← Back to AI Factory Chat

AI Factory Glossary

1,106 technical terms and definitions

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Showing page 20 of 23 (1,106 entries)

stylegan-xl,generative models

Large-scale StyleGAN.

stylegan,generative models

High-quality GAN with style control.

stylegan3, multimodal ai

StyleGAN3 improves alias-free generation through rotation and translation equivariance.

stylus profilometer,metrology

Mechanical surface roughness measurement.

sub-question decomposition, rag

Break into multiple queries.

subgoal, ai agents

Subgoals are intermediate objectives required to achieve overall goals.

subgradient method, structured prediction

Subgradient methods optimize structured prediction objectives by computing subgradients of non-smooth loss functions.

subgraph isomorphism, graph algorithms

Determine if one graph contains another.

subgroup frequency, quality & reliability

Subgroup frequency determines sampling rate for detecting process shifts.

subgroup size, quality & reliability

Subgroup size affects control chart sensitivity and capability estimation accuracy.

subject-driven generation, multimodal ai

Subject-driven generation creates images featuring specific subjects from reference images.

subsampling, training techniques

Subsampling randomly selects training examples reducing privacy cost.

subspace alignment, domain adaptation

Align domain subspaces.

substitutional impurity, defects

Atom replacing lattice atom.

substrate noise coupling,design

Unwanted signals through substrate.

subthreshold computing,design

Operate below threshold voltage.

subtractive etch beol, process integration

Subtractive etch patterns metal by depositing then etching rather than damascene filling.

success run theorem, reliability

Statistical inference from zero failures.

success testing, reliability

Demonstrate reliability goal.

successive inspection, quality & reliability

Successive inspection verifies output before next operation begins.

successor features, reinforcement learning advanced

Successor features decouple environment dynamics from rewards enabling transfer across tasks with shared state space.

successor representation, reinforcement learning advanced

Successor representation separates environment dynamics from rewards enabling fast policy evaluation under new rewards.

suggestion system, quality & reliability

Suggestion systems encourage employee ideas for improvement.

summarization for context, prompting

Summarize old messages to save space.

summarization,compress,distill

Summarization compresses long text to key points. Use for fitting long docs into context or creating memory.

summarize,condense,tldr

Summarize long documents. Key points extraction.

summary generation as pre-training, nlp

Generate summaries during pre-training.

sundae, sundae, text generation

Stepwise refinement for text generation.

sunnyvale

# Sunnyvale, California ## Overview **Sunnyvale** is a city located in **Santa Clara County, California**, positioned in the heart of **Silicon Valley**. The city derives its name from its characteristic sunny climate. ## Geographic & Demographic Data ### Location Coordinates $$ \text{Latitude: } 37.3688° \, N \quad \text{Longitude: } 122.0363° \, W $$ ### Population Statistics - **Estimated Population**: $\approx 155,000 - 160,000$ residents - **Population Density**: $\approx 6,500 \, \text{people/mi}^2$ - **Land Area**: $\approx 22.0 \, \text{mi}^2$ or $57.0 \, \text{km}^2$ $$ \text{Population Density} = \frac{\text{Population}}{\text{Area}} = \frac{155,000}{22.0} \approx 7,045 \, \text{people/mi}^2 $$ ### Elevation $$ \text{Elevation} \approx 40 \, \text{ft} \approx 12 \, \text{m} \quad \text{(above sea level)} $$ ## Climate Data Sunnyvale features a **Mediterranean climate** (Köppen classification: $Csb$). ### Average Temperature | Season | Temperature (°F) | Temperature (°C) | |--------|------------------|------------------| | Summer High | $82°F$ | $\frac{5}{9}(82-32) \approx 28°C$ | | Winter Low | $42°F$ | $\frac{5}{9}(42-32) \approx 6°C$ | $$ T_{°C} = \frac{5}{9}(T_{°F} - 32) $$ ### Annual Rainfall $$ \text{Average Annual Precipitation} \approx 15.5 \, \text{inches} \approx 394 \, \text{mm} $$ ### Sunny Days $$ \text{Average Sunny Days per Year} \approx 257 \, \text{days} $$ $$ \text{Sunshine Percentage} = \frac{257}{365} \times 100 \approx 70.4\% $$ ## Economic Profile ### Major Industries - **Technology** - Software development - Hardware manufacturing - Cloud computing - Artificial intelligence - **Aerospace & Defense** - Lockheed Martin Space - Historical defense contractors - **Semiconductors** - AMD (Advanced Micro Devices) - Various chip design firms ### Notable Companies Headquartered in Sunnyvale - **LinkedIn** (Microsoft subsidiary) - **Yahoo** (historical HQ) - **AMD** (Advanced Micro Devices) - **Juniper Networks** - **NetApp** - **Fortinet** - **Trimble Inc.** ### Economic Formulas #### Median Household Income $$ \text{Median Household Income} \approx 140{,}000 - 160{,}000 \, \text{USD} $$ #### Cost of Living Index $$ \text{Cost of Living Index} \approx 180 - 200 \quad (\text{US Average} = 100) $$ $$ \text{Relative Cost} = \frac{\text{Sunnyvale COL}}{\text{US Average COL}} = \frac{190}{100} = 1.9x $$ ## Real Estate Metrics ### Housing Prices $$ \text{Median Home Price} \approx 1{,}800{,}000 - 2{,}200{,}000 \, \text{USD} $$ ### Price Per Square Foot $$ \text{Price per ft}^2 \approx 1{,}000 - 1{,}400 \, \text{USD} $$ ### Mortgage Calculation Example For a $2{,}000{,}000 USD home with $20\%$ down payment at $7\%$ interest over $30$ years: $$ \text{Principal} = 2{,}000{,}000 \times 0.80 = 1{,}600{,}000 \, \text{USD} $$ Monthly payment formula: $$ M = P \times \frac{r(1+r)^n}{(1+r)^n - 1} $$ Where: - $P = 1{,}600{,}000 \, \text{USD}$ (principal) - $r = \frac{0.07}{12} \approx 0.00583$ (monthly interest rate) - $n = 360$ (total months) $$ M = 1{,}600{,}000 \times \frac{0.00583(1.00583)^{360}}{(1.00583)^{360} - 1} \approx 10{,}644 \, \text{USD/month} $$ ## Transportation ### Distance to Major Cities | Destination | Distance (miles) | Distance (km) | |-------------|------------------|---------------| | San Jose | $\approx 8$ | $\approx 13$ | | San Francisco | $\approx 40$ | $\approx 64$ | | Oakland | $\approx 35$ | $\approx 56$ | $$ \text{Distance}_{km} = \text{Distance}_{mi} \times 1.60934 $$ ### Commute Statistics - **Average Commute Time**: $\approx 28 - 32 \, \text{minutes}$ - **Public Transit Options**: - Caltrain (commuter rail) - VTA (Valley Transportation Authority) buses and light rail - ACE Train access nearby $$ \text{Annual Commute Hours} = \text{Daily Commute} \times \text{Work Days} = 1 \, \text{hr} \times 250 = 250 \, \text{hours/year} $$ ## Historical Timeline ### Key Dates - **1850s**: Agricultural settlement (orchards) - **1901**: Incorporated as a city - **1912**: Population $\approx 1,700$ - **1956**: Lockheed Missiles & Space Division established - **1990s-2000s**: Tech boom transformation - **Present**: Major Silicon Valley hub ### Population Growth Model Exponential growth approximation: $$ P(t) = P_0 \times e^{rt} $$ Where: - $P_0$ = initial population - $r$ = growth rate - $t$ = time in years ## Education ### School District Statistics - **Sunnyvale School District** (K-8) - **Fremont Union High School District** (9-12) #### Student-to-Teacher Ratio $$ \text{Ratio} = \frac{\text{Students}}{\text{Teachers}} \approx \frac{22}{1} = 22:1 $$ ### Nearby Universities - **Stanford University**: $\approx 10 \, \text{miles}$ - **Santa Clara University**: $\approx 5 \, \text{miles}$ - **San Jose State University**: $\approx 10 \, \text{miles}$ ## Points of Interest ### Parks & Recreation - **Baylands Park** - Area: $\approx 50 \, \text{acres}$ - Features: wetlands, trails, wildlife - **Las Palmas Park** - Tennis courts - Playground facilities - **Columbia Park** - Swimming pool - Sports fields ### Downtown Murphy Avenue - **Length**: $\approx 0.5 \, \text{miles}$ of shops/restaurants - **Establishments**: $\approx 50+$ businesses ## Technology Metrics ### Tech Employment $$ \text{Tech Workforce} \approx 35\% - 40\% \text{ of total employment} $$ ### Patent Activity $$ \text{Patents Filed Annually (Silicon Valley)} \approx 15,000 - 20,000 $$ ### Startup Density $$ \text{Startups per } 10,000 \text{ residents} \approx 15 - 25 $$ ## Summary Statistics | Metric | Value | |--------|-------| | Population | $\sim 155,000$ | | Area | $22.0 \, \text{mi}^2$ | | Elevation | $40 \, \text{ft}$ | | Median Income | $\sim 150{,}000 \, \text{USD}$ | | Median Home Price | $\sim 2{,}000{,}000 \, \text{USD}$ | | Sunny Days | $257 \, \text{days/year}$ | | Major Industry | Technology | ## Mathematical ### Useful Conversions $$ \begin{aligned} 1 \, \text{mile} &= 1.60934 \, \text{km} \\ 1 \, \text{ft}^2 &= 0.0929 \, \text{m}^2 \\ 1 \, \text{acre} &= 43,560 \, \text{ft}^2 = 4,047 \, \text{m}^2 \\ °C &= \frac{5}{9}(°F - 32) \end{aligned} $$ ### Statistical Formulas Used #### Mean $$ \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i $$ #### Standard Deviation $$ \sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2} $$ #### Compound Growth Rate $$ \text{CAGR} = \left( \frac{V_f}{V_i} \right)^{\frac{1}{t}} - 1 $$

supabase,postgres,open

Supabase is open source Firebase alternative. PostgreSQL.

super hot lot, operations

Highest priority lot.

super steep retrograde (ssr) well,process

Very abrupt doping profile.

super-naturalinstructions, data

Large instruction dataset.

super-resolution ai,computer vision

Upscale images to higher resolution using deep learning.

super-steep retrograde, process integration

Super-steep retrograde profiles combine abrupt junctions with retrograde wells for advanced scaling.

superconducting transition temperature prediction, materials science

Predict Tc for superconductors.

supercritical co2 drying, process

Use supercritical fluid.

superglue, evaluation

Suite of difficult language understanding tasks.

superglue, evaluation

SuperGLUE includes harder language understanding tasks than original GLUE.

superglue,evaluation

More challenging version of GLUE.

supermarket, manufacturing operations

Supermarkets are controlled inventory locations supplying downstream processes on pull signals.

supermasks,model optimization

Binary masks that work without training.

supernet training, neural architecture

Train network containing all candidate architectures.

supernet training, neural architecture search

Supernet training creates a weight-sharing over-parameterized network encompassing all candidate architectures for efficient performance estimation.

superpod, infrastructure

Large-scale DGX cluster.

superposition hypothesis, explainable ai

Networks pack more features than dimensions.

superposition,feature,polysemantic

Superposition: models encode more features than neurons. Polysemantic neurons respond to multiple concepts.

supervised contrastive learning, self-supervised learning

Use labels to improve contrastive learning.

supervised,sft,finetune data

Supervised Fine-Tuning (SFT) uses input to output pairs (chat transcripts, QA, code fixes) to teach a model specific behaviors before RLHF/DPO.

supervisely,computer vision,label

Supervisely focuses on computer vision annotation. Segmentation, video.