← Back to AI Factory Chat

AI Factory Glossary

653 technical terms and definitions

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Showing page 5 of 14 (653 entries)

text-guided image editing, generative models

Edit images using text prompts.

text-to-3d generation, 3d vision

Generate 3D from text.

text-to-3d, multimodal ai

Text-to-3D methods generate three-dimensional models from textual descriptions.

text-to-image alignment, generative models

Ensure generated images match text.

text-to-image generation,generative models

Create images from text descriptions (DALL-E Midjourney Stable Diffusion).

text-to-image translation, multimodal ai

Generate images from text.

text-to-speech (tts),text-to-speech,tts,audio

Convert written text into spoken audio with natural prosody.

text-to-sql,code ai

Convert questions to SQL queries.

text-to-video generation, video generation

Generate videos from text.

text-to-video, multimodal ai

Text-to-video models generate video sequences from textual descriptions.

text-to-video,generative models

Generate video clips from text descriptions.

textual inversion, generative models

Learn new tokens from images.

textual inversion, multimodal ai

Textual inversion learns new tokens representing concepts for personalized generation.

textual inversion,generative models

Learn new tokens representing specific concepts for generation.

texture analysis, metrology

Study preferred crystal orientations.

texture bias, computer vision

Vision models relying on texture over shape.

texture generation, 3d vision

Create surface textures.

texture synthesis, multimodal ai

Texture synthesis generates surface appearance through learned or procedural methods.

texture synthesis,computer vision

Generate realistic textures.

tf-idf, tf-idf, rag

Classic information retrieval metric.

tgat, tgat, graph neural networks

Temporal Graph Attention Network uses temporal encoding and functional time encoding for dynamic graph learning.

tgcn, tgcn, graph neural networks

Temporal Graph Convolutional Network combines graph convolutions with gated recurrent units to capture spatial and temporal dependencies in dynamic graphs.

tgi,text generation inference

TGI (Hugging Face) is production-ready inference server. Continuous batching, quantization, tensor parallel.

tgn, tgn, graph neural networks

Temporal Graph Network maintains memory modules for nodes that are updated during temporal random walks for continuous-time dynamic graph learning.

thank you,thanks,appreciate

You are welcome! Happy to help with AI, chips, LLMs, and any technical questions. Ask anytime.

theorem proving,reasoning

Formal verification of mathematical statements.

theory of constraints, supply chain & logistics

Theory of constraints focuses improvement on system bottlenecks maximizing throughput.

theory of constraints, toc, production

Focus on bottleneck.

theory of mind,reasoning

Model others' mental states and beliefs.

thermal budget for layer transfer, substrate

Heat treatment required for separation.

thermal capacitance, thermal management

Thermal capacitance represents material's heat storage capacity affecting transient thermal response.

thermal conductivity of tim, thermal

Heat conduction performance.

thermal conductivity prediction, materials science

Predict heat transport properties.

thermal coupling, thermal

Heat transfer between stacked dies.

thermal coupling, thermal management

Thermal coupling between components causes neighboring elements to influence each other's temperatures.

thermal cvd,cvd

CVD driven by heat without plasma.

thermal cycling of solder joints, reliability

Repeated temperature changes.

thermal cycling reliability, reliability

Reliability under temperature changes.

thermal cycling test, thermal management

Thermal cycling testing subjects devices to repeated temperature extremes characterizing reliability under thermal stress and expansion mismatch.

thermal cycling test,reliability

Repeatedly heat and cool.

thermal cycling, design & verification

Thermal cycling alternates hot and cold temperatures stressing interconnects and packages.

thermal dynamics,thermal physics,heat transfer,thermal processing,temperature control

# Semiconductor Manufacturing Process Thermal Dynamics ## 1. Introduction and Fundamental Importance Thermal dynamics govern nearly every step in semiconductor fabrication. Temperature control determines chemical reaction rates, diffusion velocities, film properties, stress states, and ultimately device performance. ### 1.1 The Arrhenius Relationship The fundamental equation governing thermally-activated processes: $$ k = A \cdot e^{-\frac{E_a}{k_B T}} $$ Where: - $k$ = reaction rate constant - $A$ = pre-exponential factor (frequency factor) - $E_a$ = activation energy (eV or J/mol) - $k_B$ = Boltzmann constant ($8.617 \times 10^{-5}$ eV/K) - $T$ = absolute temperature (K) **Key Implication:** A temperature variation of just 10°C can change reaction rates by 20-30%. ### 1.2 Diffusion Fundamentals Dopant diffusion follows **Fick's Laws** with temperature-dependent diffusivity: $$ D = D_0 \cdot e^{-\frac{E_a}{k_B T}} $$ **Fick's First Law** (steady-state diffusion): $$ J = -D \frac{\partial C}{\partial x} $$ **Fick's Second Law** (time-dependent diffusion): $$ \frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2} $$ Where: - $J$ = diffusion flux (atoms/cm²·s) - $D$ = diffusivity (cm²/s) - $C$ = concentration (atoms/cm³) - $D_0$ = pre-exponential diffusion coefficient ## 2. Key Thermal Processes in Semiconductor Manufacturing ### 2.1 Thermal Oxidation Silicon dioxide growth follows the **Deal-Grove Model**: $$ x_{ox}^2 + A \cdot x_{ox} = B(t + \tau) $$ Where: - $x_{ox}$ = oxide thickness - $A$, $B$ = rate constants (temperature-dependent) - $t$ = oxidation time - $\tau$ = time offset for initial oxide **Oxidation Reactions:** - **Dry oxidation:** $\text{Si} + \text{O}_2 \rightarrow \text{SiO}_2$ (800–1200°C) - **Wet oxidation:** $\text{Si} + 2\text{H}_2\text{O} \rightarrow \text{SiO}_2 + 2\text{H}_2$ **Critical Parameters:** - Temperature uniformity requirement: $\pm 0.5°C$ - Typical temperature range: 800–1200°C - Ramp rate affects interface quality and stress ### 2.2 Chemical Vapor Deposition (CVD) **Deposition Rate Temperature Dependence:** $$ R_{dep} = R_0 \cdot e^{-\frac{E_a}{k_B T}} \cdot P_{reactant}^n $$ | CVD Type | Temperature Range | Pressure | |----------|-------------------|----------| | LPCVD | 400–900°C | 0.1–10 Torr | | PECVD | 200–400°C | 0.1–10 Torr | | APCVD | 300–500°C | 760 Torr | | ALD | 150–400°C | 0.1–10 Torr | **Temperature affects:** - Deposition rate - Film composition and stoichiometry - Step coverage conformality - Intrinsic film stress - Grain structure and crystallinity ### 2.3 Rapid Thermal Processing (RTP) **Heat Balance Equation:** $$ \rho c_p V \frac{dT}{dt} = \alpha_{abs} P_{lamp} A - \varepsilon \sigma A (T^4 - T_{amb}^4) - h A (T - T_{amb}) $$ Where: - $\rho$ = density (kg/m³) - $c_p$ = specific heat capacity (J/kg·K) - $V$ = wafer volume - $\alpha_{abs}$ = optical absorptivity - $P_{lamp}$ = lamp power density (W/m²) - $\varepsilon$ = emissivity - $\sigma$ = Stefan-Boltzmann constant ($5.67 \times 10^{-8}$ W/m²·K⁴) - $h$ = convective heat transfer coefficient **RTP Specifications:** - Ramp rates: 50–400°C/s - Peak temperatures: up to 1100°C - Soak times: 0–60 seconds - Spike anneal: ~1050°C, 0 second soak ### 2.4 Ion Implantation and Annealing **Implant Damage Annealing:** $$ f_{activated} = 1 - e^{-\left(\frac{t}{\tau}\right)^n} $$ Where $\tau$ is the characteristic annealing time (temperature-dependent). **Annealing Methods:** | Method | Temperature | Time | Application | |--------|-------------|------|-------------| | Furnace Anneal | 800–1000°C | 30–60 min | Bulk damage repair | | RTP Spike | 1000–1100°C | ~1 s | USJ activation | | Flash Anneal | 1200–1350°C | 1–20 ms | Minimal diffusion | | Laser Anneal | 1300–1414°C | 0.1–10 μs | Maximum activation | ## 3. Heat Transfer Mechanisms ### 3.1 Conduction **Fourier's Law:** $$ \vec{q} = -k \nabla T $$ **3D Heat Equation:** $$ \rho c_p \frac{\partial T}{\partial t} = k \nabla^2 T + \dot{Q} $$ Or in Cartesian coordinates: $$ \rho c_p \frac{\partial T}{\partial t} = k \left( \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) + \dot{Q} $$ **Silicon Thermal Properties:** | Property | Value | Temperature Dependence | |----------|-------|------------------------| | Thermal conductivity | ~150 W/m·K @ 300K | $k \propto T^{-1.3}$ | | Thermal diffusivity | ~0.9 cm²/s @ 300K | Decreases with T | | Specific heat | ~700 J/kg·K @ 300K | Increases with T | ### 3.2 Radiation **Stefan-Boltzmann Law:** $$ q_{rad} = \varepsilon \sigma (T_s^4 - T_{surr}^4) $$ **Planck's Distribution:** $$ E_b(\lambda, T) = \frac{2\pi h c^2}{\lambda^5} \cdot \frac{1}{e^{\frac{hc}{\lambda k_B T}} - 1} $$ **Wien's Displacement Law:** $$ \lambda_{max} \cdot T = 2897.8 \text{ } \mu\text{m} \cdot \text{K} $$ Or equivalently: $\lambda_{max} = \frac{2897.8}{T} \text{ } \mu\text{m}$ (where $T$ is in Kelvin) **Silicon Emissivity Considerations:** - Heavily doped Si: $\varepsilon \approx 0.7$ - Lightly doped Si: $\varepsilon \approx 0.3$ (semi-transparent in IR) - With oxide film: interference effects modify $\varepsilon$ - Temperature dependent: $\varepsilon$ changes with $T$ ### 3.3 Convection **Newton's Law of Cooling:** $$ q_{conv} = h(T_s - T_\infty) $$ **Nusselt Number Correlations:** For forced convection over a wafer: $$ Nu = \frac{hL}{k_f} = C \cdot Re^m \cdot Pr^n $$ Where: - $Re = \frac{\rho v L}{\mu}$ (Reynolds number) - $Pr = \frac{c_p \mu}{k_f}$ (Prandtl number) ## 4. Temperature Measurement ### 4.1 Pyrometry Fundamentals **Monochromatic Pyrometry:** $$ T = \frac{c_2}{\lambda \ln\left( \frac{\varepsilon c_1}{\lambda^5 L} + 1 \right)} $$ Where: - $c_1 = 3.742 \times 10^{-16}$ W·m² - $c_2 = 1.439 \times 10^{-2}$ m·K - $L$ = measured spectral radiance - $\varepsilon$ = spectral emissivity **Two-Color (Ratio) Pyrometry:** $$ T = \frac{c_2 \left( \frac{1}{\lambda_1} - \frac{1}{\lambda_2} \right)}{\ln\left( \frac{L_1 \lambda_1^5}{L_2 \lambda_2^5} \cdot \frac{\varepsilon_2}{\varepsilon_1} \right)} $$ **Measurement Challenges:** - Unknown emissivity (varies with films, doping, temperature) - Reflected radiation from chamber walls - Transmission through silicon at certain wavelengths ($\lambda > 1.1$ μm) - Pattern effects causing local emissivity variation ### 4.2 Contact Methods - **Thermocouples:** $V = S_{AB} \cdot \Delta T$ (Seebeck coefficient) - **RTDs:** $R(T) = R_0[1 + \alpha(T - T_0)]$ ## 5. Thermal Stress Analysis ### 5.1 Thermal Stress Equations **Biaxial Thermal Stress in Thin Film:** $$ \sigma_{th} = \frac{E_f}{1 - \nu_f} (\alpha_s - \alpha_f)(T - T_{dep}) $$ Where: - $E_f$ = film Young's modulus - $\nu_f$ = film Poisson's ratio - $\alpha_s$ = substrate CTE - $\alpha_f$ = film CTE - $T_{dep}$ = deposition temperature **Wafer Bow (Stoney's Equation):** $$ \sigma_f = \frac{E_s t_s^2}{6(1-\nu_s) t_f} \cdot \frac{1}{R} $$ Where: - $t_s$ = substrate thickness - $t_f$ = film thickness - $R$ = radius of curvature ### 5.2 Slip Dislocation Criterion Slip occurs when resolved shear stress exceeds critical value: $$ \tau_{resolved} = \sigma \cdot \cos\phi \cdot \cos\lambda > \tau_{CRSS}(T) $$ **Critical Temperature:** Slip typically begins above ~1050°C in silicon. **Temperature Gradient Stress:** $$ \sigma_{gradient} \approx \frac{E \alpha \Delta T}{1 - \nu} $$ ## 6. Nanoscale Thermal Transport ### 6.1 Phonon Transport When feature sizes approach phonon mean free path ($\Lambda_{mfp} \approx 100-300$ nm in Si at 300K): **Ballistic Transport Regime:** $$ q = \frac{1}{4} C v_{ph} \Delta T \quad \text{(when } L < \Lambda_{mfp}\text{)} $$ **Modified Thermal Conductivity:** $$ k_{eff} = k_{bulk} \cdot \frac{1}{1 + \frac{\Lambda_{mfp}}{L}} $$ ### 6.2 Interface Thermal Resistance (Kapitza Resistance) $$ R_{th,interface} = \frac{\Delta T}{q} = R_{Kapitza} $$ **Acoustic Mismatch Model:** $$ R_{Kapitza} \propto \frac{(\rho_1 v_1 - \rho_2 v_2)^2}{(\rho_1 v_1 + \rho_2 v_2)^2} $$ Where $\rho v$ is the acoustic impedance. ## 7. Equipment and Process Parameters ### 7.1 Batch Furnace Specifications - **Temperature uniformity:** $\pm 0.5°C$ across wafer zone - **Ramp rates:** 1–10°C/min - **Maximum temperature:** 1200°C - **Batch size:** 50–150 wafers ### 7.2 RTP System Parameters - **Lamp types:** - Tungsten-halogen: $\lambda_{peak} \approx 1$ μm - Arc lamps: broadband emission - **Ramp rates:** 50–400°C/s - **Temperature uniformity target:** $\pm 2°C$ ### 7.3 Laser Annealing Parameters | Parameter | Excimer Laser | CW Laser | |-----------|---------------|----------| | Wavelength | 308 nm (XeCl) | 532 nm, 808 nm | | Pulse duration | 10–100 ns | Continuous | | Melt depth | 10–100 nm | 1–10 μm | | Peak temperature | >1414°C (melt) | 1200–1414°C | ## 8. Process Integration Considerations ### 8.1 Thermal Budget **Cumulative Thermal Budget:** $$ D_t = \sum_i D_0 \cdot e^{-\frac{E_a}{k_B T_i}} \cdot t_i $$ Where $D_t$ is the total diffusion length squared. **Effective $D \cdot t$:** $$ (Dt)_{eff} = \int_0^{t_{process}} D(T(t')) dt' $$ ### 8.2 Junction Depth Estimation For constant-source diffusion: $$ x_j = 2\sqrt{Dt} \cdot \text{erfc}^{-1}\left(\frac{C_B}{C_s}\right) $$ Where: - $x_j$ = junction depth - $C_B$ = background concentration - $C_s$ = surface concentration ## 9. Key Equations | Process | Key Equation | Critical Parameters | |---------|--------------|---------------------| | Reaction Rate | $k = A e^{-E_a/k_B T}$ | $E_a$, $T$ | | Diffusion | $D = D_0 e^{-E_a/k_B T}$ | $D_0$, $E_a$ | | Oxidation | $x^2 + Ax = B(t+\tau)$ | $A$, $B$ (T-dependent) | | Radiation | $q = \varepsilon \sigma T^4$ | $\varepsilon$, $T$ | | Thermal Stress | $\sigma = \frac{E}{1-\nu}\Delta\alpha\Delta T$ | CTE mismatch | | Heat Conduction | $q = -k\nabla T$ | $k(T)$ |

thermal evaporation,pvd

Resistive heating to evaporate material.

thermal grease, thermal management

Thermal grease is a compliant TIM with high thermal conductivity typically silicone-based filled with ceramic or metal particles.

thermal imaging ir, thermal management

Infrared thermal imaging captures temperature distributions across surfaces for non-contact thermal analysis.

thermal interface material, tim, thermal

Material conducting heat between surfaces.

thermal management in 3d, thermal

Heat removal from stacked dies.

thermal mass flow, manufacturing equipment

Thermal mass flow meters measure gas flow through heat transfer.

thermal oxide,diffusion

SiO2 grown by heating silicon in oxygen.

thermal oxidizer, environmental & sustainability

Thermal oxidizers combust VOCs at high temperature converting them to carbon dioxide and water.