← Back to AI Factory Chat

AI Factory Glossary

9,967 technical terms and definitions

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Showing page 131 of 200 (9,967 entries)

plot generation,content creation

Design story plots.

plotly,interactive,visualization

Plotly creates interactive visualizations. Dash for dashboards.

plug and play language models (pplm),plug and play language models,pplm,text generation

Steer generation using attribute classifiers.

plunger, packaging

Pushes compound into cavity.

pm (preventive maintenance),pm,preventive maintenance,production

Scheduled maintenance to prevent equipment failure.

pm effectiveness, pm, production

How well PM prevents failures.

pm overdue, pm, manufacturing operations

PM overdue indicates missed maintenance requiring attention before production.

pm schedule, pm, manufacturing operations

Preventive maintenance schedules plan routine service to prevent failures.

pmf, pmf, recommendation systems

Probabilistic Matrix Factorization models user-item ratings using Gaussian distributions over latent factors with regularization through priors.

pna, pna, graph neural networks

Principal Neighborhood Aggregation uses multiple aggregators and scalers enhancing GNN expressiveness on graph tasks.

pneumatic valve, manufacturing equipment

Pneumatic valves use compressed air for actuation in chemical systems.

pocket implant, process integration

Pocket implants create localized high-doping regions near source-drain edges controlling short-channel effects.

pocket implant,process

Similar to halo selective doping.

pocket spacing, packaging

Distance between components in tape.

poetry generation,content creation

Create poems in various forms.

poetry, infrastructure

Python dependency management.

poetry,dependency,package

Poetry manages Python dependencies. Lockfile, build, publish.

poetry,verse,creative

Generate poetry. Various styles, rhyme schemes.

point cloud completion,computer vision

Fill missing regions in point clouds.

point cloud generation, 3d vision

Generate point clouds.

point cloud initialization, 3d vision

Start from SfM points.

point cloud processing,computer vision

Work with 3D point cloud data.

point cloud segmentation,computer vision

Classify points in 3D space.

point cloud video processing, 3d vision

Process 3D point cloud sequences.

point cloud,lidar,3d data

Point clouds are 3D points from LiDAR or depth sensors. Process with PointNet. Autonomous driving.

point defects, defects

Vacancies and interstitials.

point-e, multimodal ai

Point-E generates 3D point clouds from text using diffusion models.

point-of-use (pou) filter,facility

Filter installed close to tool to ensure ultra-pure chemicals or gases.

point-of-use abatement, environmental & sustainability

Point-of-use abatement treats emissions at each process tool rather than centrally.

point-of-use filter, manufacturing equipment

Point-of-use filters remove particles immediately before chemical delivery.

pointwise convolution, computer vision

1x1 convolution for channel mixing.

pointwise convolution, model optimization

Pointwise convolutions use 1x1 kernels for channel mixing without spatial interaction.

pointwise ranking, recommendation systems

Pointwise ranking predicts absolute relevance scores for items independently.

pointwise ranking,machine learning

Score each item independently.

poisoning attacks, ai safety

Corrupt training data to degrade performance.

poisson equation, device physics

Relates potential to charge distribution.

Poisson statistics, defect distribution, yield modeling, critical area, clustering

# Semiconductor Manufacturing Process: Poisson Statistics & Mathematical Modeling ## 1. Introduction: Why Poisson Statistics? Semiconductor defects satisfy the classical **Poisson conditions**: - **Rare events** — Defects are sparse relative to the total chip area - **Independence** — Defect occurrences are approximately independent - **Homogeneity** — Within local regions, defect rates are constant - **No simultaneity** — At infinitesimal scales, simultaneous defects have zero probability ### 1.1 The Poisson Probability Mass Function The probability of observing exactly $k$ defects: $$ P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!} $$ where the expected number of defects is: $$ \lambda = D_0 \cdot A $$ **Parameter definitions:** - $D_0$ — Defect density (defects per unit area, typically defects/cm²) - $A$ — Chip area (cm²) - $\lambda$ — Mean number of defects per chip ### 1.2 Key Statistical Properties | Property | Formula | |----------|---------| | Mean | $E[X] = \lambda$ | | Variance | $\text{Var}(X) = \lambda$ | | Variance-to-Mean Ratio | $\frac{\text{Var}(X)}{E[X]} = 1$ | > **Note:** The equality of mean and variance (equidispersion) is a signature property of the Poisson distribution. Real semiconductor data often shows **overdispersion** (variance > mean), motivating compound models. ## 2. Fundamental Yield Equation ### 2.1 The Seeds Model (Simple Poisson) A chip is functional if and only if it has **zero killer defects**. Under Poisson assumptions: $$ \boxed{Y = P(X = 0) = e^{-D_0 A}} $$ **Derivation:** $$ P(X = 0) = \frac{\lambda^0 e^{-\lambda}}{0!} = e^{-\lambda} = e^{-D_0 A} $$ ### 2.2 Limitations of Simple Poisson - Assumes **uniform** defect density across the wafer (unrealistic) - Does not account for **clustering** of defects - Consistently **underestimates** yield for large chips - Ignores wafer-to-wafer and lot-to-lot variation ## 3. Compound Poisson Models ### 3.1 The Negative Binomial Approach Model the defect density $D_0$ as a **random variable** with Gamma distribution: $$ D_0 \sim \text{Gamma}\left(\alpha, \frac{\alpha}{\bar{D}}\right) $$ **Gamma probability density function:** $$ f(D_0) = \frac{(\alpha/\bar{D})^\alpha}{\Gamma(\alpha)} D_0^{\alpha-1} e^{-\alpha D_0/\bar{D}} $$ where: - $\bar{D}$ — Mean defect density - $\alpha$ — Clustering parameter (shape parameter) ### 3.2 Resulting Yield Model When defect density is Gamma-distributed, the defect count follows a **Negative Binomial** distribution, yielding: $$ \boxed{Y = \left(1 + \frac{D_0 A}{\alpha}\right)^{-\alpha}} $$ ### 3.3 Physical Interpretation of Clustering Parameter $\alpha$ | $\alpha$ Value | Physical Interpretation | |----------------|------------------------| | $\alpha \to \infty$ | Uniform defects — recovers simple Poisson model | | $\alpha \approx 1-5$ | Typical semiconductor clustering | | $\alpha \to 0$ | Extreme clustering — defects occur in tight groups | ### 3.4 Overdispersion The variance-to-mean ratio for the Negative Binomial: $$ \frac{\text{Var}(X)}{E[X]} = 1 + \frac{\bar{D}A}{\alpha} > 1 $$ This **overdispersion** (ratio > 1) matches empirical observations in semiconductor manufacturing. ## 4. Classical Yield Models ### 4.1 Comparison Table | Model | Yield Formula | Assumed Density Distribution | |-------|---------------|------------------------------| | Seeds (Poisson) | $Y = e^{-D_0 A}$ | Delta function (uniform) | | Murphy | $Y = \left(\frac{1 - e^{-D_0 A}}{D_0 A}\right)^2$ | Triangular | | Negative Binomial | $Y = \left(1 + \frac{D_0 A}{\alpha}\right)^{-\alpha}$ | Gamma | | Moore | $Y = e^{-\sqrt{D_0 A}}$ | Empirical | | Bose-Einstein | $Y = \frac{1}{1 + D_0 A}$ | Exponential | ### 4.2 Murphy's Yield Model Assumes triangular distribution of defect densities: $$ Y_{\text{Murphy}} = \left(\frac{1 - e^{-D_0 A}}{D_0 A}\right)^2 $$ **Taylor expansion for small $D_0 A$:** $$ Y_{\text{Murphy}} \approx 1 - \frac{(D_0 A)^2}{12} + O((D_0 A)^4) $$ ### 4.3 Limiting Behavior As $D_0 A \to 0$ (low defect density): $$ \lim_{D_0 A \to 0} Y = 1 \quad \text{(all models)} $$ As $D_0 A \to \infty$ (high defect density): $$ \lim_{D_0 A \to \infty} Y = 0 \quad \text{(all models)} $$ ## 5. Critical Area Analysis ### 5.1 Definition Not all chip area is equally vulnerable. **Critical area** $A_c$ is the region where a defect of size $d$ causes circuit failure. $$ A_c(d) = \int_{\text{layout}} \mathbf{1}\left[\text{defect at } (x,y) \text{ with size } d \text{ causes failure}\right] \, dx \, dy $$ ### 5.2 Critical Area for Shorts For two parallel conductors with: - Length: $L$ - Spacing: $S$ $$ A_c^{\text{short}}(d) = \begin{cases} 2L(d - S) & \text{if } d > S \\ 0 & \text{if } d \leq S \end{cases} $$ ### 5.3 Critical Area for Opens For a conductor with: - Width: $W$ - Length: $L$ $$ A_c^{\text{open}}(d) = \begin{cases} L(d - W) & \text{if } d > W \\ 0 & \text{if } d \leq W \end{cases} $$ ### 5.4 Total Critical Area Integrate over the defect size distribution $f(d)$: $$ A_c = \int_0^\infty A_c(d) \cdot f(d) \, dd $$ ### 5.5 Defect Size Distribution Typically modeled as **power-law**: $$ f(d) = C \cdot d^{-p} \quad \text{for } d \geq d_{\min} $$ **Typical values:** - Exponent: $p \approx 2-4$ - Normalization constant: $C = (p-1) \cdot d_{\min}^{p-1}$ **Alternative: Log-normal distribution** (common for particle contamination): $$ f(d) = \frac{1}{d \sigma \sqrt{2\pi}} \exp\left(-\frac{(\ln d - \mu)^2}{2\sigma^2}\right) $$ ## 6. Multi-Layer Yield Modeling ### 6.1 Modern IC Structure Modern integrated circuits have **10-15+ metal layers**. Each layer $i$ has: - Defect density: $D_i$ - Critical area: $A_{c,i}$ - Clustering parameter: $\alpha_i$ (for Negative Binomial) ### 6.2 Poisson Multi-Layer Yield $$ Y_{\text{total}} = \prod_{i=1}^{n} Y_i = \prod_{i=1}^{n} e^{-D_i A_{c,i}} $$ Simplified form: $$ \boxed{Y_{\text{total}} = \exp\left(-\sum_{i=1}^{n} D_i A_{c,i}\right)} $$ ### 6.3 Negative Binomial Multi-Layer Yield $$ \boxed{Y_{\text{total}} = \prod_{i=1}^{n} \left(1 + \frac{D_i A_{c,i}}{\alpha_i}\right)^{-\alpha_i}} $$ ### 6.4 Log-Yield Decomposition Taking logarithms for analysis: $$ \ln Y_{\text{total}} = -\sum_{i=1}^{n} D_i A_{c,i} \quad \text{(Poisson)} $$ $$ \ln Y_{\text{total}} = -\sum_{i=1}^{n} \alpha_i \ln\left(1 + \frac{D_i A_{c,i}}{\alpha_i}\right) \quad \text{(Negative Binomial)} $$ ## 7. Spatial Point Process Formulation ### 7.1 Inhomogeneous Poisson Process Intensity function $\lambda(x, y)$ varies spatially across the wafer: $$ P(k \text{ defects in region } R) = \frac{\Lambda(R)^k e^{-\Lambda(R)}}{k!} $$ where the integrated intensity is: $$ \Lambda(R) = \iint_R \lambda(x,y) \, dx \, dy $$ ### 7.2 Cox Process (Doubly Stochastic) The intensity $\lambda(x,y)$ is itself a **random field**: $$ \lambda(x,y) = \exp\left(\mu + Z(x,y)\right) $$ where: - $\mu$ — Baseline log-intensity - $Z(x,y)$ — Gaussian random field with spatial correlation function $\rho(h)$ **Correlation structure:** $$ \text{Cov}(Z(x_1, y_1), Z(x_2, y_2)) = \sigma^2 \rho(h) $$ where $h = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}$ ### 7.3 Neyman Type A (Cluster Process) Models defects occurring in clusters: 1. **Cluster centers:** Poisson process with intensity $\lambda_c$ 2. **Defects per cluster:** Poisson with mean $\mu$ 3. **Defect positions:** Scattered around cluster center (e.g., isotropic Gaussian) **Probability generating function:** $$ G(s) = \exp\left[\lambda_c A \left(e^{\mu(s-1)} - 1\right)\right] $$ **Mean and variance:** $$ E[N] = \lambda_c A \mu $$ $$ \text{Var}(N) = \lambda_c A \mu (1 + \mu) $$ ## 8. Statistical Estimation Methods ### 8.1 Maximum Likelihood Estimation #### 8.1.1 Data Structure Given: - $n$ chips with areas $A_1, A_2, \ldots, A_n$ - Binary outcomes $y_i \in \{0, 1\}$ (pass/fail) #### 8.1.2 Likelihood Function $$ \mathcal{L}(D_0, \alpha) = \prod_{i=1}^n Y_i^{y_i} (1 - Y_i)^{1-y_i} $$ where $Y_i = \left(1 + \frac{D_0 A_i}{\alpha}\right)^{-\alpha}$ #### 8.1.3 Log-Likelihood $$ \ell(D_0, \alpha) = \sum_{i=1}^n \left[y_i \ln Y_i + (1-y_i) \ln(1-Y_i)\right] $$ #### 8.1.4 Score Equations $$ \frac{\partial \ell}{\partial D_0} = 0, \quad \frac{\partial \ell}{\partial \alpha} = 0 $$ > **Note:** Requires numerical optimization (Newton-Raphson, BFGS, or EM algorithm). ### 8.2 Bayesian Estimation #### 8.2.1 Prior Distribution $$ D_0 \sim \text{Gamma}(a, b) $$ $$ \pi(D_0) = \frac{b^a}{\Gamma(a)} D_0^{a-1} e^{-b D_0} $$ #### 8.2.2 Posterior Distribution Given defect count $k$ on area $A$: $$ D_0 \mid k \sim \text{Gamma}(a + k, b + A) $$ **Posterior mean:** $$ \hat{D}_0 = \frac{a + k}{b + A} $$ **Posterior variance:** $$ \text{Var}(D_0 \mid k) = \frac{a + k}{(b + A)^2} $$ #### 8.2.3 Sequential Updating Bayesian framework enables sequential learning: $$ \text{Prior}_n \xrightarrow{\text{data } k_n} \text{Posterior}_n = \text{Prior}_{n+1} $$ ## 9. Statistical Process Control ### 9.1 c-Chart (Defect Counts) For **constant inspection area**: - **Center line:** $\bar{c}$ (average defect count) - **Upper Control Limit (UCL):** $\bar{c} + 3\sqrt{\bar{c}}$ - **Lower Control Limit (LCL):** $\max(0, \bar{c} - 3\sqrt{\bar{c}})$ ### 9.2 u-Chart (Defects per Unit Area) For **variable inspection area** $n_i$: $$ u_i = \frac{c_i}{n_i} $$ - **Center line:** $\bar{u}$ - **Control limits:** $\bar{u} \pm 3\sqrt{\frac{\bar{u}}{n_i}}$ ### 9.3 Overdispersion-Adjusted Charts For clustered defects (Negative Binomial), inflate the variance: $$ \text{UCL} = \bar{c} + 3\sqrt{\bar{c}\left(1 + \frac{\bar{c}}{\alpha}\right)} $$ $$ \text{LCL} = \max\left(0, \bar{c} - 3\sqrt{\bar{c}\left(1 + \frac{\bar{c}}{\alpha}\right)}\right) $$ ### 9.4 CUSUM Chart Cumulative sum for detecting small persistent shifts: $$ C_t^+ = \max(0, C_{t-1}^+ + (x_t - \mu_0 - K)) $$ $$ C_t^- = \max(0, C_{t-1}^- - (x_t - \mu_0 + K)) $$ where: - $K$ — Slack value (typically $0.5\sigma$) - Signal when $C_t^+$ or $C_t^-$ exceeds threshold $H$ ## 10. EUV Lithography Stochastic Effects ### 10.1 Photon Shot Noise At extreme ultraviolet wavelength (13.5 nm), **photon shot noise** becomes critical. Number of photons absorbed in resist volume $V$: $$ N \sim \text{Poisson}(\Phi \cdot \sigma \cdot V) $$ where: - $\Phi$ — Photon fluence (photons/area) - $\sigma$ — Absorption cross-section - $V$ — Resist volume ### 10.2 Line Edge Roughness (LER) Stochastic photon absorption causes spatial variation in resist exposure: $$ \sigma_{\text{LER}} \propto \frac{1}{\sqrt{\Phi \cdot V}} $$ **Critical Design Rule:** $$ \text{LER}_{3\sigma} < 0.1 \times \text{CD} $$ where CD = Critical Dimension (feature size) ### 10.3 Stochastic Printing Failures Probability of insufficient photons in a critical volume: $$ P(\text{failure}) = P(N < N_{\text{threshold}}) = \sum_{k=0}^{N_{\text{threshold}}-1} \frac{\lambda^k e^{-\lambda}}{k!} $$ where $\lambda = \Phi \sigma V$ ## 11. Reliability and Latent Defects ### 11.1 Defect Classification Not all defects cause immediate failure: - **Killer defects:** Cause immediate functional failure - **Latent defects:** May cause reliability failures over time $$ \lambda_{\text{total}} = \lambda_{\text{killer}} + \lambda_{\text{latent}} $$ ### 11.2 Yield vs. Reliability **Initial Yield:** $$ Y = e^{-\lambda_{\text{killer}} \cdot A} $$ **Reliability Function:** $$ R(t) = e^{-\lambda_{\text{latent}} \cdot A \cdot H(t)} $$ where $H(t)$ is the cumulative hazard function for latent defect activation. ### 11.3 Weibull Activation Model $$ H(t) = \left(\frac{t}{\eta}\right)^\beta $$ **Parameters:** - $\eta$ — Scale parameter (characteristic life) - $\beta$ — Shape parameter - $\beta < 1$: Decreasing failure rate (infant mortality) - $\beta = 1$: Constant failure rate (exponential) - $\beta > 1$: Increasing failure rate (wear-out) ## 12. Complete Mathematical Framework ### 12.1 Hierarchical Model Structure ``` ┌─────────────────────────────────────────────────────────────┐ │ SEMICONDUCTOR YIELD MODEL HIERARCHY │ ├─────────────────────────────────────────────────────────────┤ │ │ │ Layer 1: DEFECT PHYSICS │ │ • Particle contamination │ │ • Process variation │ │ • Stochastic effects (EUV) │ │ ↓ │ │ Layer 2: SPATIAL POINT PROCESS │ │ • Inhomogeneous Poisson / Cox process │ │ • Defect size distribution: f(d) ∝ d^(-p) │ │ ↓ │ │ Layer 3: CRITICAL AREA CALCULATION │ │ • Layout-dependent geometry │ │ • Ac = ∫ Ac(d)$\cdot$f(d) dd │ │ ↓ │ │ Layer 4: YIELD MODEL │ │ • Y = (1 + D₀Ac/α)^(-α) │ │ • Multi-layer: Y = ∏ Yᵢ │ │ ↓ │ │ Layer 5: STATISTICAL INFERENCE │ │ • MLE / Bayesian estimation │ │ • SPC monitoring │ │ │ └─────────────────────────────────────────────────────────────┘ ``` ### 12.2 Summary of Key Equations | Concept | Equation | |---------|----------| | Poisson PMF | $P(X=k) = \frac{\lambda^k e^{-\lambda}}{k!}$ | | Simple Yield | $Y = e^{-D_0 A}$ | | Negative Binomial Yield | $Y = \left(1 + \frac{D_0 A}{\alpha}\right)^{-\alpha}$ | | Multi-Layer Yield | $Y = \prod_i \left(1 + \frac{D_i A_{c,i}}{\alpha_i}\right)^{-\alpha_i}$ | | Critical Area (shorts) | $A_c^{\text{short}}(d) = 2L(d-S)$ for $d > S$ | | Defect Size Distribution | $f(d) \propto d^{-p}$, $p \approx 2-4$ | | Bayesian Posterior | $D_0 \mid k \sim \text{Gamma}(a+k, b+A)$ | | Control Limits | $\bar{c} \pm 3\sqrt{\bar{c}(1 + \bar{c}/\alpha)}$ | | LER Scaling | $\sigma_{\text{LER}} \propto (\Phi V)^{-1/2}$ | ### 12.3 Typical Parameter Values | Parameter | Typical Range | Units | |-----------|---------------|-------| | Defect density $D_0$ | 0.01 - 1.0 | defects/cm² | | Clustering parameter $\alpha$ | 0.5 - 5 | dimensionless | | Defect size exponent $p$ | 2 - 4 | dimensionless | | Chip area $A$ | 1 - 800 | mm² |

poisson yield model, yield enhancement

Poisson yield model assumes random defects with constant density predicting yield as exponential of negative defect area product.

poisson yield model,manufacturing

Simple yield model assuming random defects.

poka-yoke examples, and sensors preventing errors.

Poka-yoke examples include guide pins

poka-yoke, manufacturing operations

Poka-yoke are error-proofing devices preventing mistakes or making them immediately obvious.

poka-yoke, quality

Error-proofing mechanisms.

polarized raman, metrology

Study crystal symmetry with polarized light.

polarized self-attention, computer vision

Channel and spatial attention decoupled.

polars,fast,rust

Polars is fast DataFrame library in Rust. Parallel, memory-efficient. Pandas alternative for big data.

polishing head,cmp

Applies pressure to wafer during CMP.

politeness in generation, nlp

Generate polite language.

poly cmp,cmp

Polish polysilicon for gate planarization.

poly fill,design

Dummy poly for density uniformity.

poly-encoder,rag

Multiple query representations matched against document.