← Back to AI Factory Chat

AI Factory Glossary

2 technical terms and definitions

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Showing page 1 of 1 (2 entries)

yield modeling, production yield, defect density, die yield, wafer yield, yield management

# Semiconductor Manufacturing Process Yield Modeling: Mathematical Foundations ## 1. Overview Yield modeling in semiconductor manufacturing is the mathematical framework for predicting the fraction of functional dies on a wafer. Since fabrication involves hundreds of process steps where defects can occur, accurate yield prediction is critical for: - Cost estimation and financial planning - Process optimization and control - Manufacturing capacity decisions - Design-for-manufacturability feedback ## 2. Fundamental Definitions **Yield ($Y$)** is defined as: $$ Y = \frac{\text{Number of good dies}}{\text{Total dies on wafer}} $$ The mathematical challenge involves relating yield to: - Defect density ($D$) - Die area ($A$) - Defect clustering behavior ($\alpha$) - Process variations ($\sigma$) ## 3. The Poisson Model (Baseline) The simplest model assumes defects are randomly and uniformly distributed across the wafer. ### 3.1 Basic Equation $$ Y = e^{-AD} $$ Where: - $A$ = die area (cm²) - $D$ = average defect density (defects/cm²) ### 3.2 Mathematical Derivation If defects follow a Poisson distribution with mean $\lambda = AD$, the probability of zero defects (functional die) is: $$ P(X = 0) = \frac{e^{-\lambda} \lambda^0}{0!} = e^{-AD} $$ ### 3.3 Limitations - **Problem**: This model consistently *underestimates* real yields - **Reason**: Actual defects cluster—they don't distribute uniformly - **Result**: Some wafer regions have high defect density while others are nearly defect-free ## 4. Defect Clustering Models Real defects cluster due to: - Particle contamination patterns - Equipment-related issues - Process variations across the wafer - Lithography and etch non-uniformities ### 4.1 Murphy's Model (1964) Assumes defect density is uniformly distributed between $0$ and $2D_0$: $$ Y = \frac{1 - e^{-2AD_0}}{2AD_0} $$ For large $AD_0$, this approximates to: $$ Y \approx \frac{1}{2AD_0} $$ ### 4.2 Seeds' Model Assumes exponential distribution of defect density: $$ Y = e^{-\sqrt{AD}} $$ ### 4.3 Negative Binomial Model (Industry Standard) This is the most widely used model in semiconductor manufacturing. #### 4.3.1 Main Equation $$ Y = \left(1 + \frac{AD}{\alpha}\right)^{-\alpha} $$ Where $\alpha$ is the **clustering parameter**: - $\alpha \to \infty$: Reduces to Poisson (no clustering) - $\alpha \to 0$: Extreme clustering (highly non-uniform) - Typical values: $\alpha \approx 0.5$ to $5$ #### 4.3.2 Mathematical Origin The negative binomial arises from a **compound Poisson process**: 1. Let $X \sim \text{Poisson}(\lambda)$ be the defect count 2. Let $\lambda \sim \text{Gamma}(\alpha, \beta)$ be the varying rate 3. Marginalizing over $\lambda$ gives $X \sim \text{Negative Binomial}$ The probability mass function is: $$ P(X = k) = \binom{k + \alpha - 1}{k} \left(\frac{\beta}{\beta + 1}\right)^\alpha \left(\frac{1}{\beta + 1}\right)^k $$ The yield (probability of zero defects) becomes: $$ Y = P(X = 0) = \left(\frac{\beta}{\beta + 1}\right)^\alpha = \left(1 + \frac{AD}{\alpha}\right)^{-\alpha} $$ ### 4.4 Model Comparison At $AD = 1$: | Model | Yield | |:------|------:| | Poisson | 36.8% | | Murphy | 43.2% | | Negative Binomial ($\alpha = 2$) | 57.7% | | Negative Binomial ($\alpha = 1$) | 50.0% | | Seeds | 36.8% | ## 5. Critical Area Analysis Not all die area is equally sensitive to defects. **Critical area** ($A_c$) is the region where a defect of given size causes failure. ### 5.1 Definition For a defect of radius $r$: - **Short critical area**: Region where defect center causes a short circuit - **Open critical area**: Region where defect causes an open circuit ### 5.2 Stapper's Critical Area Model For parallel lines of width $w$, spacing $s$, and length $l$: $$ A_c(r) = \begin{cases} 0 & \text{if } r < \frac{s}{2} \\[8pt] 2l\left(r - \frac{s}{2}\right) & \text{if } \frac{s}{2} \leq r < \frac{w+s}{2} \\[8pt] lw & \text{if } r \geq \frac{w+s}{2} \end{cases} $$ ### 5.3 Integration Over Defect Size Distribution The total critical area integrates over the defect size distribution $f(r)$: $$ A_c = \int_0^\infty A_c(r) \cdot f(r) \, dr $$ Common distributions for $f(r)$: - **Log-normal**: $f(r) = \frac{1}{r\sigma\sqrt{2\pi}} \exp\left(-\frac{(\ln r - \mu)^2}{2\sigma^2}\right)$ - **Power-law**: $f(r) \propto r^{-p}$ for $r_{\min} \leq r \leq r_{\max}$ ### 5.4 Yield with Critical Area $$ Y = \exp\left(-\int_0^\infty A_c(r) \cdot D(r) \, dr\right) $$ ## 6. Yield Decomposition Total yield is typically factored into independent components: $$ Y_{\text{total}} = Y_{\text{gross}} \times Y_{\text{random}} \times Y_{\text{parametric}} $$ ### 6.1 Component Definitions | Component | Description | Typical Range | |:----------|:------------|:-------------:| | $Y_{\text{gross}}$ | Catastrophic defects, edge loss, handling damage | 95–99% | | $Y_{\text{random}}$ | Random particle defects (main focus of yield modeling) | 70–95% | | $Y_{\text{parametric}}$ | Process variation causing spec failures | 90–99% | ### 6.2 Extended Decomposition For more detailed analysis: $$ Y_{\text{total}} = Y_{\text{gross}} \times \prod_{i=1}^{N_{\text{layers}}} Y_{\text{random},i} \times \prod_{j=1}^{M_{\text{params}}} Y_{\text{param},j} $$ ## 7. Parametric Yield Modeling Dies may function but fail to meet performance specifications due to process variation. ### 7.1 Single Parameter Model If parameter $X \sim \mathcal{N}(\mu, \sigma^2)$ with specification limits $[L, U]$: $$ Y_p = \Phi\left(\frac{U - \mu}{\sigma}\right) - \Phi\left(\frac{L - \mu}{\sigma}\right) $$ Where $\Phi(\cdot)$ is the standard normal cumulative distribution function: $$ \Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-t^2/2} \, dt $$ ### 7.2 Process Capability Indices #### 7.2.1 Cp (Process Capability) $$ C_p = \frac{USL - LSL}{6\sigma} $$ #### 7.2.2 Cpk (Process Capability Index) $$ C_{pk} = \min\left(\frac{USL - \mu}{3\sigma}, \frac{\mu - LSL}{3\sigma}\right) $$ ### 7.3 Cpk to Yield Conversion | $C_{pk}$ | Sigma Level | Yield | DPMO | |:--------:|:-----------:|:-----:|-----:| | 0.33 | 1σ | 68.27% | 317,300 | | 0.67 | 2σ | 95.45% | 45,500 | | 1.00 | 3σ | 99.73% | 2,700 | | 1.33 | 4σ | 99.9937% | 63 | | 1.67 | 5σ | 99.999943% | 0.57 | | 2.00 | 6σ | 99.9999998% | 0.002 | ### 7.4 Multiple Correlated Parameters For $n$ parameters with mean vector $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$: $$ Y_p = \int \int \cdots \int_{\mathcal{R}} \frac{1}{(2\pi)^{n/2}|\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right) d\mathbf{x} $$ Where $\mathcal{R}$ is the specification region. **Computational Methods**: - Monte Carlo integration - Gaussian quadrature - Importance sampling ## 8. Spatial Yield Models Modern fabs analyze spatial patterns using wafer maps to identify systematic issues. ### 8.1 Radial Defect Density Model Accounts for edge effects: $$ D(r) = D_0 + D_1 r^2 $$ Where: - $r$ = distance from wafer center - $D_0$ = baseline defect density - $D_1$ = radial coefficient ### 8.2 General Spatial Model $$ D(x, y) = D_0 + \sum_{i} \beta_i \phi_i(x, y) $$ Where $\phi_i(x, y)$ are spatial basis functions (e.g., Zernike polynomials). ### 8.3 Spatial Autocorrelation (Moran's I) $$ I = \frac{n \sum_i \sum_j w_{ij}(Z_i - \bar{Z})(Z_j - \bar{Z})}{W \sum_i (Z_i - \bar{Z})^2} $$ Where: - $Z_i$ = pass/fail indicator for die $i$ (1 = fail, 0 = pass) - $w_{ij}$ = spatial weight between dies $i$ and $j$ - $W = \sum_i \sum_j w_{ij}$ - $\bar{Z}$ = mean failure rate **Interpretation**: - $I > 0$: Clustered failures (systematic issue) - $I \approx 0$: Random failures - $I < 0$: Dispersed failures (rare) ### 8.4 Variogram Analysis The semi-variogram $\gamma(h)$ measures spatial dependence: $$ \gamma(h) = \frac{1}{2|N(h)|} \sum_{(i,j) \in N(h)} (Z_i - Z_j)^2 $$ Where $N(h)$ is the set of die pairs separated by distance $h$. ## 9. Multi-Layer Yield Modern ICs have many process layers, each contributing to yield loss. ### 9.1 Independent Layers $$ Y_{\text{total}} = \prod_{i=1}^{N} Y_i = \prod_{i=1}^{N} \left(1 + \frac{A_i D_i}{\alpha_i}\right)^{-\alpha_i} $$ ### 9.2 Simplified Model If defects are independent across layers with similar clustering: $$ Y = \left(1 + \frac{A \cdot D_{\text{total}}}{\alpha}\right)^{-\alpha} $$ Where: $$ D_{\text{total}} = \sum_{i=1}^{N} D_i $$ ### 9.3 Layer-Specific Critical Areas $$ Y = \prod_{i=1}^{N} \exp\left(-A_{c,i} \cdot D_i\right) $$ For Poisson model, or: $$ Y = \prod_{i=1}^{N} \left(1 + \frac{A_{c,i} D_i}{\alpha_i}\right)^{-\alpha_i} $$ For negative binomial. ## 10. Yield Learning Curves Yield improves over time as processes mature and defect sources are eliminated. ### 10.1 Exponential Learning Model $$ D(t) = D_\infty + (D_0 - D_\infty)e^{-t/\tau} $$ Where: - $D_0$ = initial defect density - $D_\infty$ = asymptotic (mature) defect density - $\tau$ = learning time constant ### 10.2 Power Law (Wright's Learning Curve) $$ D(n) = D_1 \cdot n^{-b} $$ Where: - $n$ = cumulative production volume (wafers or lots) - $D_1$ = defect density after first unit - $b$ = learning rate exponent (typically $0.2 \leq b \leq 0.4$) ### 10.3 Yield vs. Time Combining with yield model: $$ Y(t) = \left(1 + \frac{A \cdot D(t)}{\alpha}\right)^{-\alpha} $$ ## 11. Yield-Redundancy Models (Memory) Memory arrays use redundant rows/columns for defect tolerance through laser repair or electrical fusing. ### 11.1 Poisson Model with Redundancy If a memory has $R$ spare elements and defects follow Poisson: $$ Y_{\text{repaired}} = \sum_{k=0}^{R} \frac{(AD)^k e^{-AD}}{k!} $$ This is the CDF of the Poisson distribution: $$ Y_{\text{repaired}} = \frac{\Gamma(R+1, AD)}{\Gamma(R+1)} = \frac{\gamma(R+1, AD)}{R!} $$ Where $\gamma(\cdot, \cdot)$ is the lower incomplete gamma function. ### 11.2 Negative Binomial Model with Redundancy $$ Y_{\text{repaired}} = \sum_{k=0}^{R} \binom{k+\alpha-1}{k} \left(\frac{\alpha}{\alpha + AD}\right)^\alpha \left(\frac{AD}{\alpha + AD}\right)^k $$ ### 11.3 Repair Coverage Factor $$ Y_{\text{repaired}} = Y_{\text{base}} + (1 - Y_{\text{base}}) \cdot RC $$ Where $RC$ is the repair coverage (fraction of defective dies that can be repaired). ## 12. Statistical Estimation ### 12.1 Maximum Likelihood Estimation for Negative Binomial Given wafer data with $n_i$ dies and $k_i$ failures per wafer $i$: **Likelihood function**: $$ \mathcal{L}(D, \alpha) = \prod_{i=1}^{W} \binom{n_i}{k_i} (1-Y)^{k_i} Y^{n_i - k_i} $$ **Log-likelihood**: $$ \ell(D, \alpha) = \sum_{i=1}^{W} \left[ \ln\binom{n_i}{k_i} + k_i \ln(1-Y) + (n_i - k_i) \ln Y \right] $$ **Estimation**: Requires iterative numerical methods: - Newton-Raphson - EM algorithm - Gradient descent ### 12.2 Bayesian Estimation With prior distributions $P(D)$ and $P(\alpha)$: $$ P(D, \alpha \mid \text{data}) \propto P(\text{data} \mid D, \alpha) \cdot P(D) \cdot P(\alpha) $$ Common priors: - $D \sim \text{Gamma}(a_D, b_D)$ - $\alpha \sim \text{Gamma}(a_\alpha, b_\alpha)$ ### 12.3 Model Selection Use information criteria to compare models: **Akaike Information Criterion (AIC)**: $$ AIC = -2\ln(\mathcal{L}) + 2k $$ **Bayesian Information Criterion (BIC)**: $$ BIC = -2\ln(\mathcal{L}) + k\ln(n) $$ Where $k$ = number of parameters, $n$ = sample size. ## 13. Economic Model ### 13.1 Die Cost $$ \text{Cost}_{\text{die}} = \frac{\text{Cost}_{\text{wafer}}}{N_{\text{dies}} \times Y} $$ ### 13.2 Dies Per Wafer Accounting for edge exclusion (dies must fit entirely within usable area): $$ N \approx \frac{\pi D_w^2}{4A} - \frac{\pi D_w}{\sqrt{2A}} $$ Where: - $D_w$ = wafer diameter - $A$ = die area **More accurate formula**: $$ N = \frac{\pi (D_w/2 - E)^2}{A} \cdot \eta $$ Where: - $E$ = edge exclusion distance - $\eta$ = packing efficiency factor ($\approx 0.9$) ### 13.3 Cost Sensitivity Analysis Marginal cost impact of yield change: $$ \frac{\partial \text{Cost}_{\text{die}}}{\partial Y} = -\frac{\text{Cost}_{\text{wafer}}}{N \cdot Y^2} $$ ### 13.4 Break-Even Analysis Minimum yield for profitability: $$ Y_{\text{min}} = \frac{\text{Cost}_{\text{wafer}}}{N \cdot \text{Price}_{\text{die}}} $$ ## 14. Key Models ### 14.1 Yield Models Comparison | Model | Formula | Best Application | |:------|:--------|:-----------------| | Poisson | $Y = e^{-AD}$ | Lower bound estimate, theoretical baseline | | Murphy | $Y = \frac{1-e^{-2AD}}{2AD}$ | Moderate clustering | | Seeds | $Y = e^{-\sqrt{AD}}$ | Exponential clustering | | **Negative Binomial** | $Y = \left(1 + \frac{AD}{\alpha}\right)^{-\alpha}$ | **Industry standard**, tunable clustering | | Critical Area | $Y = e^{-\int A_c(r)D(r)dr}$ | Layout-aware prediction | ### 14.2 Key Parameters | Parameter | Symbol | Typical Range | Description | |:----------|:------:|:-------------:|:------------| | Defect Density | $D$ | 0.01–1 /cm² | Defects per unit area | | Die Area | $A$ | 10–800 mm² | Size of single chip | | Clustering Parameter | $\alpha$ | 0.5–5 | Degree of defect clustering | | Learning Rate | $b$ | 0.2–0.4 | Yield improvement rate | ### 14.3 Quick Reference Equations **Basic yield**: $$Y = e^{-AD}$$ **Industry standard**: $$Y = \left(1 + \frac{AD}{\alpha}\right)^{-\alpha}$$ **Total yield**: $$Y_{\text{total}} = Y_{\text{gross}} \times Y_{\text{random}} \times Y_{\text{parametric}}$$ **Die cost**: $$\text{Cost}_{\text{die}} = \frac{\text{Cost}_{\text{wafer}}}{N \times Y}$$ ## Practical Implementation Workflow 1. **Data Collection** - Gather wafer test data (pass/fail maps) - Record lot/wafer identifiers and timestamps 2. **Parameter Estimation** - Estimate $D$ and $\alpha$ via MLE or Bayesian methods - Validate with holdout data 3. **Spatial Analysis** - Generate wafer maps - Calculate Moran's I to detect clustering - Identify systematic defect patterns 4. **Parametric Analysis** - Model electrical parameter distributions - Calculate $C_{pk}$ for key parameters - Estimate parametric yield losses 5. **Model Integration** - Combine: $Y_{\text{total}} = Y_{\text{gross}} \times Y_{\text{random}} \times Y_{\text{parametric}}$ - Validate against actual production data 6. **Trend Monitoring** - Track $D$ and $\alpha$ over time - Fit learning curve models - Project future yields 7. **Cost Optimization** - Calculate die cost at current yield - Identify highest-impact improvement opportunities - Optimize die size vs. yield trade-off

yield modeling,yield,defect density,poisson yield,negative binomial,murphy model,critical area,semiconductor yield,die yield,wafer yield

# Semiconductor Manufacturing Process Yield Modeling: Mathematical Foundations ## 1. Overview Yield modeling in semiconductor manufacturing is the mathematical framework for predicting the fraction of functional dies on a wafer. Since fabrication involves hundreds of process steps where defects can occur, accurate yield prediction is critical for: - Cost estimation and financial planning - Process optimization and control - Manufacturing capacity decisions - Design-for-manufacturability feedback ## 2. Fundamental Definitions **Yield ($Y$)** is defined as: $$ Y = \frac{\text{Number of good dies}}{\text{Total dies on wafer}} $$ The mathematical challenge involves relating yield to: - Defect density ($D$) - Die area ($A$) - Defect clustering behavior ($\alpha$) - Process variations ($\sigma$) ## 3. The Poisson Model (Baseline) The simplest model assumes defects are randomly and uniformly distributed across the wafer. ### 3.1 Basic Equation $$ Y = e^{-AD} $$ Where: - $A$ = die area (cm²) - $D$ = average defect density (defects/cm²) ### 3.2 Mathematical Derivation If defects follow a Poisson distribution with mean $\lambda = AD$, the probability of zero defects (functional die) is: $$ P(X = 0) = \frac{e^{-\lambda} \lambda^0}{0!} = e^{-AD} $$ ### 3.3 Limitations - **Problem**: This model consistently *underestimates* real yields - **Reason**: Actual defects cluster—they don't distribute uniformly - **Result**: Some wafer regions have high defect density while others are nearly defect-free ## 4. Defect Clustering Models Real defects cluster due to: - Particle contamination patterns - Equipment-related issues - Process variations across the wafer - Lithography and etch non-uniformities ### 4.1 Murphy's Model (1964) Assumes defect density is uniformly distributed between $0$ and $2D_0$: $$ Y = \frac{1 - e^{-2AD_0}}{2AD_0} $$ For large $AD_0$, this approximates to: $$ Y \approx \frac{1}{2AD_0} $$ ### 4.2 Seeds' Model Assumes exponential distribution of defect density: $$ Y = e^{-\sqrt{AD}} $$ ### 4.3 Negative Binomial Model (Industry Standard) This is the most widely used model in semiconductor manufacturing. #### 4.3.1 Main Equation $$ Y = \left(1 + \frac{AD}{\alpha}\right)^{-\alpha} $$ Where $\alpha$ is the **clustering parameter**: - $\alpha \to \infty$: Reduces to Poisson (no clustering) - $\alpha \to 0$: Extreme clustering (highly non-uniform) - Typical values: $\alpha \approx 0.5$ to $5$ #### 4.3.2 Mathematical Origin The negative binomial arises from a **compound Poisson process**: 1. Let $X \sim \text{Poisson}(\lambda)$ be the defect count 2. Let $\lambda \sim \text{Gamma}(\alpha, \beta)$ be the varying rate 3. Marginalizing over $\lambda$ gives $X \sim \text{Negative Binomial}$ The probability mass function is: $$ P(X = k) = \binom{k + \alpha - 1}{k} \left(\frac{\beta}{\beta + 1}\right)^\alpha \left(\frac{1}{\beta + 1}\right)^k $$ The yield (probability of zero defects) becomes: $$ Y = P(X = 0) = \left(\frac{\beta}{\beta + 1}\right)^\alpha = \left(1 + \frac{AD}{\alpha}\right)^{-\alpha} $$ ### 4.4 Model Comparison At $AD = 1$: | Model | Yield | |:------|------:| | Poisson | 36.8% | | Murphy | 43.2% | | Negative Binomial ($\alpha = 2$) | 57.7% | | Negative Binomial ($\alpha = 1$) | 50.0% | | Seeds | 36.8% | ## 5. Critical Area Analysis Not all die area is equally sensitive to defects. **Critical area** ($A_c$) is the region where a defect of given size causes failure. ### 5.1 Definition For a defect of radius $r$: - **Short critical area**: Region where defect center causes a short circuit - **Open critical area**: Region where defect causes an open circuit ### 5.2 Stapper's Critical Area Model For parallel lines of width $w$, spacing $s$, and length $l$: $$ A_c(r) = \begin{cases} 0 & \text{if } r < \frac{s}{2} \\[8pt] 2l\left(r - \frac{s}{2}\right) & \text{if } \frac{s}{2} \leq r < \frac{w+s}{2} \\[8pt] lw & \text{if } r \geq \frac{w+s}{2} \end{cases} $$ ### 5.3 Integration Over Defect Size Distribution The total critical area integrates over the defect size distribution $f(r)$: $$ A_c = \int_0^\infty A_c(r) \cdot f(r) \, dr $$ Common distributions for $f(r)$: - **Log-normal**: $f(r) = \frac{1}{r\sigma\sqrt{2\pi}} \exp\left(-\frac{(\ln r - \mu)^2}{2\sigma^2}\right)$ - **Power-law**: $f(r) \propto r^{-p}$ for $r_{\min} \leq r \leq r_{\max}$ ### 5.4 Yield with Critical Area $$ Y = \exp\left(-\int_0^\infty A_c(r) \cdot D(r) \, dr\right) $$ ## 6. Yield Decomposition Total yield is typically factored into independent components: $$ Y_{\text{total}} = Y_{\text{gross}} \times Y_{\text{random}} \times Y_{\text{parametric}} $$ ### 6.1 Component Definitions | Component | Description | Typical Range | |:----------|:------------|:-------------:| | $Y_{\text{gross}}$ | Catastrophic defects, edge loss, handling damage | 95–99% | | $Y_{\text{random}}$ | Random particle defects (main focus of yield modeling) | 70–95% | | $Y_{\text{parametric}}$ | Process variation causing spec failures | 90–99% | ### 6.2 Extended Decomposition For more detailed analysis: $$ Y_{\text{total}} = Y_{\text{gross}} \times \prod_{i=1}^{N_{\text{layers}}} Y_{\text{random},i} \times \prod_{j=1}^{M_{\text{params}}} Y_{\text{param},j} $$ ## 7. Parametric Yield Modeling Dies may function but fail to meet performance specifications due to process variation. ### 7.1 Single Parameter Model If parameter $X \sim \mathcal{N}(\mu, \sigma^2)$ with specification limits $[L, U]$: $$ Y_p = \Phi\left(\frac{U - \mu}{\sigma}\right) - \Phi\left(\frac{L - \mu}{\sigma}\right) $$ Where $\Phi(\cdot)$ is the standard normal cumulative distribution function: $$ \Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-t^2/2} \, dt $$ ### 7.2 Process Capability Indices #### 7.2.1 Cp (Process Capability) $$ C_p = \frac{USL - LSL}{6\sigma} $$ #### 7.2.2 Cpk (Process Capability Index) $$ C_{pk} = \min\left(\frac{USL - \mu}{3\sigma}, \frac{\mu - LSL}{3\sigma}\right) $$ ### 7.3 Cpk to Yield Conversion | $C_{pk}$ | Sigma Level | Yield | DPMO | |:--------:|:-----------:|:-----:|-----:| | 0.33 | 1σ | 68.27% | 317,300 | | 0.67 | 2σ | 95.45% | 45,500 | | 1.00 | 3σ | 99.73% | 2,700 | | 1.33 | 4σ | 99.9937% | 63 | | 1.67 | 5σ | 99.999943% | 0.57 | | 2.00 | 6σ | 99.9999998% | 0.002 | ### 7.4 Multiple Correlated Parameters For $n$ parameters with mean vector $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$: $$ Y_p = \int \int \cdots \int_{\mathcal{R}} \frac{1}{(2\pi)^{n/2}|\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right) d\mathbf{x} $$ Where $\mathcal{R}$ is the specification region. **Computational Methods**: - Monte Carlo integration - Gaussian quadrature - Importance sampling ## 8. Spatial Yield Models Modern fabs analyze spatial patterns using wafer maps to identify systematic issues. ### 8.1 Radial Defect Density Model Accounts for edge effects: $$ D(r) = D_0 + D_1 r^2 $$ Where: - $r$ = distance from wafer center - $D_0$ = baseline defect density - $D_1$ = radial coefficient ### 8.2 General Spatial Model $$ D(x, y) = D_0 + \sum_{i} \beta_i \phi_i(x, y) $$ Where $\phi_i(x, y)$ are spatial basis functions (e.g., Zernike polynomials). ### 8.3 Spatial Autocorrelation (Moran's I) $$ I = \frac{n \sum_i \sum_j w_{ij}(Z_i - \bar{Z})(Z_j - \bar{Z})}{W \sum_i (Z_i - \bar{Z})^2} $$ Where: - $Z_i$ = pass/fail indicator for die $i$ (1 = fail, 0 = pass) - $w_{ij}$ = spatial weight between dies $i$ and $j$ - $W = \sum_i \sum_j w_{ij}$ - $\bar{Z}$ = mean failure rate **Interpretation**: - $I > 0$: Clustered failures (systematic issue) - $I \approx 0$: Random failures - $I < 0$: Dispersed failures (rare) ### 8.4 Variogram Analysis The semi-variogram $\gamma(h)$ measures spatial dependence: $$ \gamma(h) = \frac{1}{2|N(h)|} \sum_{(i,j) \in N(h)} (Z_i - Z_j)^2 $$ Where $N(h)$ is the set of die pairs separated by distance $h$. ## 9. Multi-Layer Yield Modern ICs have many process layers, each contributing to yield loss. ### 9.1 Independent Layers $$ Y_{\text{total}} = \prod_{i=1}^{N} Y_i = \prod_{i=1}^{N} \left(1 + \frac{A_i D_i}{\alpha_i}\right)^{-\alpha_i} $$ ### 9.2 Simplified Model If defects are independent across layers with similar clustering: $$ Y = \left(1 + \frac{A \cdot D_{\text{total}}}{\alpha}\right)^{-\alpha} $$ Where: $$ D_{\text{total}} = \sum_{i=1}^{N} D_i $$ ### 9.3 Layer-Specific Critical Areas $$ Y = \prod_{i=1}^{N} \exp\left(-A_{c,i} \cdot D_i\right) $$ For Poisson model, or: $$ Y = \prod_{i=1}^{N} \left(1 + \frac{A_{c,i} D_i}{\alpha_i}\right)^{-\alpha_i} $$ For negative binomial. ## 10. Yield Learning Curves Yield improves over time as processes mature and defect sources are eliminated. ### 10.1 Exponential Learning Model $$ D(t) = D_\infty + (D_0 - D_\infty)e^{-t/\tau} $$ Where: - $D_0$ = initial defect density - $D_\infty$ = asymptotic (mature) defect density - $\tau$ = learning time constant ### 10.2 Power Law (Wright's Learning Curve) $$ D(n) = D_1 \cdot n^{-b} $$ Where: - $n$ = cumulative production volume (wafers or lots) - $D_1$ = defect density after first unit - $b$ = learning rate exponent (typically $0.2 \leq b \leq 0.4$) ### 10.3 Yield vs. Time Combining with yield model: $$ Y(t) = \left(1 + \frac{A \cdot D(t)}{\alpha}\right)^{-\alpha} $$ ## 11. Yield-Redundancy Models (Memory) Memory arrays use redundant rows/columns for defect tolerance through laser repair or electrical fusing. ### 11.1 Poisson Model with Redundancy If a memory has $R$ spare elements and defects follow Poisson: $$ Y_{\text{repaired}} = \sum_{k=0}^{R} \frac{(AD)^k e^{-AD}}{k!} $$ This is the CDF of the Poisson distribution: $$ Y_{\text{repaired}} = \frac{\Gamma(R+1, AD)}{\Gamma(R+1)} = \frac{\gamma(R+1, AD)}{R!} $$ Where $\gamma(\cdot, \cdot)$ is the lower incomplete gamma function. ### 11.2 Negative Binomial Model with Redundancy $$ Y_{\text{repaired}} = \sum_{k=0}^{R} \binom{k+\alpha-1}{k} \left(\frac{\alpha}{\alpha + AD}\right)^\alpha \left(\frac{AD}{\alpha + AD}\right)^k $$ ### 11.3 Repair Coverage Factor $$ Y_{\text{repaired}} = Y_{\text{base}} + (1 - Y_{\text{base}}) \cdot RC $$ Where $RC$ is the repair coverage (fraction of defective dies that can be repaired). ## 12. Statistical Estimation ### 12.1 Maximum Likelihood Estimation for Negative Binomial Given wafer data with $n_i$ dies and $k_i$ failures per wafer $i$: **Likelihood function**: $$ \mathcal{L}(D, \alpha) = \prod_{i=1}^{W} \binom{n_i}{k_i} (1-Y)^{k_i} Y^{n_i - k_i} $$ **Log-likelihood**: $$ \ell(D, \alpha) = \sum_{i=1}^{W} \left[ \ln\binom{n_i}{k_i} + k_i \ln(1-Y) + (n_i - k_i) \ln Y \right] $$ **Estimation**: Requires iterative numerical methods: - Newton-Raphson - EM algorithm - Gradient descent ### 12.2 Bayesian Estimation With prior distributions $P(D)$ and $P(\alpha)$: $$ P(D, \alpha \mid \text{data}) \propto P(\text{data} \mid D, \alpha) \cdot P(D) \cdot P(\alpha) $$ Common priors: - $D \sim \text{Gamma}(a_D, b_D)$ - $\alpha \sim \text{Gamma}(a_\alpha, b_\alpha)$ ### 12.3 Model Selection Use information criteria to compare models: **Akaike Information Criterion (AIC)**: $$ AIC = -2\ln(\mathcal{L}) + 2k $$ **Bayesian Information Criterion (BIC)**: $$ BIC = -2\ln(\mathcal{L}) + k\ln(n) $$ Where $k$ = number of parameters, $n$ = sample size. ## 13. Economic Model ### 13.1 Die Cost $$ \text{Cost}_{\text{die}} = \frac{\text{Cost}_{\text{wafer}}}{N_{\text{dies}} \times Y} $$ ### 13.2 Dies Per Wafer Accounting for edge exclusion (dies must fit entirely within usable area): $$ N \approx \frac{\pi D_w^2}{4A} - \frac{\pi D_w}{\sqrt{2A}} $$ Where: - $D_w$ = wafer diameter - $A$ = die area **More accurate formula**: $$ N = \frac{\pi (D_w/2 - E)^2}{A} \cdot \eta $$ Where: - $E$ = edge exclusion distance - $\eta$ = packing efficiency factor ($\approx 0.9$) ### 13.3 Cost Sensitivity Analysis Marginal cost impact of yield change: $$ \frac{\partial \text{Cost}_{\text{die}}}{\partial Y} = -\frac{\text{Cost}_{\text{wafer}}}{N \cdot Y^2} $$ ### 13.4 Break-Even Analysis Minimum yield for profitability: $$ Y_{\text{min}} = \frac{\text{Cost}_{\text{wafer}}}{N \cdot \text{Price}_{\text{die}}} $$ ## 14. Key Models ### 14.1 Yield Models Comparison | Model | Formula | Best Application | |:------|:--------|:-----------------| | Poisson | $Y = e^{-AD}$ | Lower bound estimate, theoretical baseline | | Murphy | $Y = \frac{1-e^{-2AD}}{2AD}$ | Moderate clustering | | Seeds | $Y = e^{-\sqrt{AD}}$ | Exponential clustering | | **Negative Binomial** | $Y = \left(1 + \frac{AD}{\alpha}\right)^{-\alpha}$ | **Industry standard**, tunable clustering | | Critical Area | $Y = e^{-\int A_c(r)D(r)dr}$ | Layout-aware prediction | ### 14.2 Key Parameters | Parameter | Symbol | Typical Range | Description | |:----------|:------:|:-------------:|:------------| | Defect Density | $D$ | 0.01–1 /cm² | Defects per unit area | | Die Area | $A$ | 10–800 mm² | Size of single chip | | Clustering Parameter | $\alpha$ | 0.5–5 | Degree of defect clustering | | Learning Rate | $b$ | 0.2–0.4 | Yield improvement rate | ### 14.3 Quick Reference Equations **Basic yield**: $$Y = e^{-AD}$$ **Industry standard**: $$Y = \left(1 + \frac{AD}{\alpha}\right)^{-\alpha}$$ **Total yield**: $$Y_{\text{total}} = Y_{\text{gross}} \times Y_{\text{random}} \times Y_{\text{parametric}}$$ **Die cost**: $$\text{Cost}_{\text{die}} = \frac{\text{Cost}_{\text{wafer}}}{N \times Y}$$ ## Practical Implementation Workflow 1. **Data Collection** - Gather wafer test data (pass/fail maps) - Record lot/wafer identifiers and timestamps 2. **Parameter Estimation** - Estimate $D$ and $\alpha$ via MLE or Bayesian methods - Validate with holdout data 3. **Spatial Analysis** - Generate wafer maps - Calculate Moran's I to detect clustering - Identify systematic defect patterns 4. **Parametric Analysis** - Model electrical parameter distributions - Calculate $C_{pk}$ for key parameters - Estimate parametric yield losses 5. **Model Integration** - Combine: $Y_{\text{total}} = Y_{\text{gross}} \times Y_{\text{random}} \times Y_{\text{parametric}}$ - Validate against actual production data 6. **Trend Monitoring** - Track $D$ and $\alpha$ over time - Fit learning curve models - Project future yields 7. **Cost Optimization** - Calculate die cost at current yield - Identify highest-impact improvement opportunities - Optimize die size vs. yield trade-off