reticle / photomask,lithography
Glass plate with circuit pattern for lithography exposure.
923 technical terms and definitions
Glass plate with circuit pattern for lithography exposure.
Procedures for moving and storing masks.
Number of wafer exposures before replacement.
Track and control mask inventory.
Another term for photomask.
Bond to substrate first.
Use negative resist with positive mask (or vice versa).
High-resolution follow-up of detected defects.
Mass spec analyzing chamber gases.
# Mathematical Modeling of Plasma Etching in Semiconductor Manufacturing ## Introduction Plasma etching is a critical process in semiconductor manufacturing where reactive gases are ionized to create a plasma, which selectively removes material from a wafer surface. The mathematical modeling of this process spans multiple physics domains: - **Electromagnetic theory** — RF power coupling and field distributions - **Statistical mechanics** — Particle distributions and kinetic theory - **Reaction kinetics** — Gas-phase and surface chemistry - **Transport phenomena** — Species diffusion and convection - **Surface science** — Etch mechanisms and selectivity ## Foundational Plasma Physics ### Boltzmann Transport Equation The most fundamental description of plasma behavior is the **Boltzmann transport equation**, governing the evolution of the particle velocity distribution function $f(\mathbf{r}, \mathbf{v}, t)$: $$ \frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla f + \frac{\mathbf{F}}{m} \cdot \nabla_v f = \left(\frac{\partial f}{\partial t}\right)_{\text{collision}} $$ **Where:** - $f(\mathbf{r}, \mathbf{v}, t)$ — Velocity distribution function - $\mathbf{v}$ — Particle velocity - $\mathbf{F}$ — External force (electromagnetic) - $m$ — Particle mass - RHS — Collision integral ### Fluid Moment Equations For computational tractability, velocity moments of the Boltzmann equation yield fluid equations: #### Continuity Equation (Mass Conservation) $$ \frac{\partial n}{\partial t} + \nabla \cdot (n\mathbf{u}) = S - L $$ **Where:** - $n$ — Species number density $[\text{m}^{-3}]$ - $\mathbf{u}$ — Drift velocity $[\text{m/s}]$ - $S$ — Source term (generation rate) - $L$ — Loss term (consumption rate) #### Momentum Conservation $$ \frac{\partial (nm\mathbf{u})}{\partial t} + \nabla \cdot (nm\mathbf{u}\mathbf{u}) + \nabla p = nq(\mathbf{E} + \mathbf{u} \times \mathbf{B}) - nm\nu_m \mathbf{u} $$ **Where:** - $p = nk_BT$ — Pressure - $q$ — Particle charge - $\mathbf{E}$, $\mathbf{B}$ — Electric and magnetic fields - $\nu_m$ — Momentum transfer collision frequency $[\text{s}^{-1}]$ #### Energy Conservation $$ \frac{\partial}{\partial t}\left(\frac{3}{2}nk_BT\right) + \nabla \cdot \mathbf{q} + p\nabla \cdot \mathbf{u} = Q_{\text{heating}} - Q_{\text{loss}} $$ **Where:** - $k_B = 1.38 \times 10^{-23}$ J/K — Boltzmann constant - $\mathbf{q}$ — Heat flux vector - $Q_{\text{heating}}$ — Power input (Joule heating, stochastic heating) - $Q_{\text{loss}}$ — Energy losses (collisions, radiation) ## Electromagnetic Field Coupling ### Maxwell's Equations For capacitively coupled plasma (CCP) and inductively coupled plasma (ICP) reactors: $$ \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} $$ $$ \nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t} $$ $$ \nabla \cdot \mathbf{D} = \rho $$ $$ \nabla \cdot \mathbf{B} = 0 $$ ### Plasma Conductivity The plasma current density couples through the complex conductivity: $$ \mathbf{J} = \sigma \mathbf{E} $$ For RF plasmas, the **complex conductivity** is: $$ \sigma = \frac{n_e e^2}{m_e(\nu_m + i\omega)} $$ **Where:** - $n_e$ — Electron density - $e = 1.6 \times 10^{-19}$ C — Elementary charge - $m_e = 9.1 \times 10^{-31}$ kg — Electron mass - $\omega$ — RF angular frequency - $\nu_m$ — Electron-neutral collision frequency ### Power Deposition Time-averaged power density deposited into the plasma: $$ P = \frac{1}{2}\text{Re}(\mathbf{J} \cdot \mathbf{E}^*) $$ **Typical values:** - CCP: $0.1 - 1$ W/cm³ - ICP: $0.5 - 5$ W/cm³ ## Plasma Sheath Physics The sheath is a thin, non-neutral region at the plasma-wafer interface that accelerates ions toward the surface, enabling anisotropic etching. ### Bohm Criterion Minimum ion velocity entering the sheath: $$ u_i \geq u_B = \sqrt{\frac{k_B T_e}{M_i}} $$ **Where:** - $u_B$ — Bohm velocity - $T_e$ — Electron temperature (typically 2–5 eV) - $M_i$ — Ion mass **Example:** For Ar⁺ ions with $T_e = 3$ eV: $$ u_B = \sqrt{\frac{3 \times 1.6 \times 10^{-19}}{40 \times 1.67 \times 10^{-27}}} \approx 2.7 \text{ km/s} $$ ### Child-Langmuir Law For a collisionless sheath, the ion current density is: $$ J = \frac{4\varepsilon_0}{9}\sqrt{\frac{2e}{M_i}} \cdot \frac{V_s^{3/2}}{d^2} $$ **Where:** - $\varepsilon_0 = 8.85 \times 10^{-12}$ F/m — Vacuum permittivity - $V_s$ — Sheath voltage drop (typically 10–500 V) - $d$ — Sheath thickness ### Sheath Thickness The sheath thickness scales as: $$ d \approx \lambda_D \left(\frac{2eV_s}{k_BT_e}\right)^{3/4} $$ **Where** the Debye length is: $$ \lambda_D = \sqrt{\frac{\varepsilon_0 k_B T_e}{n_e e^2}} $$ ### Ion Angular Distribution Ions arrive at the wafer with an angular distribution: $$ f(\theta) \propto \exp\left(-\frac{\theta^2}{2\sigma^2}\right) $$ **Where:** $$ \sigma \approx \arctan\left(\sqrt{\frac{k_B T_i}{eV_s}}\right) $$ **Typical values:** $\sigma \approx 2°–5°$ for high-bias conditions. ## Electron Energy Distribution Function ### Non-Maxwellian Distributions In low-pressure plasmas (1–100 mTorr), the EEDF deviates from Maxwellian. #### Two-Term Approximation The EEDF is expanded as: $$ f(\varepsilon, \theta) = f_0(\varepsilon) + f_1(\varepsilon)\cos\theta $$ The isotropic part $f_0$ satisfies: $$ \frac{d}{d\varepsilon}\left[\varepsilon D \frac{df_0}{d\varepsilon} + \left(V + \frac{\varepsilon\nu_{\text{inel}}}{\nu_m}\right)f_0\right] = 0 $$ #### Common Distribution Functions | Distribution | Functional Form | Applicability | |-------------|-----------------|---------------| | **Maxwellian** | $f(\varepsilon) \propto \sqrt{\varepsilon} \exp\left(-\frac{\varepsilon}{k_BT_e}\right)$ | High pressure, collisional | | **Druyvesteyn** | $f(\varepsilon) \propto \sqrt{\varepsilon} \exp\left(-\left(\frac{\varepsilon}{k_BT_e}\right)^2\right)$ | Elastic collisions dominant | | **Bi-Maxwellian** | Sum of two Maxwellians | Hot tail population | ### Generalized Form $$ f(\varepsilon) \propto \sqrt{\varepsilon} \cdot \exp\left[-\left(\frac{\varepsilon}{k_BT_e}\right)^x\right] $$ - $x = 1$ → Maxwellian - $x = 2$ → Druyvesteyn ## Plasma Chemistry and Reaction Kinetics ### Species Balance Equation For species $i$: $$ \frac{\partial n_i}{\partial t} + \nabla \cdot \mathbf{\Gamma}_i = \sum_j R_j $$ **Where:** - $\mathbf{\Gamma}_i$ — Species flux - $R_j$ — Reaction rates ### Electron-Impact Rate Coefficients Rate coefficients are calculated by integration over the EEDF: $$ k = \int_0^\infty \sigma(\varepsilon) v(\varepsilon) f(\varepsilon) \, d\varepsilon = \langle \sigma v \rangle $$ **Where:** - $\sigma(\varepsilon)$ — Energy-dependent cross-section $[\text{m}^2]$ - $v(\varepsilon) = \sqrt{2\varepsilon/m_e}$ — Electron velocity - $f(\varepsilon)$ — Normalized EEDF ### Heavy-Particle Reactions Arrhenius kinetics for neutral reactions: $$ k = A T^n \exp\left(-\frac{E_a}{k_BT}\right) $$ **Where:** - $A$ — Pre-exponential factor - $n$ — Temperature exponent - $E_a$ — Activation energy ### Example: SF₆/O₂ Plasma Chemistry #### Electron-Impact Reactions | Reaction | Type | Threshold | |----------|------|-----------| | $e + \text{SF}_6 \rightarrow \text{SF}_5 + \text{F} + e$ | Dissociation | ~10 eV | | $e + \text{SF}_6 \rightarrow \text{SF}_6^-$ | Attachment | ~0 eV | | $e + \text{SF}_6 \rightarrow \text{SF}_5^+ + \text{F} + 2e$ | Ionization | ~16 eV | | $e + \text{O}_2 \rightarrow \text{O} + \text{O} + e$ | Dissociation | ~6 eV | #### Gas-Phase Reactions - $\text{F} + \text{O} \rightarrow \text{FO}$ (reduces F atom density) - $\text{SF}_5 + \text{F} \rightarrow \text{SF}_6$ (recombination) - $\text{O} + \text{CF}_3 \rightarrow \text{COF}_2 + \text{F}$ (polymer removal) #### Surface Reactions - $\text{F} + \text{Si}(s) \rightarrow \text{SiF}_{(\text{ads})}$ - $\text{SiF}_{(\text{ads})} + 3\text{F} \rightarrow \text{SiF}_4(g)$ (volatile product) ## Transport Phenomena ### Drift-Diffusion Model For charged species, the flux is: $$ \mathbf{\Gamma} = \pm \mu n \mathbf{E} - D \nabla n $$ **Where:** - Upper sign: positive ions - Lower sign: electrons - $\mu$ — Mobility $[\text{m}^2/(\text{V}\cdot\text{s})]$ - $D$ — Diffusion coefficient $[\text{m}^2/\text{s}]$ ### Einstein Relation Connects mobility and diffusion: $$ D = \frac{\mu k_B T}{e} $$ ### Ambipolar Diffusion When quasi-neutrality holds ($n_e \approx n_i$): $$ D_a = \frac{\mu_i D_e + \mu_e D_i}{\mu_i + \mu_e} \approx D_i\left(1 + \frac{T_e}{T_i}\right) $$ Since $T_e \gg T_i$ typically: $D_a \approx D_i (1 + T_e/T_i) \approx 100 D_i$ ### Neutral Transport For reactive neutrals (radicals), Fickian diffusion: $$ \frac{\partial n}{\partial t} = D\nabla^2 n + S - L $$ #### Surface Boundary Condition $$ -D\frac{\partial n}{\partial x}\bigg|_{\text{surface}} = \frac{1}{4}\gamma n v_{\text{th}} $$ **Where:** - $\gamma$ — Sticking/reaction coefficient (0 to 1) - $v_{\text{th}} = \sqrt{\frac{8k_BT}{\pi m}}$ — Thermal velocity ### Knudsen Number Determines the appropriate transport regime: $$ \text{Kn} = \frac{\lambda}{L} $$ **Where:** - $\lambda$ — Mean free path - $L$ — Characteristic length | Kn Range | Regime | Model | |----------|--------|-------| | $< 0.01$ | Continuum | Navier-Stokes | | $0.01–0.1$ | Slip flow | Modified N-S | | $0.1–10$ | Transition | DSMC/BGK | | $> 10$ | Free molecular | Ballistic | ## Surface Reaction Modeling ### Langmuir Adsorption Kinetics For surface coverage $\theta$: $$ \frac{d\theta}{dt} = k_{\text{ads}}(1-\theta)P - k_{\text{des}}\theta - k_{\text{react}}\theta $$ **At steady state:** $$ \theta = \frac{k_{\text{ads}}P}{k_{\text{ads}}P + k_{\text{des}} + k_{\text{react}}} $$ ### Ion-Enhanced Etching The total etch rate combines multiple mechanisms: $$ \text{ER} = Y_{\text{chem}} \Gamma_n + Y_{\text{phys}} \Gamma_i + Y_{\text{syn}} \Gamma_i f(\theta) $$ **Where:** - $Y_{\text{chem}}$ — Chemical etch yield (isotropic) - $Y_{\text{phys}}$ — Physical sputtering yield - $Y_{\text{syn}}$ — Ion-enhanced (synergistic) yield - $\Gamma_n$, $\Gamma_i$ — Neutral and ion fluxes - $f(\theta)$ — Coverage-dependent function ### Ion Sputtering Yield #### Energy Dependence $$ Y(E) = A\left(\sqrt{E} - \sqrt{E_{\text{th}}}\right) \quad \text{for } E > E_{\text{th}} $$ **Typical threshold energies:** - Si: $E_{\text{th}} \approx 20$ eV - SiO₂: $E_{\text{th}} \approx 30$ eV - Si₃N₄: $E_{\text{th}} \approx 25$ eV #### Angular Dependence $$ Y(\theta) = Y(0) \cos^{-f}(\theta) \exp\left[-b\left(\frac{1}{\cos\theta} - 1\right)\right] $$ **Behavior:** - Increases from normal incidence - Peaks at $\theta \approx 60°–70°$ - Decreases at grazing angles (reflection dominates) ## Feature-Scale Profile Evolution ### Level Set Method The surface is represented as the zero contour of $\phi(\mathbf{x}, t)$: $$ \frac{\partial \phi}{\partial t} + V_n |\nabla \phi| = 0 $$ **Where:** - $\phi > 0$ — Material - $\phi < 0$ — Void/vacuum - $\phi = 0$ — Surface - $V_n$ — Local normal etch velocity ### Local Etch Rate Calculation The normal velocity $V_n$ depends on: 1. **Ion flux and angular distribution** $$\Gamma_i(\mathbf{x}) = \int f(\theta, E) \, d\Omega \, dE$$ 2. **Neutral flux** (with shadowing) $$\Gamma_n(\mathbf{x}) = \Gamma_{n,0} \cdot \text{VF}(\mathbf{x})$$ where VF is the view factor 3. **Surface chemistry state** $$V_n = f(\Gamma_i, \Gamma_n, \theta_{\text{coverage}}, T)$$ ### Neutral Transport in High-Aspect-Ratio Features #### Clausing Transmission Factor For a tube of aspect ratio AR: $$ K \approx \frac{1}{1 + 0.5 \cdot \text{AR}} $$ #### View Factor Calculations For surface element $dA_1$ seeing $dA_2$: $$ F_{1 \rightarrow 2} = \frac{1}{\pi} \int \frac{\cos\theta_1 \cos\theta_2}{r^2} \, dA_2 $$ ## Monte Carlo Methods ### Test-Particle Monte Carlo Algorithm ``` 1. SAMPLE incident particle from flux distribution at feature opening - Ion: from IEDF and IADF - Neutral: from Maxwellian 2. TRACE trajectory through feature - Ion: ballistic, solve equation of motion - Neutral: random walk with wall collisions 3. DETERMINE reaction at surface impact - Sample from probability distribution - Update surface coverage if adsorption 4. UPDATE surface geometry - Remove material (etching) - Add material (deposition) 5. REPEAT for statistically significant sample ``` ### Ion Trajectory Integration Through the sheath/feature: $$ m\frac{d^2\mathbf{r}}{dt^2} = q\mathbf{E}(\mathbf{r}) $$ **Numerical integration:** Velocity-Verlet or Boris algorithm ### Collision Sampling Null-collision method for efficiency: $$ P_{\text{collision}} = 1 - \exp(-\nu_{\text{max}} \Delta t) $$ **Where** $\nu_{\text{max}}$ is the maximum possible collision frequency. ## Multi-Scale Modeling Framework ### Scale Hierarchy | Scale | Length | Time | Physics | Method | |-------|--------|------|---------|--------| | **Reactor** | cm–m | ms–s | Plasma transport, EM fields | Fluid PDE | | **Sheath** | µm–mm | µs–ms | Ion acceleration, EEDF | Kinetic/Fluid | | **Feature** | nm–µm | ns–ms | Profile evolution | Level set/MC | | **Atomic** | Å–nm | ps–ns | Reaction mechanisms | MD/DFT | ### Coupling Approaches #### Hierarchical (One-Way) ``` Atomic scale → Surface parameters ↓ Feature scale ← Fluxes from reactor scale ↓ Reactor scale → Process outputs ``` #### Concurrent (Two-Way) - Feature-scale results feed back to reactor scale - Requires iterative solution - Computationally expensive ## Numerical Methods and Challenges ### Stiff ODE Systems Plasma chemistry involves timescales spanning many orders of magnitude: | Process | Timescale | |---------|-----------| | Electron attachment | $\sim 10^{-10}$ s | | Ion-molecule reactions | $\sim 10^{-6}$ s | | Metastable decay | $\sim 10^{-3}$ s | | Surface diffusion | $\sim 10^{-1}$ s | #### Implicit Methods Required **Backward Differentiation Formula (BDF):** $$ y_{n+1} = \sum_{j=0}^{k-1} \alpha_j y_{n-j} + h\beta f(t_{n+1}, y_{n+1}) $$ ### Spatial Discretization #### Finite Volume Method Ensures mass conservation: $$ \int_V \frac{\partial n}{\partial t} dV + \oint_S \mathbf{\Gamma} \cdot d\mathbf{S} = \int_V S \, dV $$ #### Mesh Requirements - Sheath resolution: $\Delta x < \lambda_D$ - RF skin depth: $\Delta x < \delta$ - Adaptive mesh refinement (AMR) common ### EM-Plasma Coupling **Iterative scheme:** 1. Solve Maxwell's equations for $\mathbf{E}$, $\mathbf{B}$ 2. Update plasma transport (density, temperature) 3. Recalculate $\sigma$, $\varepsilon_{\text{plasma}}$ 4. Repeat until convergence ## Advanced Topics ### Atomic Layer Etching (ALE) Self-limiting reactions for atomic precision: $$ \text{EPC} = \Theta \cdot d_{\text{ML}} $$ **Where:** - EPC — Etch per cycle - $\Theta$ — Modified layer coverage fraction - $d_{\text{ML}}$ — Monolayer thickness #### ALE Cycle 1. **Modification step:** Reactive gas creates modified surface layer $$\frac{d\Theta}{dt} = k_{\text{mod}}(1-\Theta)P_{\text{gas}}$$ 2. **Removal step:** Ion bombardment removes modified layer only $$\text{ER} = Y_{\text{mod}}\Gamma_i\Theta$$ ### Pulsed Plasma Dynamics Time-modulated RF introduces: - **Active glow:** Plasma on, high ion/radical generation - **Afterglow:** Plasma off, selective chemistry #### Ion Energy Modulation By pulsing bias: $$ \langle E_i \rangle = \frac{1}{T}\left[\int_0^{t_{\text{on}}} E_{\text{high}}dt + \int_{t_{\text{on}}}^{T} E_{\text{low}}dt\right] $$ ### High-Aspect-Ratio Etching (HAR) For AR > 50 (memory, 3D NAND): **Challenges:** - Ion angular broadening → bowing - Neutral depletion at bottom - Feature charging → twisting - Mask erosion → tapering **Ion Angular Distribution Broadening:** $$ \sigma_{\text{effective}} = \sqrt{\sigma_{\text{sheath}}^2 + \sigma_{\text{scattering}}^2} $$ **Neutral Flux at Bottom:** $$ \Gamma_{\text{bottom}} \approx \Gamma_{\text{top}} \cdot K(\text{AR}) $$ ### Machine Learning Integration **Applications:** - Surrogate models for fast prediction - Process optimization (Bayesian) - Virtual metrology - Anomaly detection **Physics-Informed Neural Networks (PINNs):** $$ \mathcal{L} = \mathcal{L}_{\text{data}} + \lambda \mathcal{L}_{\text{physics}} $$ Where $\mathcal{L}_{\text{physics}}$ enforces governing equations. ## Validation and Experimental Techniques ### Plasma Diagnostics | Technique | Measurement | Typical Values | |-----------|-------------|----------------| | **Langmuir probe** | $n_e$, $T_e$, EEDF | $10^{9}–10^{12}$ cm⁻³, 1–5 eV | | **OES** | Relative species densities | Qualitative/semi-quantitative | | **APMS** | Ion mass, energy | 1–500 amu, 0–500 eV | | **LIF** | Absolute radical density | $10^{11}–10^{14}$ cm⁻³ | | **Microwave interferometry** | $n_e$ (line-averaged) | $10^{10}–10^{12}$ cm⁻³ | ### Etch Characterization - **Profilometry:** Etch depth, uniformity - **SEM/TEM:** Feature profiles, sidewall angle - **XPS:** Surface composition - **Ellipsometry:** Film thickness, optical properties ### Model Validation Workflow 1. **Plasma validation:** Match $n_e$, $T_e$, species densities 2. **Flux validation:** Compare ion/neutral fluxes to wafer 3. **Etch rate validation:** Blanket wafer etch rates 4. **Profile validation:** Patterned feature cross-sections ## Key Dimensionless Numbers Summary | Number | Definition | Physical Meaning | |--------|------------|------------------| | **Knudsen** | $\text{Kn} = \lambda/L$ | Continuum vs. kinetic | | **Damköhler** | $\text{Da} = \tau_{\text{transport}}/\tau_{\text{reaction}}$ | Transport vs. reaction limited | | **Sticking coefficient** | $\gamma = \text{reactions}/\text{collisions}$ | Surface reactivity | | **Aspect ratio** | $\text{AR} = \text{depth}/\text{width}$ | Feature geometry | | **Debye number** | $N_D = n\lambda_D^3$ | Plasma ideality | ## Physical Constants | Constant | Symbol | Value | |----------|--------|-------| | Elementary charge | $e$ | $1.602 \times 10^{-19}$ C | | Electron mass | $m_e$ | $9.109 \times 10^{-31}$ kg | | Proton mass | $m_p$ | $1.673 \times 10^{-27}$ kg | | Boltzmann constant | $k_B$ | $1.381 \times 10^{-23}$ J/K | | Vacuum permittivity | $\varepsilon_0$ | $8.854 \times 10^{-12}$ F/m | | Vacuum permeability | $\mu_0$ | $4\pi \times 10^{-7}$ H/m |
Automated arm that picks and places wafers in tools.
Channels feeding compound.
Compound in runners.
Elemental depth profiling.
Common lead-free solder.
Self-aligned patterning using spacers as mentioned earlier.
Ready specimens for analysis.
Test subset of dies.
# Silicon Valley ## I. The Geographic-Industrial Network Model ### 1.1 Spatial Concentration Function The entities form a **weighted directed graph** $G(V, E)$ where: - **Vertices ($V$)**: Companies, institutions, infrastructure, and communities - **Edges ($E$)**: Economic flows, talent pipelines, supply chains, and geographic proximity The innovation density at any point can be modeled as a **Gaussian kernel density function**: $$ \rho(x,y) = \sum_{i=1}^{n} w_i \cdot \exp\left(-\frac{\|p - p_i\|^2}{2\sigma^2}\right) $$ Where: - $\rho(x,y)$ = innovation density at coordinate $(x,y)$ - $w_i$ = weight (market cap, employee count) of company $i$ - $p_i$ = location vector of company $i$ - $\sigma$ = decay parameter for agglomeration effects - $n$ = total number of entities in the network ### 1.2 Network Centrality Metrics For each node $v$ in the ecosystem: **Degree Centrality:** $$ C_D(v) = \frac{\deg(v)}{n-1} $$ **Betweenness Centrality:** $$ C_B(v) = \sum_{s \neq v \neq t} \frac{\sigma_{st}(v)}{\sigma_{st}} $$ Where $\sigma_{st}$ is the total number of shortest paths from node $s$ to node $t$, and $\sigma_{st}(v)$ is the number of those paths passing through $v$. ## II. Semiconductor Players ### 2.1 Company Location Matrix | Company | HQ Address | Founded | Core Business | Market Cap Tier | |---------|-----------|---------|---------------|-----------------| | **AMAT** | 3050 Bowers Avenue, Santa Clara | 1967 | Fab Equipment | Large Cap | | **Intel** | 2200 Mission College Blvd, Santa Clara | 1968 | CPU/Foundry | Large Cap | | **AMD** | 2485 Augustine Drive, Santa Clara | 1969 | CPU/GPU | Large Cap | | **NVIDIA** | 2788 San Tomas Expressway, Santa Clara | 1993 | GPU/AI | Mega Cap | | **Palo Alto Networks** | 3000 Tannery Way, Santa Clara | 2005 | Cybersecurity | Large Cap | ### 2.2 Semiconductor Value Chain Layers ``` - ┌─────────────────────────────────────────────────────────────┐ │ LAYER 1: EQUIPMENT │ │ │ │ AMAT (CVD, PVD, Etch, CMP) ← Bowers Avenue │ │ • Second largest semiconductor equipment supplier │ │ • Enables all downstream chip fabrication │ └─────────────────────────────────────────────────────────────┘ │ ▼ ┌─────────────────────────────────────────────────────────────┐ │ LAYER 2: CHIP DESIGN │ │ │ │ Intel │ AMD │ NVIDIA │ │ (CPU) │ (CPU/GPU) │ (GPU/AI) │ │ │ │ │ │ Mission │ Augustine │ San Tomas │ │ College │ Drive │ Expressway │ └─────────────────────────────────────────────────────────────┘ │ ▼ ┌─────────────────────────────────────────────────────────────┐ │ LAYER 3: SYSTEMS │ │ │ │ Apple (Cupertino) │ Google (Mountain View) │ Meta (MPK) │ │ │ │ ← Consumers of chips from Layer 2 → │ └─────────────────────────────────────────────────────────────┘ ``` ### 2.3 Market Share For company $i$ in market segment $m$: $$ S_i^{(m)} = \frac{R_i^{(m)}}{\sum_{j=1}^{N} R_j^{(m)}} $$ Where: - $S_i^{(m)}$ = market share of company $i$ in segment $m$ - $R_i^{(m)}$ = revenue of company $i$ in segment $m$ - $N$ = total number of competitors **NVIDIA GPU Market Dominance (2025):** $$ S_{\text{NVIDIA}}^{(\text{discrete GPU})} = 0.92 \quad \text{(92\% market share)} $$ ## III. The Magnificent Seven Analysis ### 3.1 Composition The "Magnificent 7" stocks comprise: 1. **Apple** (AAPL) - Cupertino, CA 2. **Microsoft** (MSFT) - Redmond, WA 3. **Alphabet/Google** (GOOGL) - Mountain View, CA 4. **Amazon** (AMZN) - Seattle, WA 5. **Meta** (META) - Menlo Park, CA 6. **NVIDIA** (NVDA) - Santa Clara, CA ⭐ 7. **Tesla** (TSLA) - Austin, TX ### 3.2 S&P 500 Concentration As of January 2026: $$ W_{\text{Mag7}} = \frac{\sum_{i=1}^{7} \text{MarketCap}_i}{\text{Total S\&P 500 MarketCap}} = 0.344 \quad \text{(34.4\%)} $$ **Historical Growth (2015-2025):** $$ \text{Return}_{\text{Mag7}} = 870.1\% \quad \text{vs} \quad \text{Return}_{\text{S\&P500}} = 247.9\% $$ ### 3.3 Silicon Valley Mag 7 Presence | Company | Distance from Santa Clara | Relationship | |---------|---------------------------|--------------| | Apple | ~6 miles (Cupertino) | Adjacent city | | Google | ~8 miles (Mountain View) | Adjacent city | | Meta | ~15 miles (Menlo Park) | Same county cluster | | NVIDIA | **0 miles (Santa Clara HQ)** | **Headquartered** | ## IV. Thermal Engineering and Packaging ### 4.1 TEA **Professional Profile:** - **Position**: President, Thermal Engineering Associates Inc. (TEA) - **Credentials**: IEEE Fellow, IMAPS Fellow - **Education**: - B.Sc. Mechanical Engineering - Tsinghua University - MBA - San Jose State University - Ph.D. Materials - University of Oxford - **Location**: San Jose, California ### 4.2 Thermal Management Equations **Maximum Power Dissipation:** $$ P_{\max} = \frac{T_{\text{junction}} - T_{\text{ambient}}}{R_{\theta}} $$ Where: - $P_{\max}$ = maximum power dissipation (Watts) - $T_{\text{junction}}$ = junction temperature (°C) - $T_{\text{ambient}}$ = ambient temperature (°C) - $R_{\theta}$ = thermal resistance (°C/W) **Junction Temperature Model:** $$ T_j = T_a + P \cdot (R_{\theta_{jc}} + R_{\theta_{cs}} + R_{\theta_{sa}}) $$ Where: - $R_{\theta_{jc}}$ = junction-to-case thermal resistance - $R_{\theta_{cs}}$ = case-to-sink thermal resistance - $R_{\theta_{sa}}$ = sink-to-ambient thermal resistance ### 4.3 Power Density Scaling Challenge As transistor density follows Moore's Law: $$ n(t) = n_0 \cdot 2^{t/\tau} $$ Where $\tau \approx 2$ years, power density scales as: $$ P_D(t) = \frac{P(t)}{A} \propto 2^{t/\tau} $$ This exponential growth creates the **thermal management bottleneck** that TEA's thermal test chips (TTCs) address. ## V. Transportation ### 5.1 Key Expressways | Expressway | Orientation | Key Connections | |------------|-------------|-----------------| | **Lawrence Expressway** | North-South | Links Sunnyvale parks to Santa Clara | | **Central Expressway** | East-West | Core tech corridor access | | **San Tomas Expressway** | North-South | NVIDIA HQ corridor | | **Bowers Avenue** | North-South | AMAT, Intel adjacent areas | ### 5.2 Accessibility Function Network accessibility at location $x$: $$ A(x) = \sum_{j=1}^{n} O_j \cdot f(c_{xj}) $$ Where: - $A(x)$ = accessibility at location $x$ - $O_j$ = opportunities (jobs, amenities) at destination $j$ - $f(c_{xj})$ = impedance function of travel cost/time from $x$ to $j$ **Common Impedance Functions:** - **Inverse power**: $f(c) = c^{-\beta}$ - **Negative exponential**: $f(c) = e^{-\beta c}$ - **Gaussian**: $f(c) = e^{-\beta c^2}$ ### 5.3 Commute Time Distribution For commute time $T$ in the Santa Clara tech corridor: $$ f(T) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(T - \mu)^2}{2\sigma^2}\right) $$ With parameters: - $\mu \approx 25$ minutes (average commute) - $\sigma \approx 12$ minutes (standard deviation) ## VI. Semiconductor Companies ### 6.1 Texas Instruments (TI) in Santa Clara **Key Locations:** - **3833 Kifer Road** - Former campus (sold to Fortinet, $192M) - **4555 Great America Parkway** - Current lease (~205,000 sq ft) - **2900 Semiconductor Drive** - TI Silicon Valley Labs **Historical Significance:** - First commercial silicon transistor (1954) - Jack Kilby invented integrated circuit (1958) - TI Silicon Valley Labs established (2012) ### 6.2 Fujitsu in Sunnyvale **Location:** 1250 East Arques Avenue, Sunnyvale **Timeline:** - **1979**: Founded Fujitsu Electronics America - **2020**: Lane Partners acquired 26.3-acre campus - **2025**: Ingrasys Technology USA purchased for $128M ### 6.3 Company Evolution Model Probability of company survival after $t$ years: $$ P(\text{survive} > t) = e^{-\lambda t} $$ Where $\lambda$ = failure rate (approximately 0.05-0.10 for tech startups) ## VII. Santa Clara University ### 7.1 School of Engineering Profile | Attribute | Value | |-----------|-------| | **Founded** | 1912 | | **Location** | 500 El Camino Real, Santa Clara | | **Programs** | 8 undergraduate, 12 master's, 3 Ph.D. | | **Student-Faculty Ratio** | 10:1 | | **Top Employers** | Google, Apple, Cisco, Tesla, Intel | ### 7.2 Talent Flow Differential Equation $$ \frac{dE}{dt} = \lambda \cdot G(t) - \mu \cdot E(t) + \sigma \cdot I(t) $$ Where: - $E(t)$ = employed engineers at time $t$ - $G(t)$ = university graduates per year - $I(t)$ = immigration influx - $\lambda$ = hiring rate coefficient - $\mu$ = attrition rate coefficient - $\sigma$ = immigration employment rate **Steady State Solution:** At equilibrium $\frac{dE}{dt} = 0$: $$ E^* = \frac{\lambda G + \sigma I}{\mu} $$ ## VIII. Innovation ### 8.1 Regional Innovation Production Function $$ I(t) = A \cdot K(t)^\alpha \cdot L(t)^\beta \cdot R(t)^\gamma \cdot N(t)^\delta $$ Where: - $I(t)$ = innovation output (patents, startups, products) - $A$ = total factor productivity - $K(t)$ = capital (VC funding, R&D investment) - $L(t)$ = labor (engineers, researchers) - $R(t)$ = research institutions capacity - $N(t)$ = network effects (proximity spillovers) - $\alpha + \beta + \gamma + \delta = 1$ (constant returns to scale) ### 8.2 Venture Capital Concentration $$ \text{VC}_{\text{SV}} = \frac{\text{Silicon Valley VC Investment}}{\text{Total US VC Investment}} \approx 0.41 \quad \text{(41\%)} $$ ### 8.3 Knowledge Spillover Function Knowledge decay with distance: $$ K(d) = K_0 \cdot e^{-\gamma d} $$ Where: - $K(d)$ = knowledge spillover at distance $d$ - $K_0$ = knowledge at source - $\gamma$ = decay rate (higher in tech clusters) ## IX. Community ### 9.1 Residential & Retail Nodes **Apartments:** - Oak Brooks Apartment - Station 101 Apartment - Rieley Square Apartment - Halford Garden Apartments **Retail/Grocery:** - Han Kook Supermarket (Korean market) - FootMaxx Supermarket - Costco (Lawrence Expressway area) **Parks:** - Ponderosa Park - Central Park (Santa Clara) ### 9.2 Housing Affordability Index $$ \text{HAI} = \frac{\text{Median Household Income}}{\text{Income Required for Median Home}} \times 100 $$ For Santa Clara County: $$ \text{HAI}_{\text{SCC}} \approx 65-75 $$ (Below 100 indicates affordability challenges) ### 9.3 Residential Attractor Function $$ R(x) = f(\text{wage premium}) \cdot g(\text{housing cost}) \cdot h(\text{amenities}) $$ Where: $$ f(w) = w^\alpha, \quad g(c) = c^{-\beta}, \quad h(a) = \log(1 + a) $$ ## X. Mathematical Network Diagram ### 10.1 Ecosystem Graph Representation ``` - SEMICONDUCTOR VALUE CHAIN │ ┌────────────────────────┼────────────────────────┐ │ │ │ ▼ ▼ ▼ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │ AMAT │ │ TI │ │ Fujitsu │ │ Equipment │ │ Analog │ │ Systems │ │ (Bowers) │ │ (Kifer) │ │ (Arques) │ └──────┬──────┘ └──────┬──────┘ └──────┬──────┘ │ │ │ └────────────────────────┼────────────────────────┘ │ ▼ ┌──────────────────────────────────────────────────────────────┐ │ CHIP DESIGNERS │ │ │ │ ┌─────────┐ ┌─────────┐ ┌─────────────┐ │ │ │ Intel │ │ AMD │ │ NVIDIA │ │ │ │ Mission │ │Augustine│ │ San Tomas │ │ │ │ College │ │ Drive │ │ Expressway │ │ │ └────┬────┘ └────┬────┘ └──────┬──────┘ │ │ │ │ │ │ └───────┼────────────────┼──────────────────┼──────────────────┘ │ │ │ └────────────────┼──────────────────┘ │ ▼ ┌──────────────────────────────────────────────────────────────┐ │ MAGNIFICENT 7 LAYER │ │ │ │ Apple Google Meta NVIDIA* │ │ (Cupertino) (Mtn View) (Menlo Pk) (Santa Clara) │ │ │ │ * NVIDIA appears in both chip design AND Mag 7 │ └──────────────────────────┬───────────────────────────────────┘ │ ▼ ┌──────────────────────────────────────────────────────────────┐ │ SUPPORTING ECOSYSTEM │ │ │ │ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │ │ │ Thermal │ │ Cybersec │ │ Education │ │ │ │ Engineering │ │ (PAN) │ │ (SCU) │ │ │ │ (TEA) │ │ Tannery Way │ │ El Camino Rl │ │ │ └──────────────┘ └──────────────┘ └──────────────┘ │ │ │ └──────────────────────────────────────────────────────────────┘ ``` ### 10.2 Adjacency Matrix For $n$ key nodes, the weighted adjacency matrix $\mathbf{A}$: $$ \mathbf{A} = \begin{pmatrix} 0 & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & 0 & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & 0 & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & 0 \end{pmatrix} $$ Where $a_{ij}$ = strength of connection (supply chain, talent flow, proximity) between nodes $i$ and $j$. ## XI. Statistics ### 11.1 Key Metrics | Metric | Value | Source | |--------|-------|--------| | Mag 7 S&P 500 Weight | 34.4% | Jan 2026 | | NVIDIA GPU Market Share | 92% | Q1 2025 | | SV Venture Capital Share | 41% | Q1 2023 | | SCU Student-Faculty Ratio | 10:1 | 2024 | | Santa Clara County Median Home | >$1.5M | 2024 | ### 11.2 Growth Rates **NVIDIA Revenue Growth:** $$ \text{CAGR}_{\text{NVDA}} = \left(\frac{R_{\text{2024}}}{R_{\text{2020}}}\right)^{1/4} - 1 \approx 0.69 \quad \text{(69\% YoY)} $$ **Mag 7 10-Year Return:** $$ r_{\text{10yr}} = \frac{V_{\text{2025}} - V_{\text{2015}}}{V_{\text{2015}}} = 8.701 \quad \text{(870.1\%)} $$ ## XII. Conclusion: Self-Reinforcing System Dynamics ### 12.1 Positive Feedback Loop $$ \text{Innovation} \rightarrow \text{Jobs} \rightarrow \text{Talent Influx} \rightarrow \text{More Innovation} $$ Mathematically: $$ \frac{dI}{dt} = k \cdot I \cdot (1 - \frac{I}{I_{\max}}) $$ This **logistic growth model** captures: - Initial exponential growth - Eventual saturation at carrying capacity $I_{\max}$ ### 12.2 Agglomeration Economies Benefits scale superlinearly with city size: $$ Y = Y_0 \cdot N^\beta \quad \text{where } \beta > 1 $$ For innovation-driven economies like Santa Clara: $$ \beta \approx 1.15 - 1.25 $$ ### 12.3 Ecosystem Value Function $$ V_{\text{ecosystem}} = \int_0^\infty \sum_{i=1}^{n} w_i(t) \cdot e^{-rt} \, dt $$ Where: - $V_{\text{ecosystem}}$ = total ecosystem value (NPV) - $w_i(t)$ = value contribution of entity $i$ at time $t$ - $r$ = discount rate - $n$ = number of ecosystem participants
Ensure scanners have consistent overlay performance.
Lithography tool that scans the reticle and wafer synchronously for exposure.
Map doping profiles.
Image surfaces with electrons.
Spatially-resolved work function.
Microwave-based electrical measurement.
Optical imaging beyond diffraction limit.
Family including AFM and STM.
Map resistivity with nano-scale resolution.
Automated particle detection.
Atomic-resolution surface imaging.
Type of SRAF between main features.
Optical CD using diffraction patterns.
Use scatterometry for overlay measurement.
Analyze diffraction pattern from periodic structures to extract CD profile.
Non-product wafer used for testing or qualification.
Tests in kerf between dies.
Number of wafers to stabilize tool.
Stabilize tool after maintenance.
Elemental depth profiling.
Preferentially remove one material.
Solder specific areas.
Ability to measure target in presence of interferences.
Boom-and-bust cycles in chip demand and prices.
Approaches to maintaining fabrication tools.
Material movement and storage.
# Semiconductor Material Mathematical Modeling **Materials Covered:** Germanium (Ge), Silicon (Si), Gallium Arsenide (GaAs), Silicon Carbide (SiC) ## 1. Material Properties Overview | Property | Si | Ge | GaAs | 4H-SiC | |:---------|:--:|:--:|:----:|:------:| | **Bandgap (eV)** | 1.12 (indirect) | 0.66 (indirect) | 1.42 (direct) | 3.26 (indirect) | | **Lattice constant (Å)** | 5.431 | 5.658 | 5.653 | a=3.07, c=10.05 | | **Electron mobility (cm²/V·s)** | 1400 | 3900 | 8500 | 1000 | | **Hole mobility (cm²/V·s)** | 450 | 1900 | 400 | 120 | | **Thermal conductivity (W/cm\cdotK)** | 1.5 | 0.6 | 0.5 | 4.9 | | **Melting point (°C)** | 1414 | 937 | 1238 | 2730 (sublimes) | | **Intrinsic carrier conc. (cm⁻³)** | $1.5 \times 10^{10}$ | $2.4 \times 10^{13}$ | $1.8 \times 10^{6}$ | $\sim 10^{-9}$ | ### Key Characteristics - **Silicon (Si)** - Most widely used semiconductor - Excellent native oxide ($\text{SiO}_2$) - Mature processing technology - Diamond cubic crystal structure - **Germanium (Ge)** - Higher carrier mobility than Si - Unstable native oxide (water-soluble) - Lower thermal budget (lower melting point) - Used for high-speed devices - **Gallium Arsenide (GaAs)** - Direct bandgap → optoelectronics - Highest electron mobility - No stable native oxide - III-V compound semiconductor - **Silicon Carbide (SiC)** - Wide bandgap → high-power applications - Excellent thermal conductivity - High breakdown field - Multiple polytypes (3C, 4H, 6H) ## 2. Crystal Growth ### 2.1 Czochralski (CZ) Method — Si, Ge, GaAs #### Heat Transfer in Melt The temperature distribution in the melt is governed by the convection-diffusion equation: $$ \rho c_p \frac{\partial T}{\partial t} + \rho c_p (\mathbf{v} \cdot \nabla)T = \nabla \cdot (k \nabla T) $$ **Where:** - $\rho$ — density (kg/m³) - $c_p$ — specific heat capacity (J/kg·K) - $T$ — temperature (K) - $\mathbf{v}$ — velocity field (m/s) - $k$ — thermal conductivity (W/m·K) #### Melt Convection Navier-Stokes equation with Boussinesq approximation for buoyancy: $$ \rho \left( \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla)\mathbf{v} \right) = -\nabla p + \mu \nabla^2 \mathbf{v} + \rho \mathbf{g} \beta (T - T_m) $$ **Where:** - $p$ — pressure (Pa) - $\mu$ — dynamic viscosity (Pa·s) - $\mathbf{g}$ — gravitational acceleration (m/s²) - $\beta$ — thermal expansion coefficient (K⁻¹) - $T_m$ — melting temperature (K) #### Stefan Condition at Crystal-Melt Interface The interface position is determined by the heat balance: $$ k_s \left( \frac{\partial T}{\partial n} \right)_s - k_l \left( \frac{\partial T}{\partial n} \right)_l = \rho_s L v_n $$ **Where:** - $k_s$, $k_l$ — thermal conductivity of solid and liquid - $L$ — latent heat of fusion (J/kg) - $v_n$ — interface velocity normal to surface (m/s) - $\rho_s$ — solid density (kg/m³) #### Dopant Segregation — Burton-Prim-Slichter (BPS) Model The effective segregation coefficient accounts for boundary layer effects: $$ k_{\text{eff}} = \frac{k_0}{k_0 + (1-k_0)\exp\left( -\frac{v_g \delta}{D} \right)} $$ **Where:** - $k_0$ — equilibrium segregation coefficient (dimensionless) - $v_g$ — crystal growth rate (m/s) - $\delta$ — boundary layer thickness (m) - $D$ — diffusion coefficient in melt (m²/s) **Limiting cases:** - Slow growth ($v_g \delta / D \ll 1$): $k_{\text{eff}} \rightarrow k_0$ - Fast growth ($v_g \delta / D \gg 1$): $k_{\text{eff}} \rightarrow 1$ ### 2.2 Physical Vapor Transport (PVT) — SiC SiC sublimes rather than melts. Growth occurs via vapor species transport. #### Sublimation Species $$ \text{SiC}_{(s)} \rightleftharpoons \text{Si}_{(g)} + \text{C}_{(s)} $$ $$ 2\text{SiC}_{(s)} \rightleftharpoons \text{Si}_2\text{C}_{(g)} + \text{C}_{(s)} $$ $$ \text{SiC}_{(s)} + \text{Si}_{(g)} \rightleftharpoons \text{SiC}_2{}_{(g)} $$ #### Mass Transport Equation $$ \frac{\partial C_i}{\partial t} + \nabla \cdot (C_i \mathbf{v}) = \nabla \cdot (D_i \nabla C_i) + R_i $$ **Where:** - $C_i$ — concentration of species $i$ (mol/m³) - $D_i$ — diffusion coefficient of species $i$ (m²/s) - $R_i$ — reaction rate for species $i$ (mol/m³·s) #### Supersaturation at Growth Interface $$ \sigma = \frac{P_{\text{source}} - P_{\text{eq}}(T_{\text{seed}})}{P_{\text{eq}}(T_{\text{seed}})} $$ **Growth rate approximation:** $$ G \propto \frac{\sigma \cdot D}{L} $$ **Where:** - $L$ — source-to-seed distance (m) - $P_{\text{eq}}$ — equilibrium vapor pressure at seed temperature ## 3. Epitaxial Growth ### 3.1 Chemical Vapor Deposition (CVD) — Si, SiC #### Grove Model for Growth Rate $$ R = \frac{k_s C_g}{1 + \dfrac{k_s}{h_g}} $$ **Where:** - $R$ — growth rate (m/s) - $k_s$ — surface reaction rate constant (m/s) - $C_g$ — gas-phase reactant concentration (mol/m³) - $h_g$ — gas-phase mass transfer coefficient (m/s) #### Temperature Dependence (Arrhenius) $$ k_s = k_0 \exp\left(-\frac{E_a}{kT}\right) $$ **Where:** - $k_0$ — pre-exponential factor (m/s) - $E_a$ — activation energy (eV or J) - $k$ — Boltzmann constant ($8.617 \times 10^{-5}$ eV/K) - $T$ — temperature (K) #### Two Limiting Regimes | Regime | Condition | Growth Rate | Temperature Dependence | |:-------|:----------|:------------|:-----------------------| | **Reaction-limited** | $k_s \ll h_g$ | $R \approx k_s C_g$ | Strong (exponential) | | **Mass-transport-limited** | $k_s \gg h_g$ | $R \approx h_g C_g$ | Weak ($\sim T^{1/2}$) | #### Boundary Layer Thickness $$ \delta \approx \sqrt{\frac{\mu L}{\rho v}} = \sqrt{\frac{\nu L}{v}} $$ **Where:** - $\nu$ — kinematic viscosity (m²/s) - $L$ — characteristic length (m) - $v$ — gas flow velocity (m/s) **Mass transfer coefficient:** $$ h_g \approx \frac{D}{\delta} $$ ### 3.2 Molecular Beam Epitaxy (MBE) — GaAs, Ge #### Knudsen Cell Flux (Effusion) $$ J = \frac{P \cdot A_e \cdot \cos\theta}{\sqrt{2\pi m k T}} \cdot \frac{1}{\pi r^2} $$ **Where:** - $J$ — flux at substrate (atoms/cm²·s) - $P$ — vapor pressure in cell (Pa) - $A_e$ — effusion orifice area (m²) - $m$ — atomic mass (kg) - $r$ — source-to-substrate distance (m) - $\theta$ — angle from normal #### Growth Rate $$ R = \frac{J_{\text{Ga}}}{n_0} $$ **Where:** - $J_{\text{Ga}}$ — Ga flux at substrate (atoms/cm²·s) - $n_0$ — surface atomic density ($\sim 6.3 \times 10^{14}$ cm⁻² for GaAs (100)) #### Surface Diffusion **Diffusion coefficient:** $$ D_s = D_0 \exp\left(-\frac{E_d}{kT}\right) $$ **Mean diffusion length:** $$ \lambda = \sqrt{D_s \tau} $$ **Where:** - $E_d$ — diffusion activation energy (eV) - $\tau$ — residence time before desorption (s) ### 3.3 Heteroepitaxy — Critical Thickness For lattice-mismatched systems (e.g., Ge on Si with 4.2% mismatch): #### Matthews-Blakeslee Model $$ h_c = \frac{b}{2\pi f} \cdot \frac{1-\nu/4}{1+\nu} \cdot \ln\left(\frac{h_c}{b}\right) $$ **Where:** - $h_c$ — critical thickness for dislocation formation (m) - $b$ — Burgers vector magnitude (m) - $f$ — lattice mismatch: $f = \dfrac{a_{\text{layer}} - a_{\text{sub}}}{a_{\text{sub}}}$ - $\nu$ — Poisson's ratio (dimensionless) **Strain energy density:** $$ E_{\text{strain}} = \frac{E}{1-\nu} \cdot f^2 \cdot h $$ **Where:** - $E$ — Young's modulus (Pa) - $h$ — layer thickness (m) ## 4. Thermal Oxidation ### 4.1 Deal-Grove Model — Si The oxide thickness $x_{\text{ox}}$ as a function of time $t$: $$ x_{\text{ox}}^2 + A \cdot x_{\text{ox}} = B(t + \tau) $$ **Where:** - $A$, $B$ — rate constants (material and condition dependent) - $\tau$ — time correction for initial oxide: $\tau = \dfrac{x_i^2 + A \cdot x_i}{B}$ #### Parabolic Rate Constant $$ B = \frac{2 D_{\text{ox}} C^*}{N_1} $$ **Where:** - $D_{\text{ox}}$ — oxidant diffusivity in $\text{SiO}_2$ (m²/s) - $C^*$ — equilibrium oxidant concentration in oxide (mol/m³) - $N_1$ — number of oxidant molecules per unit volume of oxide #### Linear Rate Constant $$ \frac{B}{A} = \frac{k_s C^*}{N_1} $$ **Where:** - $k_s$ — surface reaction rate constant (m/s) #### Limiting Cases | Regime | Condition | Oxide Thickness | Rate Limiting Step | |:-------|:----------|:----------------|:-------------------| | **Linear** | $x_{\text{ox}} \ll A$ | $x_{\text{ox}} \approx \dfrac{B}{A} t$ | Surface reaction | | **Parabolic** | $x_{\text{ox}} \gg A$ | $x_{\text{ox}} \approx \sqrt{Bt}$ | Diffusion through oxide | #### Wet vs. Dry Oxidation | Parameter | Dry O₂ | Wet H₂O | |:----------|:-------|:--------| | $B$ (1000°C) | 0.0117 µm²/hr | 0.287 µm²/hr | | $B/A$ (1000°C) | 0.027 µm/hr | 0.96 µm/hr | | Oxide quality | Higher | Lower | | Growth rate | Slower (~10×) | Faster | ### 4.2 SiC Oxidation **Reaction:** $$ \text{SiC} + \frac{3}{2}\text{O}_2 \rightarrow \text{SiO}_2 + \text{CO} $$ **Key differences from Si:** - Oxidation rate is 10-100× slower than Si at the same temperature - Carbon removal adds complexity (CO must diffuse out) - Interface trap density ($D_{it}$) is a major challenge - Modified Deal-Grove models required: $$ x_{\text{ox}}^2 + A \cdot x_{\text{ox}} = B(t + \tau) + C \cdot t $$ The additional linear term $C \cdot t$ accounts for carbon-related interface reactions. ## 5. Diffusion ### 5.1 Fick's Laws #### First Law (Flux) $$ J = -D \frac{\partial C}{\partial x} $$ **Where:** - $J$ — flux (atoms/cm²·s) - $D$ — diffusion coefficient (cm²/s) - $C$ — concentration (atoms/cm³) #### Second Law (Time Evolution) $$ \frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2} $$ *Assumes constant diffusion coefficient.* #### Diffusion Coefficient Temperature Dependence $$ D = D_0 \exp\left( -\frac{E_a}{kT} \right) $$ ### 5.2 Analytical Solutions #### Constant Surface Concentration (Predeposition) **Boundary conditions:** - $C(0,t) = C_s$ (constant) - $C(\infty,t) = 0$ - $C(x,0) = 0$ **Solution:** $$ C(x,t) = C_s \cdot \text{erfc}\left( \frac{x}{2\sqrt{Dt}} \right) $$ **Total dopant dose:** $$ Q = \frac{2C_s}{\sqrt{\pi}} \cdot \sqrt{Dt} $$ #### Limited Source (Drive-in) **Boundary conditions:** - Total dopant $Q$ conserved - $C(x,0) = Q \cdot \delta(x)$ (delta function) **Solution (Gaussian):** $$ C(x,t) = \frac{Q}{\sqrt{\pi Dt}} \exp\left( -\frac{x^2}{4Dt} \right) $$ #### Junction Depth At the junction, $C(x_j) = C_B$ (background concentration): $$ x_j = 2\sqrt{Dt} \cdot \text{erfc}^{-1}\left( \frac{C_B}{C_s} \right) $$ For Gaussian profile: $$ x_j = 2\sqrt{Dt \cdot \ln\left(\frac{Q}{C_B\sqrt{\pi Dt}}\right)} $$ ### 5.3 Material-Specific Diffusion Parameters #### Silicon | Dopant | $D_0$ (cm²/s) | $E_a$ (eV) | Mechanism | |:-------|:-------------:|:----------:|:----------| | Boron (B) | 0.76 | 3.46 | Interstitialcy | | Phosphorus (P) | 3.85 | 3.66 | Mixed (V + I) | | Arsenic (As) | 22.9 | 4.1 | Vacancy | | Antimony (Sb) | 0.214 | 3.65 | Vacancy | #### Germanium - Higher diffusion coefficients than Si (lower melting point) - B in Ge: $D_0 \approx 1.0$ cm²/s, $E_a \approx 2.5$ eV #### Silicon Carbide - **Extremely low diffusion coefficients** due to strong Si-C bonds - N-type doping (N): $D \approx 10^{-13}$ cm²/s at 1800°C - Implantation is required; diffusion-based doping impractical - Activation requires annealing >1600°C #### GaAs - Si is amphoteric (can be n-type on Ga site, p-type on As site) - Zn diffusion is heavily concentration-dependent - Be is preferred p-type dopant for MBE ## 6. Ion Implantation ### 6.1 Range Distribution — LSS Theory #### Gaussian Approximation $$ C(x) = \frac{\Phi}{\sqrt{2\pi} \Delta R_p} \exp\left( -\frac{(x - R_p)^2}{2 \Delta R_p^2} \right) $$ **Where:** - $\Phi$ — implant dose (ions/cm²) - $R_p$ — projected range (mean depth) (nm) - $\Delta R_p$ — range straggle (standard deviation) (nm) #### Peak Concentration $$ C_{\text{peak}} = \frac{\Phi}{\sqrt{2\pi} \Delta R_p} \approx \frac{0.4 \Phi}{\Delta R_p} $$ ### 6.2 Stopping Power Total energy loss per unit path length: $$ -\frac{dE}{dx} = S_n(E) + S_e(E) $$ **Where:** - $S_n(E)$ — nuclear stopping power (elastic collisions with nuclei) - $S_e(E)$ — electronic stopping power (inelastic electron interactions) #### Nuclear Stopping (Low Energy) Dominant mechanism at low energies. Using ZBL (Ziegler-Biersack-Littmark) potential: $$ S_n \propto \frac{Z_1 Z_2}{(Z_1^{0.23} + Z_2^{0.23})} \cdot \frac{M_1}{M_1 + M_2} $$ **Where:** - $Z_1$, $Z_2$ — atomic numbers of ion and target - $M_1$, $M_2$ — masses of ion and target #### Electronic Stopping (High Energy) $$ S_e \propto Z_1^{1/6} \sqrt{E} $$ At very high energies, Bethe-Bloch formula applies. ### 6.3 Damage and Amorphization #### Displacement Damage — Modified Kinchin-Pease Model $$ N_d = \frac{0.8 \cdot E_d}{2 E_{\text{th}}} $$ **Where:** - $N_d$ — number of displaced atoms per ion - $E_d$ — damage energy deposited (eV) - $E_{\text{th}}$ — threshold displacement energy (eV) - Si: ~15 eV - GaAs: ~10 eV (Ga sublattice), ~9 eV (As sublattice) - SiC: ~20-35 eV #### Critical Dose for Amorphization | Material | Critical Dose (ions/cm²) | Notes | |:---------|:------------------------:|:------| | Si | $10^{14} - 10^{15}$ | Room temperature | | Ge | $10^{13} - 10^{14}$ | Easier to amorphize | | GaAs | $10^{13} - 10^{14}$ | Very easily amorphized | | SiC | $10^{15} - 10^{16}$ | Requires low T or high dose | #### Channeling Effect When ions align with crystal channels, the range increases significantly: $$ R_p^{\text{channeled}} \gg R_p^{\text{random}} $$ Modeling requires Monte Carlo simulations (SRIM/TRIM, Crystal-TRIM). ## 7. Etching ### 7.1 Wet Etching #### Etch Rate Model $$ R = A \exp\left( -\frac{E_a}{kT} \right) [C]^n $$ **Where:** - $R$ — etch rate (nm/min) - $A$ — pre-exponential factor - $[C]$ — etchant concentration - $n$ — reaction order #### Anisotropic Si Etching (KOH, TMAH) Different crystal planes have different bond densities: $$ \frac{R_{\{100\}}}{R_{\{111\}}} \approx 100-400 $$ **Etch selectivity:** $$ S = \frac{R_{\text{material 1}}}{R_{\text{material 2}}} $$ ### 7.2 Reactive Ion Etching (RIE/ICP) #### Ion-Enhanced Etching $$ R_{\text{total}} = R_{\text{chem}} + R_{\text{phys}} + R_{\text{synergy}} $$ The synergy term is typically the largest contribution. #### Child-Langmuir Law for Ion Current $$ J = \frac{4\varepsilon_0}{9} \sqrt{\frac{2e}{M_i}} \cdot \frac{V^{3/2}}{d^2} $$ **Where:** - $J$ — ion current density (A/m²) - $\varepsilon_0$ — vacuum permittivity - $e$ — electron charge - $M_i$ — ion mass (kg) - $V$ — sheath voltage (V) - $d$ — sheath thickness (m) #### Langmuir-Hinshelwood Kinetics (Surface Reaction) $$ R = \frac{k \cdot \theta_A \cdot \theta_B}{(1 + K_A P_A + K_B P_B)^2} $$ **Where:** - $\theta_A$, $\theta_B$ — surface coverage fractions - $K_A$, $K_B$ — adsorption equilibrium constants - $P_A$, $P_B$ — partial pressures ### 7.3 Material-Specific Etching | Material | Wet Etch | Dry Etch | Notes | |:---------|:---------|:---------|:------| | **Si** | KOH, TMAH, HF/HNO₃ | SF₆, CF₄, Cl₂ | Well-established | | **Ge** | H₂O₂/HF | CF₄, SF₆ | Fast etch rates | | **GaAs** | H₂SO₄/H₂O₂, NH₄OH | Cl₂, BCl₃ | Selectivity to AlGaAs | | **SiC** | KOH (molten, 500°C) | SF₆/O₂, ICP | Very slow, needs ICP | ## 8. Lithography ### 8.1 Resolution Limits #### Rayleigh Criterion **Resolution:** $$ R = k_1 \frac{\lambda}{NA} $$ **Depth of Focus:** $$ DOF = k_2 \frac{\lambda}{NA^2} $$ **Where:** - $k_1$ — process factor (0.25–0.8) - $k_2$ — depth of focus factor (~0.5) - $\lambda$ — exposure wavelength (nm) - $NA$ — numerical aperture #### Technology Comparison | Technology | $\lambda$ (nm) | Typical NA | Resolution | |:-----------|:--------------:|:----------:|:-----------| | i-line | 365 | 0.6 | ~350 nm | | KrF | 248 | 0.75 | ~180 nm | | ArF (dry) | 193 | 0.85 | ~90 nm | | ArF (immersion) | 193 | 1.35 | ~38 nm | | EUV | 13.5 | 0.33 | ~13 nm | ### 8.2 Resist Modeling — Dill Parameters #### Absorption in Resist $$ \frac{dI}{dz} = -\alpha(M) \cdot I $$ **Where:** $$ \alpha = A \cdot M + B $$ - $A$ — bleachable absorption coefficient - $B$ — non-bleachable absorption coefficient - $M$ — relative photoactive compound (PAC) concentration #### Exposure Kinetics $$ \frac{dM}{dt} = -C \cdot I \cdot M $$ **Where:** - $C$ — exposure rate constant #### Development Rate (Mack Model) $$ R = R_{\max} \cdot \frac{(a+1)(1-M)^n}{a + (1-M)^n} $$ **Where:** - $R_{\max}$ — maximum development rate - $a$ — selectivity parameter - $n$ — development contrast ## 9. Thin Film Deposition ### 9.1 Physical Vapor Deposition (PVD) #### Sputtering Yield $$ Y = \frac{3\alpha}{4\pi^2} \cdot \frac{4 M_1 M_2}{(M_1 + M_2)^2} \cdot \frac{E}{U_s} $$ **Where:** - $Y$ — sputtering yield (atoms/ion) - $\alpha$ — momentum transfer efficiency - $M_1$, $M_2$ — masses of ion and target atom - $E$ — ion energy (eV) - $U_s$ — surface binding energy (eV) - Si: ~4.7 eV - SiO₂: ~5.0 eV #### Film Thickness Uniformity — Cosine Law $$ \frac{dN}{d\Omega} \propto \cos\theta $$ **Step coverage:** $$ SC = \frac{t_{\text{sidewall}}}{t_{\text{top}}} $$ ### 9.2 Chemical Vapor Deposition (CVD) #### LPCVD Polysilicon from SiH₄ **Reaction:** $$ \text{SiH}_4 \xrightarrow{\Delta} \text{Si} + 2\text{H}_2 $$ **Growth rate:** $$ R = R_0 \exp\left(-\frac{E_a}{kT}\right) \cdot \frac{P_{\text{SiH}_4}}{1 + K_{\text{H}_2} P_{\text{H}_2}} $$ ### 9.3 Atomic Layer Deposition (ALD) **Self-limiting half-reactions:** 1. $\text{Surface-OH} + \text{Al(CH}_3\text{)}_3 \rightarrow \text{Surface-O-Al(CH}_3\text{)}_2 + \text{CH}_4$ 2. $\text{Surface-Al(CH}_3\text{)}_2 + \text{H}_2\text{O} \rightarrow \text{Surface-Al-OH} + 2\text{CH}_4$ **Growth Per Cycle (GPC):** $$ \text{GPC} \approx 0.5 - 1.5 \text{ Å/cycle} $$ Ideal conformal coating with atomic-level thickness control. ## 10. Chemical Mechanical Polishing (CMP) ### 10.1 Preston Equation $$ R = K_p \cdot P \cdot V $$ **Where:** - $R$ — removal rate (nm/min) - $K_p$ — Preston coefficient (material/slurry dependent) - $P$ — applied pressure (Pa) - $V$ — relative velocity (m/s) ### 10.2 Material-Specific CMP | Material | Relative Difficulty | Slurry Type | Notes | |:---------|:-------------------:|:------------|:------| | Si | Low | Colloidal silica | Standard process | | SiO₂ | Low | Ceria, silica | Well-established | | Cu | Medium | Acidic + oxidizer | Dishing/erosion issues | | SiC | **Very High** | Oxidizing, alkaline | Hardness 9.5 Mohs | **SiC CMP challenges:** - Extremely hard material - Tribochemical mechanisms required - Polish times 10-100× longer than Si - Subsurface damage minimization critical ## 11. Process Integration Considerations ### 11.1 Silicon (Si) - **Advantages:** - Mature CMOS technology - Excellent native oxide - Standard processing well-established - **Challenges:** - Scaling limits at sub-3nm nodes - Power density limitations ### 11.2 Germanium (Ge) - **Advantages:** - Higher mobility ($\mu_e$ = 3900, $\mu_h$ = 1900 cm²/V·s) - Compatible with Si processing (mostly) - **Challenges:** - Unstable native oxide → requires passivation (GeO₂/Al₂O₃) - Lower thermal budget (mp = 937°C) - Integration on Si requires graded SiGe buffers ### 11.3 Gallium Arsenide (GaAs) - **Advantages:** - Direct bandgap → optoelectronics - Highest electron mobility (8500 cm²/V·s) - Semi-insulating substrates available - **Challenges:** - No stable native oxide → gate dielectric issues - Surface Fermi level pinning - Stoichiometry control (As overpressure during anneal) - Not used for CMOS (cost, integration) ### 11.4 Silicon Carbide (SiC) - **Advantages:** - Wide bandgap (3.26 eV) → high voltage - High thermal conductivity (4.9 W/cm\cdotK) - High breakdown field (~3 MV/cm) - **Challenges:** - Extreme processing temperatures (>1600°C for activation) - Gate oxide interface quality ($D_{it}$) - Step-controlled epitaxy for polytype control - CMP is very difficult ## 12. TCAD Simulation Framework ### 12.1 Coupled Process Equations Modern process simulation solves coupled PDEs for multiple species: $$ \frac{\partial C_i}{\partial t} = \nabla \cdot (D_i \nabla C_i) + G_i - R_i $$ **Including:** - Dopant diffusion - Point defect dynamics (vacancies $V$, interstitials $I$) - Dopant-defect pairing - Cluster formation and dissolution ### 12.2 Point Defect Mediated Diffusion **Five-stream model:** $$ D_A^{\text{eff}} = D_{AI} \cdot \frac{C_I}{C_I^*} + D_{AV} \cdot \frac{C_V}{C_V^*} $$ **Where:** - $D_{AI}$ — diffusivity via interstitialcy mechanism - $D_{AV}$ — diffusivity via vacancy mechanism - $C_I^*$, $C_V^*$ — equilibrium defect concentrations ### 12.3 Level Set Methods for Topography Interface evolution during etching/deposition: $$ \frac{\partial \phi}{\partial t} + V|\nabla \phi| = 0 $$ **Where:** - $\phi = 0$ defines the interface - $V$ — local etch/deposition rate (can depend on position, orientation) ### 12.4 Monte Carlo Methods **Applications:** - **Ion implantation:** Binary collision approximation (BCA) - SRIM/TRIM for amorphous targets - Crystal-TRIM for channeling effects - **Dopant clustering:** Statistical mechanics of defect formation - **Surface evolution:** Kinetic Monte Carlo for atomic-scale processes ## Physical Constants | Constant | Symbol | Value | |:---------|:------:|:------| | Boltzmann constant | $k$ | $8.617 \times 10^{-5}$ eV/K | | Elementary charge | $e$ | $1.602 \times 10^{-19}$ C | | Vacuum permittivity | $\varepsilon_0$ | $8.854 \times 10^{-12}$ F/m | | Planck constant | $h$ | $6.626 \times 10^{-34}$ J\cdots | | Avogadro number | $N_A$ | $6.022 \times 10^{23}$ mol⁻¹ | ## Unit Conversions | Quantity | Conversion | |:---------|:-----------| | Energy | 1 eV = $1.602 \times 10^{-19}$ J | | Length | 1 Å = $10^{-10}$ m = 0.1 nm | | Temperature | $kT$ at 300 K = 0.0259 eV | | Pressure | 1 Torr = 133.3 Pa |
Fit simulation models to experimental data for accuracy.
For semiconductor process questions (etch, deposition, etc.), I can outline process flows, key parameters, and physical intuition.
Response per unit concentration.
Long meandering resistor for testing.