_{ion} Y_{ion}(\theta, E) + \Gamma_{neutral} S_{chem}(\theta) - \Gamma_{dep} $$ Where: - $\Gamma_{ion}$ = ion flux - $Y_{ion}$ = ion-enhanced yield (angle, energy dependent) - $S_{chem}$ = chemical sticking coefficient - $\Gamma_{dep}$ = deposition flux ### 4.3 TCAD Device Simulation #### Scharfetter-Gummel Discretization **Current between nodes** $i$ and $j$: $$ J_{ij} = \frac{q D}{\Delta x} \left[ n_j B\left(\frac{\psi_j - \psi_i}{V_T}\right) - n_i B\left(\frac{\psi_i - \psi_j}{V_T}\right) \right] $$ **Bernoulli function**: $$ B(x) = \frac{x}{e^x - 1} $$ **Properties**: - Exact for constant field - Numerically stable for large bias - Preserves current continuity #### Quantum Corrections **Density gradient model**: $$ n = N_c \exp\left(\frac{E_F - E_c - \Lambda}{k_B T}\right) $$ $$ \Lambda = -\frac{\gamma \hbar^2}{6 m^*} \frac{\nabla^2 \sqrt{n}}{\sqrt{n}} $$ **Schrödinger-Poisson** (1D slice): $$ -\frac{\hbar^2}{2m^*} \frac{d^2 \psi_i}{dz^2} + V(z) \psi_i = E_i \psi_i $$ $$ n(z) = \sum_i |\psi_i(z)|^2 f(E_F - E_i) $$ ## 5. Multi-Scale and Multi-Physics Coupling ### 5.1 Length Scale Hierarchy ```text ┌─────────────────────────────────────────────────────┐ │ Atomic Feature Device Die Wafer │ │ (0.1 nm) (10 nm) (100 nm) (1 mm) (300 mm) │ │ │ │ │ │ │ │ │ └────┬─────┴────┬─────┴────┬────┴────┬────┘ │ │ │ │ │ │ │ │ Ab initio KMC Continuum Pattern │ │ DFT MD PDE Effects │ └─────────────────────────────────────────────────────┘ ``` ### 5.2 Coupling Approaches #### Sequential (Parameter Passing) ```text ┌─────────────────────────────────────────────────────┐ │ Lower Scale → Parameters → Higher Scale │ └─────────────────────────────────────────────────────┘ ``` **Examples**: - DFT → activation energies → KMC rates - MD → surface diffusion coefficients → continuum - Feature-scale → pattern density → wafer-scale #### Concurrent (Domain Decomposition) Different physics in different regions, coupled at interfaces: **Handshaking region**: $$ u_{atomic} = u_{continuum} \quad \text{in overlap zone} $$ **Force matching** or **energy-based** coupling #### Homogenization **Effective properties** from microstructure: $$ \langle \sigma \rangle = \mathbf{C}^{eff} : \langle \varepsilon \rangle $$ **Application**: Pattern-density effects in CMP ### 5.3 Multi-Physics Coupling #### Monolithic vs. Partitioned **Monolithic**: Solve all physics simultaneously $$ \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} f_1 \\ f_2 \end{pmatrix} $$ - Strong coupling - Large, often ill-conditioned systems **Partitioned**: Iterate between physics ``` while not converged: Solve Physics 1 with fixed Physics 2 variables Solve Physics 2 with fixed Physics 1 variables Check convergence ``` - Reuse existing solvers - May have stability issues ## 6. Uncertainty Quantification ### 6.1 Sources of Uncertainty - **Process variations**: Dose, focus, temperature, pressure - **Material variations**: Film thickness, composition, defect density - **Model uncertainty**: Parameter calibration, structural assumptions - **Measurement noise**: Metrology errors ### 6.2 Polynomial Chaos Expansion **Expansion**: $$ u(\mathbf{x}, \boldsymbol{\xi}) \approx \sum_{k=0}^{P} u_k(\mathbf{x}) \Psi_k(\boldsymbol{\xi}) $$ Where: - $\boldsymbol{\xi}$ = random variables (inputs) - $\Psi_k$ = orthogonal polynomial basis - $u_k$ = deterministic coefficients **Basis selection**: | Distribution | Polynomial Basis | |--------------|------------------| | Gaussian | Hermite | | Uniform | Legendre | | Beta | Jacobi | | Exponential | Laguerre | **Statistics from coefficients**: - Mean: $\mathbb{E}[u] = u_0$ - Variance: $\text{Var}[u] = \sum_{k=1}^{P} u_k^2 \langle \Psi_k^2 \rangle$ ### 6.3 Stochastic Collocation **Algorithm**: 1. Select collocation points $\boldsymbol{\xi}^{(q)}$ (Gauss quadrature, sparse grids) 2. Solve deterministic problem at each point 3. Construct interpolant/response surface 4. Compute statistics by integration **Advantages**: - Non-intrusive (uses existing solvers) - Flexible basis - Good for smooth dependence on parameters ### 6.4 Sensitivity Analysis **Sobol indices** (variance decomposition): $$ \text{Var}[u] = \sum_i V_i + \sum_{i

numglue, evaluation

Numerical understanding.

numpy,vectorization,array

NumPy vectorization operates on arrays efficiently. Avoid Python loops. Foundation of scientific computing.

nvidia nsight, nvidia, infrastructure

Profiling tools for CUDA.

nvlink, infrastructure

NVIDIA's GPU-to-GPU interconnect.

nvlink,pcie,interconnect

NVLink is high-bandwidth GPU interconnect. Faster than PCIe. Enables multi-GPU scaling for large models.

nvswitch, infrastructure

Switch connecting multiple GPUs.

nyströmformer, llm architecture

Nyströmformer approximates attention matrix through Nyström method.

nyströmformer,llm architecture

Approximate attention using Nyström method.