← Back to AI Factory Chat

AI Factory Glossary

923 technical terms and definitions

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Showing page 8 of 19 (923 entries)

ion channeling, metrology

Ions align with crystal channels.

ion chromatography, metrology

Analyze ionic species.

ion milling,metrology

Use ion beam to thin samples.

ip reuse via chiplets, ip, business

Reuse designs as separate chiplets.

iron-boron pair detection, metrology

Detect Fe-B complexes affecting lifetime.

iso-dense bias,lithography

CD difference between isolated and dense features.

j-lead, packaging

Leads bent under package.

jedec standards for packaging, jedec, standards

Industry standard specifications.

kelvin contact,metrology

Four-terminal measurement to eliminate probe resistance.

kelvin probe force microscopy (kpfm),kelvin probe force microscopy,kpfm,metrology

Measure work function and surface potential.

kelvin probe, metrology

Non-contact work function measurement.

killer defect size,metrology

Minimum size that causes failures.

known good die for chiplets, kgd, advanced packaging

Pre-tested dies for multi-die packages.

krf (krypton fluoride),krf,krypton fluoride,lithography

248nm DUV light source.

lamella preparation,metrology

Thin sample preparation for TEM.

land grid array, lga, packaging

Contact pads instead of balls.

langmuir probe,metrology

Measure plasma density and potential.

laser ablation icp-ms, metrology

Direct solid analysis.

laser debonding, advanced packaging

Use laser to release temporary bond.

laser interferometer,metrology

Precise distance measurement using light.

laser marking, packaging

Mark packages with laser.

laser mask writer, lithography

Laser-based mask writing.

laser repair, lithography

Use laser to fix mask defects.

laser scanning, metrology

Non-contact surface inspection.

laser sims, metrology

Use laser for ionization.

layer transfer, advanced packaging

Transfer thin layer from one wafer to another.

lead length, packaging

Length of lead.

lead pitch, packaging

Spacing between leads.

lead span, packaging

Distance across leads.

lead thickness, packaging

Thickness of lead.

lead width, packaging

Width of individual lead.

lead-free package requirements, packaging

MSL and reflow for Pb-free.

lead-free soldering, packaging

Use tin-silver-copper alloys.

leakage current test,metrology

Measure unwanted current flow.

lele (litho-etch-litho-etch),lele,litho-etch-litho-etch,lithography

Double patterning technique.

ler/lwr metrology, ler/lwr, metrology

Combined edge and width roughness characterization.

library-based ocd, metrology

Match measured spectrum to pre-calculated library.

lid attachment, packaging

Attach package lid.

lid seal, packaging

Seal lid to package.

light scattering particle detection, metrology

Optical detection of particles.

line edge roughness (ler),line edge roughness,ler,lithography

Random variation along edges of patterned lines.

line edge roughness measurement, ler, metrology

Quantify edge roughness of patterned lines.

line width roughness (lwr),line width roughness,lwr,lithography

Variation in line width along its length.

line width roughness measurement, lwr, metrology

Measure width variations along lines.

linearity check, metrology

Verify linear response.

linearity, metrology

Bias across measurement range.

linearity,metrology

Accuracy across measurement range.

liner deposition, process integration

Liner deposition creates thin conformal layers in contacts and vias providing adhesion diffusion barriers and nucleation surfaces.

liquid capture and analysis, metrology

Rinse wafer and analyze solution.

liquid crystal hot spot, failure analysis advanced, thermal imaging, defect detection, semiconductor failure, hot spot analysis

# Liquid Crystal Hot Spot Failure Analysis: Advanced Techniques ## 1. Introduction Liquid crystal thermography (LCT) is a **non-destructive failure analysis (FA)** technique used in semiconductor and electronics testing. It exploits the temperature-sensitive optical properties of **cholesteric (chiral nematic) liquid crystals**. ## 2. Fundamental Principles ### 2.1 Thermochromic Behavior Cholesteric liquid crystals selectively reflect light at wavelengths dependent on their helical pitch $p$, which changes with temperature $T$. The **Bragg reflection condition** for peak wavelength: $$ \lambda_{\text{max}} = n_{\text{avg}} \cdot p $$ Where: - $\lambda_{\text{max}}$ = peak reflected wavelength (nm) - $n_{\text{avg}}$ = average refractive index of the liquid crystal - $p$ = helical pitch (nm) The pitch-temperature relationship: $$ p(T) = p_0 \left[ 1 + \alpha (T - T_0) \right]^{-1} $$ Where: - $p_0$ = pitch at reference temperature $T_0$ - $\alpha$ = thermal expansion coefficient of the pitch ($\text{K}^{-1}$) ### 2.2 Joule Heating at Defect Sites Power dissipation at a defect location: $$ P = I^2 R = \frac{V^2}{R} $$ Temperature rise due to localized heating: $$ \Delta T = \frac{P}{G_{\text{th}}} = \frac{P \cdot R_{\text{th}}}{1} $$ Where: - $P$ = power dissipation (W) - $G_{\text{th}}$ = thermal conductance (W/K) - $R_{\text{th}}$ = thermal resistance (K/W) ### 2.3 Thermal Diffusion The **heat diffusion equation** governing temperature distribution: $$ \frac{\partial T}{\partial t} = \alpha_{\text{th}} \nabla^2 T + \frac{Q}{\rho c_p} $$ Where: - $\alpha_{\text{th}} = \frac{k}{\rho c_p}$ = thermal diffusivity ($\text{m}^2/\text{s}$) - k = thermal conductivity (W/m-K) - $\rho$ = density (kg/m³) - c_p = specific heat capacity (J/kg-K) - $Q$ = volumetric heat source (W/m³) **Thermal diffusion length** (for pulsed excitation at frequency $f$): $$ \mu = \sqrt{\frac{\alpha_{\text{th}}}{\pi f}} $$ ## 3. Spatial Resolution and Sensitivity ### 3.1 Resolution Limits The effective spatial resolution $\delta$ is limited by: $$ \delta = \sqrt{\delta_{\text{opt}}^2 + \delta_{\text{th}}^2} $$ Where: - $\delta_{\text{opt}}$ = optical resolution limit (diffraction-limited: $\delta_{\text{opt}} \approx \frac{\lambda}{2 \cdot \text{NA}}$) - $\delta_{\text{th}}$ = thermal spreading in the substrate ### 3.2 Minimum Detectable Power $$ P_{\text{min}} = \frac{\Delta T_{\text{min}} \cdot k \cdot A}{d} $$ Where: - $\Delta T_{\text{min}}$ = minimum detectable temperature change (~0.1°C) - $k$ = thermal conductivity of substrate - $A$ = defect area - $d$ = depth of defect below surface ## 4. Advanced Failure Modes Detectable ### 4.1 Electrical Defects - **Gate oxide shorts and leakage paths** - Current through defective oxide: $I_{\text{leak}} = \frac{V_{\text{ox}}}{R_{\text{defect}}}$ - Power: $P = I_{\text{leak}} \cdot V_{\text{ox}}$ - **Metal bridging and shorts** - Bridge resistance: $R_{\text{bridge}} = \frac{\rho L}{A}$ - Localized dissipation creates thermal signature - **Junction leakage and latch-up** - Parasitic thyristor current: $I_{\text{latch}} = \frac{V_{DD}}{R_{\text{well}} + R_{\text{sub}}}$ - **Electromigration damage** - Current density threshold (Black's equation): $$ \text{MTTF} = A \cdot J^{-n} \cdot \exp\left(\frac{E_a}{k_B T}\right) $$ ### 4.2 Thermal/Mechanical Defects - **Die-attach voids** - Effective thermal resistance with void fraction $\phi$: $$ R_{\text{th,eff}} = \frac{R_{\text{th,0}}}{1 - \phi} $$ - **Delamination** - Creates thermal barrier, increasing local $\Delta T$ ## 5. Advanced Methodologies ### 5.1 Backside Analysis For flip-chip or devices with opaque frontside metallization: - **Die thinning requirement**: Thickness $t \approx 50-100 \, \mu\text{m}$ - **Silicon transparency**: $\lambda > 1.1 \, \mu\text{m}$ (bandgap energy $E_g = 1.12 \, \text{eV}$) $$ E_g = \frac{hc}{\lambda_{\text{cutoff}}} \Rightarrow \lambda_{\text{cutoff}} = \frac{1.24 \, \mu\text{m} \cdot \text{eV}}{E_g} $$ ### 5.2 Lock-in Thermography Modulated power excitation with lock-in detection: $$ P(t) = P_0 \left[1 + \cos(2\pi f_{\text{mod}} t)\right] $$ **Temperature response (amplitude and phase)**: $$ T(x, t) = T_0 + \Delta T(x) \cos\left(2\pi f_{\text{mod}} t - \phi(x)\right) $$ Phase lag due to thermal diffusion: $$ \phi(x) = \frac{x}{\mu} = x \sqrt{\frac{\pi f_{\text{mod}}}{\alpha_{\text{th}}}} $$ **Signal-to-noise improvement**: $$ \text{SNR}_{\text{lock-in}} = \text{SNR}_{\text{DC}} \cdot \sqrt{N_{\text{cycles}}} $$ ### 5.3 Pulsed Excitation For transient thermal analysis: $$ \Delta T(t) = \frac{P}{G_{\text{th}}} \left(1 - e^{-t/\tau_{\text{th}}}\right) $$ Where thermal time constant: $$ \tau_{\text{th}} = R_{\text{th}} \cdot C_{\text{th}} = \frac{\rho c_p V}{k A / d} $$ ## 6. Comparison with Other Thermal Techniques | Technique | Resolution | Sensitivity | Speed | Equation Basis | |-----------|-----------|-------------|-------|----------------| | Liquid Crystal | $5-20 \, \mu\text{m}$ | $\sim 0.1°\text{C}$ | Moderate | Bragg: $\lambda = np$ | | IR Thermography | $3-5 \, \mu\text{m}$ | $\sim 10 \, \text{mK}$ | Fast | Stefan-Boltzmann: $P = \varepsilon \sigma T^4$ | | Thermoreflectance | $< 1 \, \mu\text{m}$ | $\sim 10 \, \text{mK}$ | Fast | $\frac{\Delta R}{R} = \kappa \Delta T$ | | Scanning Thermal | $< 100 \, \text{nm}$ | $\sim 1 \, \text{mK}$ | Slow | Fourier: $q = -k\nabla T$ | ## 7. Practical Workflow ### 7.1 Sample Preparation 1. **Decapsulation** - Chemical (fuming $\text{HNO}_3$, $\text{H}_2\text{SO}_4$) - Plasma etching - Mechanical (for ceramic packages) 2. **Surface cleaning** - Solvent rinse (acetone, IPA) - Plasma cleaning for organic residue 3. **Liquid crystal application** - Airbrush: layer thickness $\sim 10-50 \, \mu\text{m}$ - Spin coating: $\omega \sim 1000-3000 \, \text{rpm}$ ### 7.2 Bias Conditions - **DC bias**: $V_{\text{test}} = V_{\text{DD}} \times (1.0 - 1.2)$ - **Current limiting**: $I_{\text{max}}$ to prevent thermal runaway - **Power budget**: $$ P_{\text{total}} = P_{\text{quiescent}} + P_{\text{defect}} $$ ### 7.3 Temperature Control Stage temperature setpoint: $$ T_{\text{stage}} = T_{\text{LC,center}} - \Delta T_{\text{expected}} $$ Where $T_{\text{LC,center}}$ is the center of the liquid crystal's active color-play range. ## 8. Detection Limits ### 8.1 Minimum Detectable Power For a defect at depth d in silicon (k_Si = 148 W/m-K): $$ P_{\text{min}} \approx 4\pi k d \cdot \Delta T_{\text{min}} $$ **Example calculation**: - $d = 10 \, \mu\text{m} = 10 \times 10^{-6} \, \text{m}$ - $\Delta T_{\text{min}} = 0.1 \, \text{K}$ - k = 148 W/m-K $$ P_{\text{min}} = 4\pi \times 148 \times 10 \times 10^{-6} \times 0.1 \approx 1.86 \, \text{mW} $$ ### 8.2 Defect Size vs. Power Relationship Assuming hemispherical heat spreading: $$ \Delta T = \frac{P}{2\pi k r} $$ Solving for minimum detectable defect radius at given power: $$ r_{\text{min}} = \frac{P}{2\pi k \Delta T_{\text{min}}} $$ ## 9. Integration with Physical Failure Analysis ### 9.1 FIB Cross-Sectioning Workflow 1. **Coordinate transfer** - Optical microscope coordinates $\rightarrow$ FIB stage coordinates - Alignment markers for registration 2. **Protective deposition** - Pt or W layer: $\sim 1-2 \, \mu\text{m}$ thick 3. **Cross-section milling** - Rough cut: $30 \, \text{kV}$, high current ($\sim \text{nA}$) - Fine polish: $30 \, \text{kV}$, low current ($\sim \text{pA}$) ### 9.2 Failure Signature Correlation | Thermal Signature | Likely Physical Defect | |-------------------|------------------------| | Point source | Gate oxide pinhole, metal spike | | Linear | Metal bridge, crack | | Diffuse area | Junction leakage, ESD damage | | Periodic pattern | Systematic process defect | ## 10. Error Analysis ### 10.1 Temperature Measurement Uncertainty $$ \sigma_T = \sqrt{\sigma_{\text{LC}}^2 + \sigma_{\text{stage}}^2 + \sigma_{\text{optical}}^2} $$ ### 10.2 Position Uncertainty Due to thermal spreading: $$ \sigma_x \approx \mu = \sqrt{\frac{\alpha_{\text{th}} \cdot t_{\text{exposure}}}{\pi}} $$ ## 11. Equations | Parameter | Equation | |-----------|----------| | Bragg wavelength | $\lambda_{\text{max}} = n_{\text{avg}} \cdot p$ | | Power dissipation | $P = I^2 R = V^2/R$ | | Thermal diffusion length | $\mu = \sqrt{\alpha_{\text{th}} / \pi f}$ | | Temperature rise | $\Delta T = P \cdot R_{\text{th}}$ | | Lock-in phase | $\phi = x/\mu$ | | Minimum power | $P_{\text{min}} = 4\pi k d \cdot \Delta T_{\text{min}}$ | ## 12. Standards - **JEDEC JESD22-A** — Failure analysis procedures - **MIL-STD-883** — Test methods for microelectronics - **SEMI E10** — Equipment reliability metrics