phi,microsoft,small
Phi is Microsoft small but capable model. Textbook-quality data.
9,967 technical terms and definitions
Phi is Microsoft small but capable model. Textbook-quality data.
Phind is code-specialized model. Search-augmented coding assistant.
Phoenix (Arize) provides LLM observability. Trace visualization. Open source.
Identify vibrational modes from Raman.
Scattering by lattice vibrations.
Hot H3PO4 to selectively etch nitride over oxide.
Use phosphorus diffusion for gettering.
Contamination from photoresist outgassing.
Photoemission imaging captures spatial distribution of light emission from reverse-biased junctions or gate oxide breakdown.
Photoemission microscopy detects light emission from hot carriers at reverse-biased junctions localizing gate oxide shorts and junction leakage.
AI-enhanced 3D reconstruction from photos.
# Semiconductor Manufacturing Process: Lithography Mathematical Modeling ## 1. Introduction Lithography is the critical patterning step in semiconductor manufacturing that transfers circuit designs onto silicon wafers. It is essentially the "printing press" of chip making and determines the minimum feature sizes achievable. ### 1.1 Basic Process Flow 1. Coat wafer with photoresist 2. Expose photoresist to light through a mask/reticle 3. Develop the photoresist (remove exposed or unexposed regions) 4. Etch or deposit through the patterned resist 5. Strip the remaining resist ### 1.2 Types of Lithography - **Optical lithography:** DUV at 193nm, EUV at 13.5nm - **Electron beam lithography:** Direct-write, maskless - **Nanoimprint lithography:** Mechanical pattern transfer - **X-ray lithography:** Short wavelength exposure ## 2. Optical Image Formation The foundation of lithography modeling is **partially coherent imaging theory**, formalized through the Hopkins integral. ### 2.1 Hopkins Integral The intensity distribution at the image plane is given by: $$ I(x,y) = \iiint\!\!\!\int TCC(f_1,g_1;f_2,g_2) \cdot \tilde{M}(f_1,g_1) \cdot \tilde{M}^*(f_2,g_2) \cdot e^{2\pi i[(f_1-f_2)x + (g_1-g_2)y]} \, df_1\,dg_1\,df_2\,dg_2 $$ Where: - $I(x,y)$ — Intensity at image plane coordinates $(x,y)$ - $\tilde{M}(f,g)$ — Fourier transform of the mask transmission function - $TCC$ — Transmission Cross Coefficient ### 2.2 Transmission Cross Coefficient (TCC) The TCC encodes both the illumination source and lens pupil: $$ TCC(f_1,g_1;f_2,g_2) = \iint S(f,g) \cdot P(f+f_1,g+g_1) \cdot P^*(f+f_2,g+g_2) \, df\,dg $$ Where: - $S(f,g)$ — Source intensity distribution - $P(f,g)$ — Pupil function (encodes aberrations, NA cutoff) - $P^*$ — Complex conjugate of the pupil function ### 2.3 Sum of Coherent Systems (SOCS) To accelerate computation, the TCC is decomposed using eigendecomposition: $$ TCC(f_1,g_1;f_2,g_2) = \sum_{k=1}^{N} \lambda_k \cdot \phi_k(f_1,g_1) \cdot \phi_k^*(f_2,g_2) $$ The image becomes a weighted sum of coherent images: $$ I(x,y) = \sum_{k=1}^{N} \lambda_k \left| \mathcal{F}^{-1}\{\phi_k \cdot \tilde{M}\} \right|^2 $$ ### 2.4 Coherence Factor The partial coherence factor $\sigma$ is defined as: $$ \sigma = \frac{NA_{source}}{NA_{lens}} $$ - $\sigma = 0$ — Fully coherent illumination - $\sigma = 1$ — Matched illumination - $\sigma > 1$ — Overfilled illumination ## 3. Resolution Limits and Scaling Laws ### 3.1 Rayleigh Criterion The minimum resolvable feature size: $$ R = k_1 \frac{\lambda}{NA} $$ Where: - $R$ — Minimum resolvable feature - $k_1$ — Process factor (theoretical limit $\approx 0.25$, practical $\approx 0.3\text{--}0.4$) - $\lambda$ — Wavelength of light - $NA$ — Numerical aperture $= n \sin\theta$ ### 3.2 Depth of Focus $$ DOF = k_2 \frac{\lambda}{NA^2} $$ Where: - $DOF$ — Depth of focus - $k_2$ — Process-dependent constant ### 3.3 Technology Comparison | Technology | $\lambda$ (nm) | NA | Min. Feature | DOF | |:-----------|:---------------|:-----|:-------------|:----| | DUV ArF | 193 | 1.35 | ~38 nm | ~100 nm | | EUV | 13.5 | 0.33 | ~13 nm | ~120 nm | | High-NA EUV | 13.5 | 0.55 | ~8 nm | ~45 nm | ### 3.4 Resolution Enhancement Techniques (RETs) Key techniques to reduce effective $k_1$: - **Off-Axis Illumination (OAI):** Dipole, quadrupole, annular - **Phase-Shift Masks (PSM):** Alternating, attenuated - **Optical Proximity Correction (OPC):** Bias, serifs, sub-resolution assist features (SRAFs) - **Multiple Patterning:** LELE, SADP, SAQP ## 4. Rigorous Electromagnetic Mask Modeling ### 4.1 Thin Mask Approximation (Kirchhoff) For features much larger than wavelength: $$ E_{mask}(x,y) = t(x,y) \cdot E_{incident} $$ Where $t(x,y)$ is the complex transmission function. ### 4.2 Maxwell's Equations For sub-wavelength features, we must solve Maxwell's equations rigorously: $$ \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} $$ $$ \nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t} $$ ### 4.3 RCWA (Rigorous Coupled-Wave Analysis) For periodic structures with grating period $d$, fields are expanded in Floquet modes: $$ E(x,z) = \sum_{n=-N}^{N} A_n(z) \cdot e^{i k_{xn} x} $$ Where the wavevector components are: $$ k_{xn} = k_0 \sin\theta_0 + \frac{2\pi n}{d} $$ This yields a matrix eigenvalue problem: $$ \frac{d^2}{dz^2}\mathbf{A} = \mathbf{K}^2 \mathbf{A} $$ Where $\mathbf{K}$ couples different diffraction orders through the dielectric tensor. ### 4.4 FDTD (Finite-Difference Time-Domain) Discretizing Maxwell's equations on a Yee grid: $$ \frac{\partial H_y}{\partial t} = \frac{1}{\mu}\left(\frac{\partial E_x}{\partial z} - \frac{\partial E_z}{\partial x}\right) $$ $$ \frac{\partial E_x}{\partial t} = \frac{1}{\epsilon}\left(\frac{\partial H_y}{\partial z} - J_x\right) $$ ### 4.5 EUV Mask 3D Effects Shadowing from absorber thickness $h$ at angle $\theta$: $$ \Delta x = h \tan\theta $$ For EUV at 6° chief ray angle: $$ \Delta x \approx 0.105 \cdot h $$ ## 5. Photoresist Modeling ### 5.1 Dill ABC Model (Exposure) The photoactive compound (PAC) concentration evolves as: $$ \frac{\partial M(z,t)}{\partial t} = -I(z,t) \cdot M(z,t) \cdot C $$ Light absorption follows Beer-Lambert law: $$ \frac{dI}{dz} = -\alpha(M) \cdot I $$ $$ \alpha(M) = A \cdot M + B $$ Where: - $A$ — Bleachable absorption coefficient - $B$ — Non-bleachable absorption coefficient - $C$ — Exposure rate constant (quantum efficiency) - $M$ — Normalized PAC concentration ### 5.2 Post-Exposure Bake (PEB) — Reaction-Diffusion For chemically amplified resists (CARs): $$ \frac{\partial h}{\partial t} = D \nabla^2 h + k \cdot h \cdot M_{blocking} $$ Where: - $h$ — Acid concentration - $D$ — Diffusion coefficient - $k$ — Reaction rate constant - $M_{blocking}$ — Blocking group concentration The blocking group deprotection: $$ \frac{\partial M_{blocking}}{\partial t} = -k_{amp} \cdot h \cdot M_{blocking} $$ ### 5.3 Mack Development Rate Model $$ r(m) = r_{max} \cdot \frac{(a+1)(1-m)^n}{a + (1-m)^n} + r_{min} $$ Where: - $r$ — Development rate - $m$ — Normalized PAC concentration remaining - $n$ — Contrast (dissolution selectivity) - $a$ — Inhibition depth - $r_{max}$ — Maximum development rate (fully exposed) - $r_{min}$ — Minimum development rate (unexposed) ### 5.4 Enhanced Mack Model Including surface inhibition: $$ r(m,z) = r_{max} \cdot \frac{(a+1)(1-m)^n}{a + (1-m)^n} \cdot \left(1 - e^{-z/l}\right) + r_{min} $$ Where $l$ is the surface inhibition depth. ## 6. Optical Proximity Correction (OPC) ### 6.1 Forward Problem Given mask $M$, compute the printed wafer image: $$ I = F(M) $$ Where $F$ represents the complete optical and resist model. ### 6.2 Inverse Problem Given target pattern $T$, find mask $M$ such that: $$ F(M) \approx T $$ ### 6.3 Edge Placement Error (EPE) $$ EPE_i = x_{printed,i} - x_{target,i} $$ ### 6.4 OPC Optimization Formulation Minimize the cost function: $$ \mathcal{L}(M) = \sum_{i=1}^{N} w_i \cdot EPE_i^2 + \lambda \cdot R(M) $$ Where: - $w_i$ — Weight for evaluation point $i$ - $R(M)$ — Regularization term for mask manufacturability - $\lambda$ — Regularization strength ### 6.5 Gradient-Based OPC Using gradient descent: $$ M_{n+1} = M_n - \eta \frac{\partial \mathcal{L}}{\partial M} $$ The gradient requires computing: $$ \frac{\partial \mathcal{L}}{\partial M} = \sum_i 2 w_i \cdot EPE_i \cdot \frac{\partial EPE_i}{\partial M} + \lambda \frac{\partial R}{\partial M} $$ ### 6.6 Adjoint Method for Gradient Computation The sensitivity $\frac{\partial I}{\partial M}$ is computed efficiently using the adjoint formulation: $$ \frac{\partial \mathcal{L}}{\partial M} = \text{Re}\left\{ \tilde{M}^* \cdot \mathcal{F}\left\{ \sum_k \lambda_k \phi_k^* \cdot \mathcal{F}^{-1}\left\{ \phi_k \cdot \frac{\partial \mathcal{L}}{\partial I} \right\} \right\} \right\} $$ This avoids computing individual sensitivities for each mask pixel. ### 6.7 Mask Manufacturability Constraints Common regularization terms: - **Minimum feature size:** $R_1(M) = \sum \max(0, w_{min} - w_i)^2$ - **Minimum space:** $R_2(M) = \sum \max(0, s_{min} - s_i)^2$ - **Edge curvature:** $R_3(M) = \int |\kappa(s)|^2 ds$ - **Shot count:** $R_4(M) = N_{vertices}$ ## 7. Source-Mask Optimization (SMO) ### 7.1 Joint Optimization Formulation $$ \min_{S,M} \sum_{\text{patterns}} \|I(S,M) - T\|^2 + \lambda_S R_S(S) + \lambda_M R_M(M) $$ Where: - $S$ — Source intensity distribution - $M$ — Mask transmission function - $T$ — Target pattern - $R_S(S)$ — Source manufacturability regularization - $R_M(M)$ — Mask manufacturability regularization ### 7.2 Source Parameterization Pixelated source with constraints: $$ S(f,g) = \sum_{i,j} s_{ij} \cdot \text{rect}\left(\frac{f - f_i}{\Delta f}\right) \cdot \text{rect}\left(\frac{g - g_j}{\Delta g}\right) $$ Subject to: $$ 0 \leq s_{ij} \leq 1 \quad \forall i,j $$ $$ \sum_{i,j} s_{ij} = S_{total} $$ ### 7.3 Alternating Optimization **Algorithm:** 1. Initialize $S_0$, $M_0$ 2. For iteration $n = 1, 2, \ldots$: - Fix $S_n$, optimize $M_{n+1} = \arg\min_M \mathcal{L}(S_n, M)$ - Fix $M_{n+1}$, optimize $S_{n+1} = \arg\min_S \mathcal{L}(S, M_{n+1})$ 3. Repeat until convergence ### 7.4 Gradient Computation for SMO Source gradient: $$ \frac{\partial I}{\partial S}(x,y) = \left| \mathcal{F}^{-1}\{P \cdot \tilde{M}\}(x,y) \right|^2 $$ Mask gradient uses the adjoint method as in OPC. ## 8. Stochastic Effects and EUV ### 8.1 Photon Shot Noise Photon counts follow a Poisson distribution: $$ P(n) = \frac{\bar{n}^n e^{-\bar{n}}}{n!} $$ For EUV at 13.5 nm, photon energy is: $$ E_{photon} = \frac{hc}{\lambda} = \frac{1240 \text{ eV} \cdot \text{nm}}{13.5 \text{ nm}} \approx 92 \text{ eV} $$ Mean photons per pixel: $$ \bar{n} = \frac{\text{Dose} \cdot A_{pixel}}{E_{photon}} $$ ### 8.2 Relative Shot Noise $$ \frac{\sigma_n}{\bar{n}} = \frac{1}{\sqrt{\bar{n}}} $$ For 30 mJ/cm² dose and 10 nm pixel: $$ \bar{n} \approx 200 \text{ photons} \implies \sigma/\bar{n} \approx 7\% $$ ### 8.3 Line Edge Roughness (LER) Characterized by power spectral density: $$ PSD(f) = \frac{LER^2 \cdot \xi}{1 + (2\pi f \xi)^{2(1+H)}} $$ Where: - $LER$ — RMS line edge roughness (3σ value) - $\xi$ — Correlation length - $H$ — Hurst exponent (0 < H < 1) - $f$ — Spatial frequency ### 8.4 LER Decomposition $$ LER^2 = LWR^2/2 + \sigma_{placement}^2 $$ Where: - $LWR$ — Line width roughness - $\sigma_{placement}$ — Line placement error ### 8.5 Stochastic Defectivity Probability of printing failure (e.g., missing contact): $$ P_{fail} = 1 - \prod_{i} \left(1 - P_{fail,i}\right) $$ For a chip with $10^{10}$ contacts at 99.9999999% yield per contact: $$ P_{chip,fail} \approx 1\% $$ ### 8.6 Monte Carlo Simulation Steps 1. **Photon absorption:** Generate random events $\sim \text{Poisson}(\bar{n})$ 2. **Acid generation:** Each photon generates acid at random location 3. **Diffusion:** Brownian motion during PEB: $\langle r^2 \rangle = 6Dt$ 4. **Deprotection:** Local reaction based on acid concentration 5. **Development:** Cellular automata or level-set method ## 9. Multiple Patterning Mathematics ### 9.1 Graph Coloring Formulation When pitch $< \lambda/(2NA)$, single-exposure patterning fails. **Graph construction:** - Nodes $V$ = features (polygons) - Edges $E$ = spacing conflicts (features too close for one mask) - Colors $C$ = different masks ### 9.2 k-Colorability Problem Find assignment $c: V \rightarrow \{1, 2, \ldots, k\}$ such that: $$ c(u) \neq c(v) \quad \forall (u,v) \in E $$ This is **NP-complete** for $k \geq 3$. ### 9.3 Integer Linear Programming (ILP) Formulation Binary variables: $x_{v,c} \in \{0,1\}$ (node $v$ assigned color $c$) **Objective:** $$ \min \sum_{(u,v) \in E} \sum_c x_{u,c} \cdot x_{v,c} \cdot w_{uv} $$ **Constraints:** $$ \sum_{c=1}^{k} x_{v,c} = 1 \quad \forall v \in V $$ $$ x_{u,c} + x_{v,c} \leq 1 \quad \forall (u,v) \in E, \forall c $$ ### 9.4 Self-Aligned Multiple Patterning (SADP) Spacer pitch after $n$ iterations: $$ p_n = \frac{p_0}{2^n} $$ Where $p_0$ is the initial (lithographic) pitch. ## 10. Process Control Mathematics ### 10.1 Overlay Control Polynomial model across the wafer: $$ OVL_x(x,y) = a_0 + a_1 x + a_2 y + a_3 xy + a_4 x^2 + a_5 y^2 + \ldots $$ **Physical interpretation:** | Coefficient | Physical Effect | |:------------|:----------------| | $a_0$ | Translation | | $a_1$, $a_2$ | Scale (magnification) | | $a_3$ | Rotation | | $a_4$, $a_5$ | Non-orthogonality | ### 10.2 Overlay Correction Least squares fitting: $$ \mathbf{a} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} $$ Where $\mathbf{X}$ is the design matrix and $\mathbf{y}$ is measured overlay. ### 10.3 Run-to-Run Control — EWMA Exponentially Weighted Moving Average: $$ \hat{y}_{n+1} = \lambda y_n + (1-\lambda)\hat{y}_n $$ Where: - $\hat{y}_{n+1}$ — Predicted output - $y_n$ — Measured output at step $n$ - $\lambda$ — Smoothing factor $(0 < \lambda < 1)$ ### 10.4 CDU Variance Decomposition $$ \sigma^2_{total} = \sigma^2_{local} + \sigma^2_{field} + \sigma^2_{wafer} + \sigma^2_{lot} $$ **Sources:** - **Local:** Shot noise, LER, resist - **Field:** Lens aberrations, mask - **Wafer:** Focus/dose uniformity - **Lot:** Tool-to-tool variation ### 10.5 Process Capability Index $$ C_{pk} = \min\left(\frac{USL - \mu}{3\sigma}, \frac{\mu - LSL}{3\sigma}\right) $$ Where: - $USL$, $LSL$ — Upper/lower specification limits - $\mu$ — Process mean - $\sigma$ — Process standard deviation ## 11. Machine Learning Integration ### 11.1 Applications Overview | Application | Method | Purpose | |:------------|:-------|:--------| | Hotspot detection | CNNs | Predict yield-limiting patterns | | OPC acceleration | Neural surrogates | Replace expensive physics sims | | Metrology | Regression models | Virtual measurements | | Defect classification | Image classifiers | Automated inspection | | Etch prediction | Physics-informed NN | Predict etch profiles | ### 11.2 Neural Network Surrogate Model A neural network approximates the forward model: $$ \hat{I}(x,y) = f_{NN}(\text{mask}, \text{source}, \text{focus}, \text{dose}; \theta) $$ Training objective: $$ \theta^* = \arg\min_\theta \sum_{i=1}^{N} \|f_{NN}(M_i; \theta) - I_i^{rigorous}\|^2 $$ ### 11.3 Hotspot Detection with CNNs Binary classification: $$ P(\text{hotspot} | \text{pattern}) = \sigma(\mathbf{W} \cdot \mathbf{features} + b) $$ Where $\sigma$ is the sigmoid function and features are extracted by convolutional layers. ### 11.4 Inverse Lithography with Deep Learning Generator network $G$ maps target to mask: $$ \hat{M} = G(T; \theta_G) $$ Training with physics-based loss: $$ \mathcal{L} = \|F(G(T)) - T\|^2 + \lambda \cdot R(G(T)) $$ ## 12. Mathematical Disciplines | Mathematical Domain | Application in Lithography | |:--------------------|:---------------------------| | **Fourier Optics** | Image formation, aberrations, frequency analysis | | **Electromagnetic Theory** | RCWA, FDTD, rigorous mask simulation | | **Partial Differential Equations** | Resist diffusion, development, reaction kinetics | | **Optimization Theory** | OPC, SMO, inverse problems, gradient descent | | **Probability & Statistics** | Shot noise, LER, SPC, process control | | **Linear Algebra** | Matrix methods, eigendecomposition, least squares | | **Graph Theory** | Multiple patterning decomposition, routing | | **Numerical Methods** | FEM, finite differences, Monte Carlo | | **Machine Learning** | Surrogate models, pattern recognition, CNNs | | **Signal Processing** | Image analysis, metrology, filtering | ## Key Equations Quick Reference ### Imaging $$ I(x,y) = \sum_{k} \lambda_k \left| \mathcal{F}^{-1}\{\phi_k \cdot \tilde{M}\} \right|^2 $$ ### Resolution $$ R = k_1 \frac{\lambda}{NA} $$ ### Depth of Focus $$ DOF = k_2 \frac{\lambda}{NA^2} $$ ### Development Rate $$ r(m) = r_{max} \cdot \frac{(a+1)(1-m)^n}{a + (1-m)^n} + r_{min} $$ ### LER Power Spectrum $$ PSD(f) = \frac{LER^2 \cdot \xi}{1 + (2\pi f \xi)^{2(1+H)}} $$ ### OPC Cost Function $$ \mathcal{L}(M) = \sum_{i} w_i \cdot EPE_i^2 + \lambda \cdot R(M) $$
Map carrier lifetime across wafer.
Spatial uniformity of optical properties.
Light emission from optical excitation.
Match rendered to real images.
Image emitted photons from defects.
Detect light from defects or hot spots.
Statistical variation in photon number.
Alternative optics for EUV lithography.
Use light for computation.
Use light instead of electricity for computation.
Optical/photonic computing uses light for matrix multiplication. Experimental but potentially very efficient.
Transfer while maintaining realism.
Light-sensitive polymer that changes solubility when exposed.
Mask multi-token phrases.
Understand physical world dynamics.
Optimize logic during physical design.
# Semiconductor Manufacturing Process: Physics-Based Modeling and Differential Equations A comprehensive reference for the physics and mathematics governing semiconductor fabrication processes. ## 1. Thermal Oxidation of Silicon ### 1.1 Deal-Grove Model The foundational model for silicon oxidation describes oxide thickness growth through coupled transport and reaction. **Governing Equation:** $$ x^2 + Ax = B(t + \tau) $$ **Parameter Definitions:** - $x$ — oxide thickness - $A = \frac{2D_{ox}}{k_s}$ — linear rate constant parameter (related to surface reaction) - $B = \frac{2D_{ox}C^*}{N_1}$ — parabolic rate constant (related to diffusion) - $D_{ox}$ — oxidant diffusivity through oxide - $k_s$ — surface reaction rate constant - $C^*$ — equilibrium oxidant concentration at gas-oxide interface - $N_1$ — number of oxidant molecules incorporated per unit volume of oxide - $\tau$ — time shift accounting for initial oxide ### 1.2 Underlying Diffusion Physics **Steady-state diffusion through the oxide:** $$ \frac{\partial C}{\partial t} = D_{ox}\frac{\partial^2 C}{\partial x^2} $$ **Boundary Conditions:** - **Gas-oxide interface (flux from gas phase):** $$ F_1 = h_g(C^* - C_0) $$ - **Si-SiO₂ interface (surface reaction):** $$ F_2 = k_s C_i $$ **Steady-state flux through the oxide:** $$ F = \frac{D_{ox}C^*}{1 + \frac{k_s}{h_g} + \frac{k_s x}{D_{ox}}} $$ ### 1.3 Limiting Growth Regimes | Regime | Condition | Growth Law | Physical Interpretation | |--------|-----------|------------|------------------------| | **Linear** | Thin oxide ($x \ll A$) | $x \approx \frac{B}{A}(t + \tau)$ | Reaction-limited | | **Parabolic** | Thick oxide ($x \gg A$) | $x \approx \sqrt{Bt}$ | Diffusion-limited | ## 2. Dopant Diffusion ### 2.1 Fick's Laws of Diffusion **First Law (Flux Equation):** $$ \vec{J} = -D\nabla C $$ **Second Law (Mass Conservation / Continuity):** $$ \frac{\partial C}{\partial t} = \nabla \cdot (D\nabla C) $$ **For constant diffusivity in 1D:** $$ \frac{\partial C}{\partial t} = D\frac{\partial^2 C}{\partial x^2} $$ ### 2.2 Analytical Solutions #### Constant Surface Concentration (Predeposition) Initial condition: $C(x, 0) = 0$ Boundary condition: $C(0, t) = C_s$ $$ C(x,t) = C_s \cdot \text{erfc}\left(\frac{x}{2\sqrt{Dt}}\right) $$ where the complementary error function is: $$ \text{erfc}(z) = 1 - \text{erf}(z) = 1 - \frac{2}{\sqrt{\pi}}\int_0^z e^{-u^2} du $$ #### Fixed Dose / Drive-in (Gaussian Distribution) Initial condition: Delta function at surface with dose $Q$ $$ C(x,t) = \frac{Q}{\sqrt{\pi Dt}} \exp\left(-\frac{x^2}{4Dt}\right) $$ **Key Parameters:** - $Q$ — total dose per unit area (atoms/cm²) - $\sqrt{Dt}$ — diffusion length - Peak concentration: $C_{max} = \frac{Q}{\sqrt{\pi Dt}}$ ### 2.3 Concentration-Dependent Diffusion At high doping concentrations, diffusivity becomes concentration-dependent: $$ \frac{\partial C}{\partial t} = \frac{\partial}{\partial x}\left[D(C)\frac{\partial C}{\partial x}\right] $$ **Fair-Tsai Model for Diffusivity:** $$ D = D_i + D^-\frac{n}{n_i} + D^+\frac{p}{n_i} + D^{++}\left(\frac{p}{n_i}\right)^2 $$ **Parameter Definitions:** - $D_i$ — intrinsic diffusivity (via neutral defects) - $D^-$ — diffusivity via negatively charged defects - $D^+$ — diffusivity via singly positive charged defects - $D^{++}$ — diffusivity via doubly positive charged defects - $n, p$ — electron and hole concentrations - $n_i$ — intrinsic carrier concentration ### 2.4 Point Defect Coupled Diffusion Modern TCAD uses coupled equations for dopants and point defects (vacancies $V$ and interstitials $I$): **Vacancy Continuity:** $$ \frac{\partial C_V}{\partial t} = D_V\nabla^2 C_V - k_{IV}C_V C_I + G_V - \frac{C_V - C_V^*}{\tau_V} $$ **Interstitial Continuity:** $$ \frac{\partial C_I}{\partial t} = D_I\nabla^2 C_I - k_{IV}C_V C_I + G_I - \frac{C_I - C_I^*}{\tau_I} $$ **Term Definitions:** - $D_V, D_I$ — diffusion coefficients for vacancies and interstitials - $k_{IV}$ — recombination rate constant for $V$-$I$ annihilation - $G_V, G_I$ — generation rates - $C_V^*, C_I^*$ — equilibrium concentrations - $\tau_V, \tau_I$ — lifetimes at sinks (surfaces, dislocations) **Effective Dopant Diffusivity:** $$ D_{eff} = f_I D_I \frac{C_I}{C_I^*} + f_V D_V \frac{C_V}{C_V^*} $$ where $f_I$ and $f_V$ are the interstitial and vacancy fractions for the specific dopant species. ## 3. Ion Implantation ### 3.1 Range Distribution (LSS Theory) The implanted dopant profile follows approximately a Gaussian distribution: $$ C(x) = \frac{\Phi}{\sqrt{2\pi}\Delta R_p} \exp\left[-\frac{(x - R_p)^2}{2\Delta R_p^2}\right] $$ **Parameters:** - $\Phi$ — dose (ions/cm²) - $R_p$ — projected range (mean implant depth) - $\Delta R_p$ — straggle (standard deviation of range distribution) **Higher-Order Moments (Pearson IV Distribution):** - $\gamma$ — skewness (asymmetry) - $\beta$ — kurtosis (peakedness) ### 3.2 Stopping Power (Energy Loss) The rate of energy loss as ions traverse the target: $$ \frac{dE}{dx} = -N[S_n(E) + S_e(E)] $$ **Components:** - $S_n(E)$ — nuclear stopping power (elastic collisions with target nuclei) - $S_e(E)$ — electronic stopping power (inelastic interactions with electrons) - $N$ — atomic density of target material (atoms/cm³) **LSS Electronic Stopping (Low Energy):** $$ S_e \propto \sqrt{E} $$ **Nuclear Stopping:** Uses screened Coulomb potentials with Thomas-Fermi or ZBL (Ziegler-Biersack-Littmark) universal screening functions. ### 3.3 Boltzmann Transport Equation For rigorous treatment (typically solved via Monte Carlo methods): $$ \frac{\partial f}{\partial t} + \vec{v} \cdot \nabla_r f + \frac{\vec{F}}{m} \cdot \nabla_v f = \left(\frac{\partial f}{\partial t}\right)_{coll} $$ **Variables:** - $f(\vec{r}, \vec{v}, t)$ — particle distribution function - $\vec{F}$ — external force - Right-hand side — collision integral ### 3.4 Damage Accumulation **Kinchin-Pease Model:** $$ N_d = \frac{E_{damage}}{2E_d} $$ **Parameters:** - $N_d$ — number of displaced atoms - $E_{damage}$ — energy available for displacement - $E_d$ — displacement threshold energy ($\approx 15$ eV for silicon) ## 4. Chemical Vapor Deposition (CVD) ### 4.1 Coupled Transport Equations **Species Transport (Convection-Diffusion-Reaction):** $$ \frac{\partial C_i}{\partial t} + \vec{u} \cdot \nabla C_i = D_i\nabla^2 C_i + R_i $$ **Navier-Stokes Equations (Momentum):** $$ \rho\left(\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \nabla\vec{u}\right) = -\nabla p + \mu\nabla^2\vec{u} + \rho\vec{g} $$ **Continuity Equation (Incompressible Flow):** $$ \nabla \cdot \vec{u} = 0 $$ **Energy Equation:** $$ \rho c_p\left(\frac{\partial T}{\partial t} + \vec{u} \cdot \nabla T\right) = k\nabla^2 T + Q_{reaction} $$ **Variable Definitions:** - $C_i$ — concentration of species $i$ - $\vec{u}$ — velocity vector - $D_i$ — diffusion coefficient of species $i$ - $R_i$ — net reaction rate for species $i$ - $\rho$ — density - $p$ — pressure - $\mu$ — dynamic viscosity - $c_p$ — specific heat at constant pressure - $k$ — thermal conductivity - $Q_{reaction}$ — heat of reaction ### 4.2 Surface Reaction Kinetics **Flux Balance at Wafer Surface:** $$ h_m(C_b - C_s) = k_s C_s $$ **Deposition Rate:** $$ G = \frac{k_s h_m C_b}{k_s + h_m} $$ **Parameters:** - $h_m$ — mass transfer coefficient - $k_s$ — surface reaction rate constant - $C_b$ — bulk gas concentration - $C_s$ — surface concentration **Limiting Cases:** | Regime | Condition | Rate Expression | Control Mechanism | |--------|-----------|-----------------|-------------------| | **Reaction-limited** | $k_s \ll h_m$ | $G \approx k_s C_b$ | Surface chemistry | | **Transport-limited** | $k_s \gg h_m$ | $G \approx h_m C_b$ | Mass transfer | ### 4.3 Step Coverage — Knudsen Diffusion In high-aspect-ratio features, molecular (Knudsen) flow dominates: $$ D_K = \frac{d}{3}\sqrt{\frac{8k_B T}{\pi m}} $$ **Parameters:** - $d$ — characteristic feature dimension - $k_B$ — Boltzmann constant - $T$ — temperature - $m$ — molecular mass **Thiele Modulus (Reaction-Diffusion Balance):** $$ \phi = L\sqrt{\frac{k_s}{D_K}} $$ **Interpretation:** - $\phi \ll 1$ — Reaction-limited → Conformal deposition - $\phi \gg 1$ — Diffusion-limited → Poor step coverage ## 5. Atomic Layer Deposition (ALD) ### 5.1 Surface Site Model **Precursor A Adsorption Kinetics:** $$ \frac{d\theta_A}{dt} = s_0 \frac{P_A}{\sqrt{2\pi m_A k_B T}}(1 - \theta_A) - k_{des}\theta_A $$ **Parameters:** - $\theta_A$ — fractional surface coverage of precursor A - $s_0$ — sticking coefficient - $P_A$ — partial pressure of precursor A - $m_A$ — molecular mass of precursor A - $k_{des}$ — desorption rate constant ### 5.2 Growth Per Cycle (GPC) $$ GPC = n_{sites} \cdot \Omega \cdot \theta_A^{sat} $$ **Parameters:** - $n_{sites}$ — surface site density (sites/cm²) - $\Omega$ — atomic volume (volume per deposited atom) - $\theta_A^{sat}$ — saturation coverage achieved during half-cycle ## 6. Plasma Etching ### 6.1 Plasma Fluid Equations **Electron Continuity:** $$ \frac{\partial n_e}{\partial t} + \nabla \cdot \vec{\Gamma}_e = S_{ionization} - S_{recomb} $$ **Ion Continuity:** $$ \frac{\partial n_i}{\partial t} + \nabla \cdot \vec{\Gamma}_i = S_{ionization} - S_{recomb} $$ **Drift-Diffusion Flux (Electrons):** $$ \vec{\Gamma}_e = -n_e\mu_e\vec{E} - D_e\nabla n_e $$ **Drift-Diffusion Flux (Ions):** $$ \vec{\Gamma}_i = n_i\mu_i\vec{E} - D_i\nabla n_i $$ **Poisson's Equation (Self-Consistent Field):** $$ \nabla^2\phi = -\frac{e}{\varepsilon_0}(n_i - n_e) $$ **Electron Energy Balance:** $$ \frac{\partial}{\partial t}\left(\frac{3}{2}n_e k_B T_e\right) + \nabla \cdot \vec{q}_e = -e\vec{\Gamma}_e \cdot \vec{E} - \sum_j \epsilon_j R_j $$ ### 6.2 Sheath Physics **Bohm Criterion (Sheath Edge Condition):** $$ u_i \geq u_B = \sqrt{\frac{k_B T_e}{M_i}} $$ **Child-Langmuir Law (Collisionless Sheath Ion Current):** $$ J = \frac{4\varepsilon_0}{9}\sqrt{\frac{2e}{M_i}}\frac{V_0^{3/2}}{d^2} $$ **Parameters:** - $u_i$ — ion velocity at sheath edge - $u_B$ — Bohm velocity - $T_e$ — electron temperature - $M_i$ — ion mass - $V_0$ — sheath voltage drop - $d$ — sheath thickness ### 6.3 Surface Etch Kinetics **Ion-Enhanced Etching Rate:** $$ R_{etch} = Y_i\Gamma_i + Y_n\Gamma_n(1-\theta) + Y_{syn}\Gamma_i\theta $$ **Components:** - $Y_i\Gamma_i$ — physical sputtering contribution - $Y_n\Gamma_n(1-\theta)$ — spontaneous chemical etching - $Y_{syn}\Gamma_i\theta$ — ion-enhanced (synergistic) etching **Yield Parameters:** - $Y_i$ — physical sputtering yield - $Y_n$ — spontaneous chemical etch yield - $Y_{syn}$ — synergistic yield (ion-enhanced chemistry) - $\Gamma_i, \Gamma_n$ — ion and neutral fluxes - $\theta$ — fractional surface coverage of reactive species **Surface Coverage Dynamics:** $$ \frac{d\theta}{dt} = s\Gamma_n(1-\theta) - Y_{syn}\Gamma_i\theta - k_v\theta $$ **Terms:** - $s\Gamma_n(1-\theta)$ — adsorption onto empty sites - $Y_{syn}\Gamma_i\theta$ — consumption by ion-enhanced reaction - $k_v\theta$ — thermal desorption/volatilization ## 7. Lithography ### 7.1 Aerial Image Formation **Hopkins Formulation (Partially Coherent Imaging):** $$ I(x,y) = \iint TCC(f,g;f',g') \cdot \tilde{M}(f,g) \cdot \tilde{M}^*(f',g') \, df\,dg\,df'\,dg' $$ **Parameters:** - $TCC$ — Transmission Cross Coefficient (encapsulates partial coherence) - $\tilde{M}(f,g)$ — Fourier transform of mask transmission function - $f, g$ — spatial frequencies **Rayleigh Resolution Criterion:** $$ Resolution = k_1 \frac{\lambda}{NA} $$ **Depth of Focus:** $$ DOF = k_2 \frac{\lambda}{NA^2} $$ **Parameters:** - $k_1, k_2$ — process-dependent factors - $\lambda$ — exposure wavelength - $NA$ — numerical aperture ### 7.2 Photoresist Exposure — Dill Model **Intensity Attenuation with Photobleaching:** $$ \frac{\partial I}{\partial z} = -\alpha(M)I $$ where the absorption coefficient depends on PAC concentration: $$ \alpha = AM + B $$ **Photoactive Compound (PAC) Decomposition:** $$ \frac{\partial M}{\partial t} = -CIM $$ **Dill Parameters:** | Parameter | Description | Units | |-----------|-------------|-------| | $A$ | Bleachable absorption coefficient | μm⁻¹ | | $B$ | Non-bleachable absorption coefficient | μm⁻¹ | | $C$ | Exposure rate constant | cm²/mJ | | $M$ | Relative PAC concentration | dimensionless (0-1) | ### 7.3 Chemically Amplified Resists **Photoacid Generation:** $$ \frac{\partial [H^+]}{\partial t} = C \cdot I \cdot [PAG] $$ **Post-Exposure Bake — Acid Diffusion and Reaction:** $$ \frac{\partial [H^+]}{\partial t} = D_{acid}\nabla^2[H^+] - k_{loss}[H^+] $$ **Deprotection Reaction (Catalytic Amplification):** $$ \frac{\partial [Protected]}{\partial t} = -k_{cat}[H^+][Protected] $$ **Parameters:** - $[PAG]$ — photoacid generator concentration - $D_{acid}$ — acid diffusion coefficient - $k_{loss}$ — acid loss rate (neutralization, evaporation) - $k_{cat}$ — catalytic deprotection rate constant ### 7.4 Development Rate — Mack Model $$ R = R_{max}\frac{(a+1)(1-M)^n}{a + (1-M)^n} + R_{min} $$ **Parameters:** - $R_{max}$ — maximum development rate (fully exposed) - $R_{min}$ — minimum development rate (unexposed) - $a$ — selectivity parameter - $n$ — contrast parameter - $M$ — normalized PAC concentration after exposure ## 8. Epitaxy ### 8.1 Burton-Cabrera-Frank (BCF) Theory **Adatom Diffusion on Terraces:** $$ \frac{\partial n}{\partial t} = D_s\nabla^2 n + F - \frac{n}{\tau} $$ **Parameters:** - $n$ — adatom density on terrace - $D_s$ — surface diffusion coefficient - $F$ — deposition flux (atoms/cm²·s) - $\tau$ — adatom lifetime before desorption **Step Velocity:** $$ v_{step} = \Omega D_s\left[\left(\frac{\partial n}{\partial x}\right)_+ - \left(\frac{\partial n}{\partial x}\right)_-\right] $$ **Steady-State Solution for Step Flow:** $$ v_{step} = \frac{2D_s \lambda_s F}{l} \cdot \tanh\left(\frac{l}{2\lambda_s}\right) $$ **Parameters:** - $\Omega$ — atomic volume - $\lambda_s = \sqrt{D_s \tau}$ — surface diffusion length - $l$ — terrace width ### 8.2 Rate Equations for Island Nucleation **Monomer (Single Adatom) Density:** $$ \frac{dn_1}{dt} = F - 2\sigma_1 D_s n_1^2 - \sum_{j>1}\sigma_j D_s n_1 n_j - \frac{n_1}{\tau} $$ **Cluster of Size $j$:** $$ \frac{dn_j}{dt} = \sigma_{j-1}D_s n_1 n_{j-1} - \sigma_j D_s n_1 n_j $$ **Parameters:** - $n_j$ — density of clusters containing $j$ atoms - $\sigma_j$ — capture cross-section for clusters of size $j$ ## 9. Chemical Mechanical Polishing (CMP) ### 9.1 Preston Equation $$ MRR = K_p \cdot P \cdot V $$ **Parameters:** - $MRR$ — material removal rate (nm/min) - $K_p$ — Preston coefficient (material/process dependent) - $P$ — applied pressure - $V$ — relative velocity between pad and wafer ### 9.2 Contact Mechanics — Greenwood-Williamson Model **Real Contact Area:** $$ A_r = \pi \eta A_n R_p \int_d^\infty (z-d)\phi(z)dz $$ **Parameters:** - $\eta$ — asperity density - $A_n$ — nominal contact area - $R_p$ — asperity radius - $d$ — separation distance - $\phi(z)$ — asperity height distribution ### 9.3 Slurry Hydrodynamics — Reynolds Equation $$ \frac{\partial}{\partial x}\left(h^3\frac{\partial p}{\partial x}\right) + \frac{\partial}{\partial y}\left(h^3\frac{\partial p}{\partial y}\right) = 6\mu U\frac{\partial h}{\partial x} $$ **Parameters:** - $h$ — film thickness - $p$ — pressure - $\mu$ — dynamic viscosity - $U$ — sliding velocity ## 10. Thin Film Stress ### 10.1 Stoney Equation **Film Stress from Wafer Curvature:** $$ \sigma_f = \frac{E_s h_s^2}{6(1-\nu_s)h_f R} $$ **Parameters:** - $\sigma_f$ — film stress - $E_s$ — substrate Young's modulus - $\nu_s$ — substrate Poisson's ratio - $h_s$ — substrate thickness - $h_f$ — film thickness - $R$ — radius of curvature ### 10.2 Thermal Stress $$ \sigma_{th} = \frac{E_f}{1-\nu_f}(\alpha_s - \alpha_f)\Delta T $$ **Parameters:** - $E_f$ — film Young's modulus - $\nu_f$ — film Poisson's ratio - $\alpha_s, \alpha_f$ — thermal expansion coefficients (substrate, film) - $\Delta T$ — temperature change from deposition ## 11. Electromigration (Reliability) ### 11.1 Black's Equation (Empirical MTTF) $$ MTTF = A \cdot j^{-n} \cdot \exp\left(\frac{E_a}{k_B T}\right) $$ **Parameters:** - $MTTF$ — mean time to failure - $j$ — current density - $n$ — current density exponent (typically 1-2) - $E_a$ — activation energy - $A$ — material/geometry constant ### 11.2 Drift-Diffusion Model $$ \frac{\partial C}{\partial t} = \nabla \cdot \left[D\left(\nabla C - C\frac{Z^*e\rho \vec{j}}{k_B T}\right)\right] $$ **Parameters:** - $C$ — atomic concentration - $D$ — diffusion coefficient - $Z^*$ — effective charge number (wind force parameter) - $\rho$ — electrical resistivity - $\vec{j}$ — current density vector ### 11.3 Stress Evolution — Korhonen Model $$ \frac{\partial \sigma}{\partial t} = \frac{\partial}{\partial x}\left[\frac{D_a B\Omega}{k_B T}\left(\frac{\partial\sigma}{\partial x} + \frac{Z^*e\rho j}{\Omega}\right)\right] $$ **Parameters:** - $\sigma$ — hydrostatic stress - $D_a$ — atomic diffusivity - $B$ — effective bulk modulus - $\Omega$ — atomic volume ## 12. Numerical Solution Methods ### 12.1 Common Numerical Techniques | Method | Application | Strengths | |--------|-------------|-----------| | **Finite Difference (FDM)** | Regular grids, 1D/2D problems | Simple implementation, efficient | | **Finite Element (FEM)** | Complex geometries, stress analysis | Flexible meshing, boundary conditions | | **Monte Carlo** | Ion implantation, plasma kinetics | Statistical accuracy, handles randomness | | **Level Set** | Topography evolution (etch/deposition) | Handles topology changes | | **Kinetic Monte Carlo (KMC)** | Atomic-scale diffusion, nucleation | Captures rare events, atomic detail | ### 12.2 Discretization Examples **Explicit Forward Euler (1D Diffusion):** $$ C_i^{n+1} = C_i^n + \frac{D\Delta t}{(\Delta x)^2}\left(C_{i+1}^n - 2C_i^n + C_{i-1}^n\right) $$ **Stability Criterion:** $$ \frac{D\Delta t}{(\Delta x)^2} \leq \frac{1}{2} $$ **Implicit Backward Euler:** $$ C_i^{n+1} - \frac{D\Delta t}{(\Delta x)^2}\left(C_{i+1}^{n+1} - 2C_i^{n+1} + C_{i-1}^{n+1}\right) = C_i^n $$ ### 12.3 Major TCAD Software Tools - **Synopsys Sentaurus** — comprehensive process and device simulation - **Silvaco ATHENA/ATLAS** — process and device modeling - **COMSOL Multiphysics** — general multiphysics platform - **SRIM/TRIM** — ion implantation Monte Carlo - **PROLITH** — lithography simulation ## Processes and Governing Equations | Process | Primary Physics | Key Equation | |---------|-----------------|--------------| | **Oxidation** | Diffusion + Reaction | $x^2 + Ax = Bt$ | | **Diffusion** | Mass Transport | $\frac{\partial C}{\partial t} = D\nabla^2 C$ | | **Implantation** | Ballistic + Stopping | $\frac{dE}{dx} = -N(S_n + S_e)$ | | **CVD** | Transport + Kinetics | Navier-Stokes + Species | | **ALD** | Self-limiting Adsorption | Langmuir kinetics | | **Plasma Etch** | Plasma + Surface | Poisson + Drift-Diffusion | | **Lithography** | Wave Optics + Chemistry | Dill ABC model | | **Epitaxy** | Surface Diffusion | BCF theory | | **CMP** | Tribology + Chemistry | Preston equation | | **Stress** | Elasticity | Stoney equation | | **Electromigration** | Mass transport under current | Korhonen model |
Incorporate known physics into learning.
Render using physical light transport.
Neural networks constrained by physics.
Multi-finger gate structure.
Consistency between perturbed inputs.
Precision of die placement.
Place components on board.
Characterize ferroelectric materials.
Find and redact sensitive personal data.
Remove personal information.
Detect and mask PII (names, emails, SSN) in inputs and outputs. Required for privacy compliance.
Small-scale fab for developing new processes.
Small production batch for validation.
Small-scale production before HVM.
Pilot tests validate improvements on small scale before full deployment.
Pin fin heat sinks use cylindrical protrusions providing omnidirectional airflow paths.
Pins arranged in grid.
Vector database service for embeddings.
Pinecone is managed vector database. Easy scaling.
Page-locked host memory for fast transfer.
pip installs Python packages. From PyPI or requirements.